2. LEMHE/ICMMO, UMR 8182, Université Paris-Sud 11, Orsay 91405, France) Microstructures of shot peened layer on TiB 2 /Al at elevated temperatures

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "2. LEMHE/ICMMO, UMR 8182, Université Paris-Sud 11, Orsay 91405, France) Microstructures of shot peened layer on TiB 2 /Al at elevated temperatures"

Transcript

1 Vol.18 No.8 The hinese Journal o Nonerrous Metals Aug (2008) TiB 2 /Al ( LEMHE/IMMO, UMR 8182, Université Paris-Sud 11, Orsay 91405, France) TiB 2 /6351AlX T 115 A Microstructures o shot peened layer on TiB 2 /Al at elevated temperatures LUAN Wei-zhi 1, JIAN huan-hai 1, WAN Hao-wei 1, V. JI 2 (1. School o Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai , hina; 2. LEMHE/IMMO, UMR 8182, Université Paris-Sud 11, Orsay 91405, France) Abstract: The microstructures o 6351Al and TiB 2 /6351Al during heating process were investigated by X-ray diractometry. Domain size and microstrain were calculated by modiied Warren-Averbach method and Voigt method. The results show that the textures o both specimens are randomized by shot peening and do not appear again ater any heat treatments. Domains grow during heat treatments, and the growth o domains in composite is slower than that o monolithic 6351Al alloy. The microstrain o composite is easier to release than that o the alloy. Higher density dislocation around reinorcements improves stored energy and promotes recrystallization while urther domain growth is retarded. The thermostability o composite is higher than that o alloy. Key words: composite; domain size; microstrain; line proile analysis; shot peening; continuous heating [1] [2 3] X (XRD) X XRD (2007B071)

2 18 8 TiB 2 /Al 1403 X TiB 2 /6351Al TiB 2 /6351Al 10% [4 5] 50~500 nm 20 mm 20 mm 5 mm min h 80 Pa 69 Pa 370 MPa 275 MPa Pa 0.5 mm 5 min A Almen mm 100~ min Dmax/r X 40 kv 100 ma u K α 20 ~ Voigt [6] modiied Warren- Averbach(MWA) [7 8] X ( ) X Voigt (β) h 2 2 g 2 β β β (1) h g β β β (2) β aussian β auchy h g aussian auchy ε = β 4 tanθ D = λ β cosθ (3) aussianβ (1) aussianvoigt aussianal(111) Al(311) Si(111) Si(331) Rachinger K α2 UNÁR [7 8] MWA lna(l) lna s (L) ρbl 2 ln(r e /L)(K 2 c )+o(k 4 2 c ) (4) A(L) A s (L) B = πb 2 /2 br e o L L = na 3 a 3 = λ/2(sinθ 2 sinθ 1 ) n (θ 2 θ 1 ) K = 2sinθ/λ K = g c [8 9] L 0 WAN [10] A s (L) = α L/L 0 (5) α hook L 0 MWA h Stokes [11] A(L) XRD Harris [12] (T c ) I ( hkl) / I 0( hkl) Tc = ( hkl (6) ) (1/ n) I / I ( hkl) 0( hkl) I (hkl) I 0(hkl) Al(hkl) n (220) 2.8(111) (200)

3 LA s (L) Table 2 Size Fourier coeicients A s (L) vs L L A s (L) XRD Fig.1 XRD patterns o samples ater shot peening (SP) and heat treatment (HT) [13 14] (X 35 µm) X 2.2 MWATiB 2 /6351Al 1) Stokes L A(L) 1 2) (4) 1 L A s (L) 2 3) (5) 2 (49 1) nm MWA Voigt 2 3 MWA 16 4 Voigt 12 8 MWA Voigt Al(111) [15 17] [18] 1 Stokes L A(L) Table 1 A(L) vs L obtained by Stokes deconvolution A(L) (hkl) 0 3 nm 6 nm 9 nm 12 nm 15 nm 18 nm (111) (200) (220) (311) (222) Fig.2 Variations o domain size during heat treatment (L 0 : domain size; L 0S : domain size beore heat treatment, calculated using MWA method)

4 18 8 TiB 2 /Al 1405 [19] [20] 5 3 Al(111) Fig.3 Variations o domain size o Al(111) relection (S: domain size; S 0 : value beore heat treatment, obtained rom Voigt method) TiB 2 /6351Al 6351Al 4 Al(311) Al(311) Voigt 3 1) 25~225 2) 225~300 3) 300~400 4 Fig.4 Microstrain change o materials during heat treatment (M S : Microstrian; M S 0 Microstrian beore heat treatment, calculated using Viogt method according to Al(311) relection proiles) : 5 Fig.5 Microstrain change o materials during heat treatment (M S : Microstrian; : Microstrian beore heat treatment, M S 0 obtained rom aussian method according to Al(311) relection proiles) XRD Al(311) aussian ( 87%) aussian (82%) () X aussian aussian [21 22] [23] [17, 24] [25]

