SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "SIJIL VOKASIONAL MALAYSIA A03101 PENILAIAN AKHIR SEMESTER 1 SESI 1/2015 Matematik Bahagian A Mei"

Transcript

1 A00 LEMBAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA A00 PENILAIAN AKHIR SEMESTER SESI /205 Matematik Bahagian A Mei 2 jam Satu jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU. Kertas soalan ini mengandungi dua bahagian: Bahagian A dan Bahagian B. 2. Calon dikehendaki menjawab semua soalan dalam kedua-dua bahagian.. Rajah yang mengiringi soalan tidak dilukis mengikut skala kecuali dinyatakan. 4. Markah yang diperuntukkan bagi setiap soalan dan ceraian soalan ditunjukkan 5. dalam kurungan. Satu senarai rumus disediakan di halaman Anda dibenarkan menggunakan kalkulator saintifik. Arahan Bahagian A. Bahagian ini mengandungi 25 soalan. 2. Jawab semua soalan.. Tiap-tiap soalan diikuti oleh empat pilihan jawapan iaitu A, B, C dan D. Pilih jawapan yang betul. 4. Tulis satu jawapan sahaja dalam lajur yang disediakan di halaman 2 Buku Jawapan. Arahan Bahagian B. Bahagian ini mengandungi 5 soalan. 2. Jawab semua soalan.. Soalan dan ruang jawapan bagi Bahagian B terdapat dalam Buku Jawapan. 4. Tulis jawapan anda pada ruang yang disediakan dalam kertas soalan ini. 5. Tunjukkan kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. 6. Serahkan Buku Jawapan kepada pengawas peperiksaan pada akhir peperiksaan. Kertas soalan ini mengandungi 4 halaman bercetak di Bahagian A dan 0 halaman bercetak di Buku Jawapan. [Lihat halaman sebelah

2 2 A00 RUMUS MATEMATIK Rumus-rumus berikut boleh membantu anda menjawab soalan. Simbol-simbol yang diberi adalah yang biasa digunakan. Teorem Pithagoras c 2 = a 2 + b 2 2 Lilitan bulatan = π d = 2 π j PERKAITAN Luas trapezium = hasil tambah dua sisi selari tinggi 2 4 Luas bulatan = π j 2 5 Luas permukaan melengkung silinder = 2πjt 6 Luas permukaan sfera = 4π j 2 Luas permukaan kon = π j 2 π js 8 Luas permukaan piramid = luas tapak + jumlah luas semua permukaan segi tiga 9 Isi padu prisma tegak = luas keratan rentas panjang 0 Isi padu silinder = π j 2 t Isi padu kon = 2 Isi padu sfera = π j 2 t 4 π j Isi padu piramid tegak = luas tapak tinggi 4 Hasil tambah sudut pedalaman poligon = n panjang lengkok lilitan bulatan sudut pusat 60 atau Panjang lengkok θ 2 πj 60 6 luas sektor luas bulatan sudut pusat 60 atau Luas sektor θ πj 60 2

3 A00 Bahagian A [25 markah] Jawab semua soalan dalam bahagian ini. Dua nombor berikut adalah faktor bagi 45. A, 5 B 2, 5 C, 0 D 4, 20 2 Rajah menunjukkan sebahagian daripada suatu garis nombor x + 8 Cari nilai bagi x. A 4 B C D 0 Rajah Jadual menunjukkan sumbangan modal bagi tiga rakan kongsi dalam suatu perniagaan. Asmidar Basha Marina 2 x Jadual Jika modal yang disumbangkan oleh Asmidar ialah RM90 000, berapakah sumbangan modal oleh Basha? A B C D [Lihat halaman sebelah

4 4 A00 4 Apakah nilai bagi apabila dibundarkan kepada tiga tempat perpuluhan? A 2 4 B C 2 40 D A 6 02 B 6 02 C 5 02 D Rajah 2 menunjukkan suatu garis lurus. Rajah 2 Menggunakan pembaris, ukur panjang, dalam cm, garis lurus itu. A 9 B 9 2 C 9 D 9 0 Tukarkan 4.5 kg kepada unit gram. A B C D 45 g 450 g g g

5 5 A00 8 Tempoh masa antara jam 04 hingga jam 8 ialah A B C D 6 jam 24 minit 6 jam 52 minit 20 jam 24 minit 20 jam 52 minit 9 Seutas tali yang panjangnya 50 cm telah dipotong kepada beberapa bahagian. bahagian daripadanya mempunyai panjang yang sama iaitu setiap satu panjangnya ialah 45 cm. Berapakah baki tali yang tinggal? A 5 B 50 C 05 D 5 0 Dalam suatu pertandingan sukan yang berlangsung di stadium, Kolej Vokasional Matang telah menghantar pasukannya dengan menaiki bas. Bas bertolak dari Kolej Vokasional Matang pada hari Selasa pukul 8.00 malam. Selepas bertolak selama 5 jam, bas itu berhenti selama 00 minit. Bas tersebut meneruskan perjalanan dan mengambil masa selama 4 jam 40 minit lagi untuk tiba di stadium. Bilakah bas tersebut sampai di stadium? A jam 0620 Rabu B jam 0620 Khamis C jam 020 Rabu D jam 020 Khamis [Lihat halaman sebelah

6 6 A00 Rajah menunjukkan suatu bentangan yang dibentuk daripada sekeping logam. Diberi panjang PQ = TS = 24 cm dan PR = RS = TR = RQ = cm. P 0cm T Cari perimeter, dalam cm, rajah itu. R Rajah Q S A 4 B 84 C 00 D 0 2 Rajah 4 menunjukkan suatu bentuk yang dilukis pada grid cm. Rajah 4 Anggarkan luas, dalam cm 2, bentuk tersebut. A 28 B 8 C 48 D 58

7 A00 Rajah 5 menunjukkan sebuah segi tiga PQT dan sebuah segi empat sama TQRS. P T Q S R Rajah 5 Panjang QR = cm, PQ = 6 cm dan PT = 5 cm. Cari perimeter, dalam cm, seluruh rajah itu. A 28 B 2 C 9 D 46 4 Rajah 6 menunjukkan gabungan segi empat tepat PQRS, segi empat selari RSTU dan trapezium QRUV di atas satah mengufuk. T 0 cm U S 5 cm R 9 cm P Q 4 cm Rajah 6 V Hitung luas, dalam cm 2, rajah tersebut. A 08 B 8 C 24 D 42 [Lihat halaman sebelah

8 8 A00 5 Jadual 2 menunjukkan ciri-ciri geometri bagi pepejal X dan pepejal Y. Pepejal Permukaan Permukaan melengkung Sisi Bucu X Y 2 0 Nyatakan pepejal X dan Y. Jadual 2 A B C D Pepejal X Kon Kon Piramid Piramid Pepejal Y Sfera Silinder Silinder Sfera 6 Rajah menunjukkan sebatang paip berbentuk silinder yang dibeli oleh Ismail di sebuah kedai barangan logam. Setelah di ukur, Ismail memerlukan 4 batang paip dengan ukuran diameter dan panjang yang sama untuk menyambung paip air di rumahnya. cm 90 cm 90 cm Rajah Dengan menggunakan π, cari luas, dalam cm 2, permukaan semua batang paip yang diperlukan oleh Ismail. A 862. B 5. C D 04.86

9 9 A00 Rajah 8 menunjukkan sebuah piramid. M P Q S R Rajah 8 Tinggi piramid ialah 8 cm. Luas tapak PQRS ialah 42 cm. Cari isi padu, dalam cm, piramid itu. Isi padu piramid tegak = luas tapak tinggi A 50 B 2 C 68 D 6 8 Rajah 9 menunjukkan sebuah silinder. 0 cm 4 cm Rajah 9 Dengan menggunakan π, hitung isi padu, dalam cm, silinder itu. Isi padu silinder = π j 2 t A 20 B 2640 C D 920 [Lihat halaman sebelah

10 0 A00 9 Rajah 0 menunjukkan suatu sfera yang berpusat pada O. P O Q Rajah 0 Diberi panjang POQ ialah 4 cm. Menggunakan π, hitung isi padu, dalam cm, sfera. Isi padu sfera = 4 π j A B 4 C 6468 D Rajah menunjukkan sebuah pepejal berbentuk kon yang diletakkan di dalam sebuah silinder kosong. Kedua-dua pepejal tersebut mempunyai ketinggian yang sama. Diberi isi padu silinder itu ialah 42 cm. Dengan menggunakan π, hitung isi padu, dalam cm, ruang kosong dalam silinder tersebut. Isi padu kon = π j 2 t 28 cm 28 cm A 4. B C 90. D cm Rajah