5 ~300 30~45 min REFERENES [1] KURUVILLA A K, PRASAD K S, BHANUPRASAD V V, MAHAJAN Y R. Microstructure-property correlation in Al/TiB 2 (XD) composites[j]. Scripta Metallurgica et Materialia, 1990, 24(5): [2]. Ti-10V-2Fe-3Al- [J]., 2004, 14(1): AO Yu-kui. Inluence o shot peening on tension-tension atigue properties in Ti-10V-2Fe-3Al titanium alloy[j]. The hinese Journal o Nonerrous Metals, 2004, 14(1): [3],,,,,. [J]., 2004, 14(12): HU Lan-qing, LI Mao-lin, WAN Ke, LIU ang,wei Ying-hui, XU Bing-she. Microstructure and characterization o surace nanocrystallization o aluminum alloy[j]. The hinese Journal o Nonerrous Metals, 2004, 14(12): [4] YI Hong-zhan, MA Nai-heng, LI Xian-eng, ZHAN Yi-jie, WAN Hao-wei. High-temperature mechanics properties o in situ TiB 2p reinorced Al-Si alloy composites[j]. Mater Sci Eng A, 2006, 419(1/2): [5] TJON S, MA Z Y. Microstructural and mechanical characteristics o in situ metal matrix composites[j]. Mater Sci Eng R, 2000, 29(3/4): [6] LANFORD J I. A rapid method or analysing the breadths o diraction and spectral lines using the voigt unction[j]. Journal o Applied rystallography, 1978, 11: [7] UNAR T, BORBELY A. The eect o dislocation contrast on X-ray line broadening: A new approach to line proile analysis[j]. Applied Physics Letters, 1996, 69(21): [8] UNAR T, BORBELY A, RIBARIK, BORBELY A. rystallite size distribution and dislocation structure determined by diraction proile analysis: principles and practical application to cubic and hexagonal crystals[j]. Journal o Applied rystallography, 2001, 34(3): [9] UNAR T, DRAOMIR D, REVESZ A, BORBELY A. The contrast actors o dislocations in cubic crystals: The dislocation model o strain anisotropy in practice[j]. Journal o Applied rystallography, 1999, 32(5): [10] WAN Yu-ming, LEE Shan-san, LEE Yen-chin. X-ray line proile analysis o deormed Al[J]. Journal o Applied rystallography, 1982, 15(1): [ 11] STOKES A R. A numerical Fourier-analysis method or the correction o widths and shapes o lines on X-ray powder photographs[]// Proceeding o the Physical Society, 1948: [12] BARRETT S, MASSALSKI T B. Structure o Metals[M]. Oxord: Pergamon, 1980: [13] LU Ke, LV Jian. Nanostructured surace layer on metallic materials induced by surace mechanical attrition treatment[j]. Mater Sci Eng A, 2004, 375/377: [14] WAN K, TAO N R, LIU, LU K. Plastic strain-induced grain reinement at the nanometer scale in copper[j]. Acta Materialia, 2006, 54(19): [15] INEM B. Dynamic recrystallization in a thermomechanically processed metal matrix composite[j]. Mater Sci Eng A, 1995, 197(1): [16] MANNA R, SARKAR J, SURAPPA M K. Eect o second phase precipitates on recovery and recrystallization behaviour o cold-worked Al2024-Si p composites[j]. Journal o Materials Science, 1996, 31(6): [17] FERRY M, MUNROE P R. Recrystallization kinetics and inal grain size in a cold rolled particulate reinorced Al-based MM [J]. omposites Part A: Applied Science and Manuacturing, 2004, 35(9): [18] YOO Y, JEON J S, LEE H I. The eect o Si whiskers on the hot-deormation behavior o Si w /Al2124 composites[j]. omposites Science and Technology, 1997, 57: [19],,. [J]., 2000, 36(5): JIAN huan-hai, WAN De-zun, YAO Zhong-kai. Analysis o thermal mismatch stress in the particle reinorced composite[j]. Acta Metallurgica Sinica, 2000, 36(5): [20],,. Si/TiSi 2 [J]., 1999, 35(8): LI Jian-lin, JIAN Dong-liang, TAN Shou-hong. Study on microstructure o in situ produced Si/TiSi 2 nanocomposite[j]. Acta Metallurgica Sinica, 1999, 35(8): [21] UNAR T. Microstructural parameters rom X-ray diraction peak broadening[j]. Scripta Materialia, 2004, 51(8): [22] UNAR T. Dislocation densities, arrangements and character rom X-ray diraction experiments[j]. Mater Sci Eng A, 2001(309/310): [23] HUMPHREYS F J, KALU P N. Dislocation-particle interactions during high temperature deormation o two-phase aluminum alloys[j]. Acta Metallurgica Materialia, 1987, 35(12): [24] AVALIERE P, VANELISTA E E. Isothermal orging o metal matrix composites: Recrystallization behaviour by means o deormation eiciency[j]. omposites Science and Technology, 2006, 66(2): [25] POUDENS A, BAROIX B. Recrystallization textures in Al-Si metal matrix composites[j]. Scripta Materialia, 1996, 34(6): ( )