11 A00 2 Rajah 2 menunjukkan sebuah bulatan berdiameter 28 cm. P O Q Rajah 2 Menggunakan π, cari lilitan, dalam cm, bulatan itu. Lilitan bulatan = π d = 2 π j A B C 44 D 88 Rajah menunjukkan sebuah bulatan yang berpusat pada O. O Diberi jejari bulatan ialah 28 cm. Rajah Dengan menggunakan Luas bulatan = π j 2, cari luas, dalam cm 2, bulatan itu. A 88 B 6 C 2464 D 9856 [Lihat halaman sebelah

12 2 A00 2 Rajah 4 menunjukkan suatu bulatan berpusat O dan mempunyai empat sektor M, N, P dan Q. M N 20 O 0 Q P Rajah 4 Diberi jejari bulatan itu ialah cm. Menggunakan, cari luas, dalam cm 2, sektor P. A 9 8 B C 59 9 D 94 9

13 A00 24 Rajah 5 menunjukkan sebuah jam. Panjang jarum minit ialah 4 cm Rajah 5 Menggunakan π, cari jarak, dalam cm, yang dilalui oleh jarum minit tersebut dalam tempoh jam. Lilitan bulatan = π d = 2 π j A 44 B 88 C 2 D 264 [Lihat halaman sebelah

14 4 A00 25 Rajah 6 menunjukkan sebuah segi empat sama. JL adalah suatu lengkok bagi sebuah bulatan berpusat M. J K M L Rajah 6 Panjang lengkok JL ialah 44 cm. Menggunakan π, cari panjang, dalam cm, JK. Lilitan bulatan = π d = 2 π j A 4 B 28 C 44 D 56 BAHAGIAN A TAMAT

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH

SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM. MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JUMLAH 72/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 201 2 Jam SMK SERI MUARA, 6100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA KERTAS

Διαβάστε περισσότερα

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007

SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 SULIT 1449/2 1449/2 NO. KAD PENGENALAN Matematik Kertas 2 September ANGKA GILIRAN 2007 2 2 1 jam LOGO DAN NAMA SEKOLAH PEPERIKSAAN PERCUBAAN SPM 2007 MATEMATIK Kertas 2 Dua jam tiga puluh minit JANGAN

Διαβάστε περισσότερα

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 )

( 2 ( 1 2 )2 3 3 ) MODEL PT3 MATEMATIK A PUSAT TUISYEN IHSAN JAYA = + ( 3) ( 4 9 ) 2 (4 3 4 ) 3 ( 8 3 ) ( 3.25 ) (1) Tentukan nilai bagi P, Q, dan R MODEL PT MATEMATIK A PUSAT TUISYEN IHSAN JAYA 1 P 0 Q 1 R 2 (4) Lengkapkan operasi di bawah dengan mengisi petak petak kosong berikut dengan nombor yang sesuai. ( 1

Διαβάστε περισσότερα

Jawab semua soalan. P -1 Q 0 1 R 2

Jawab semua soalan. P -1 Q 0 1 R 2 Tunjukkan langkah langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. 1. (a) Tentukan nilai P, Q dan R Jawab semua

Διαβάστε περισσότερα

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit

SEKOLAH MENENGAH KEBANGSAAN MENUMBOK. PEPERIKSAAN AKHIR TAHUN 2015 MATEMATIK TINGKATAN 4 Kertas 2 Oktober Dua jam tiga puluh minit NAMA TINGKATAN SEKOLAH MENENGAH KEBANGSAAN MENUMBOK PEPERIKSAAN AKHIR TAHUN 015 MATEMATIK TINGKATAN 4 Kertas Oktober ½ jam Dua jam tiga puluh minit JANGAN BUKA KERTAS SOALAN INI SEHINGGA DIBERITAHU 1.

Διαβάστε περισσότερα

-9, P, -1, Q, 7, 11, R

-9, P, -1, Q, 7, 11, R Tunjukkan langkah-langkah penting dalam kerja mengira anda. Ini boleh membantu anda untuk mendapatkan markah. Anda dibenarkan menggunakan kalkulator saintifik. Jawab semua soalan 1 (a) Rajah 1(a) menunjukkan

Διαβάστε περισσότερα

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan:

(a) Nyatakan julat hubungan itu (b) Dengan menggunakan tatatanda fungsi, tulis satu hubungan antara set A dan set B. [2 markah] Jawapan: MODUL 3 [Kertas 1]: MATEMATIK TAMBAHAN JPNK 015 Muka Surat: 1 Jawab SEMUA soalan. 1 Rajah 1 menunjukkan hubungan antara set A dan set B. 6 1 Set A Rajah 1 4 5 Set B (a) Nyatakan julat hubungan itu (b)

Διαβάστε περισσότερα

Kertas soalan ini mengandungi 20 halaman bercetak.

Kertas soalan ini mengandungi 20 halaman bercetak. 3472/1 NAMA :. TINGKATAN : MATEMATIK TAMBAHAN Kertas 1 September 2013 2 Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 1 Dua jam JANGAN BUKA

Διαβάστε περισσότερα

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini)

MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) MODUL 3 [Kertas 2]: MATEMATIK TAMBAHAN JPNK 2015 Muka Surat: 1 1. Selesaikan persamaan serentak yang berikut: MODUL 3 : KERTAS 2 Bahagian A [40 markah] (Jawab semua soalan dalam bahagian ini) 2x y = 1,

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 3472/2 Matematik Tambahan Kertas 2 September 2005 2½ jam MAKTAB RENDAH SAINS MARA 3472/2 PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2005 MATEMATIK TAMBAHAN Kertas 2 Dua jam tiga puluh minit 3 4 7 2

Διαβάστε περισσότερα

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat:

SMJ minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai. bahagian hujung cakera. Dengan data dan anggapan yang dibuat: SOALAN 1 Cakera dengan garis pusat d berputar pada halaju sudut ω di dalam bekas mengandungi minyak seperti yang dilakarkan dalam Rajah S2. Minyak tersebut mempunyai kelikatan µ. Anggap bahawa susuk halaju

Διαβάστε περισσότερα

2 m. Air. 5 m. Rajah S1

2 m. Air. 5 m. Rajah S1 FAKULI KEJURUERAAN AL 1. Jika pintu A adalah segi empat tepat dan berukuran 2 m lebar (normal terhadap kertas), tentukan nilai daya hidrostatik yang bertindak pada pusat tekanan jika pintu ini tenggelam

Διαβάστε περισσότερα

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit

SULIT 3472/2 SMK SERI MUARA, BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2. Dua jam tiga puluh minit MATEMATIK TAMBAHAN Kertas 2 September 2013 2½ Jam SMK SERI MUARA, 36100 BAGAN DATOH, PERAK. PEPERIKSAAN PERCUBAAN SPM MATEMATIK TAMBAHAN TINGKATAN 5 KERTAS 2 Dua jam tiga puluh minit JANGAN BUKA KERTAS

Διαβάστε περισσότερα

UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN

UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN 1 4561/3 Sains Tambahan Kertas 3 Mei 2013 1 ½ jam NAMA : TINGKATAN : JABATAN PELAJARAN NEGERI TERENGGANU UJIAN SUMATIF 2 SIJIL PELAJARAN MALAYSIA 2013 SAINS TAMBAHAN Kertas 3 Satu jam tiga puluh minit

Διαβάστε περισσότερα

Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah]

Latihan PT3 Matematik Nama:.. Masa: 2 jam. 1 a) i) Buktikan bahawa 53 adalah nombor perdana. [1 markah] Latihan PT3 Matematik Nama:.. Masa: 2 jam a) i) Buktikan bahawa 53 adalah nombor perdana. [ markah] ii) Berikut adalah tiga kad nombor. 30 20 24 Lakukan operasi darab dan bahagi antara nombor-nombor tersebut

Διαβάστε περισσότερα

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI

Peta Konsep. 5.1 Sudut Positif dan Sudut Negatif Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI Bab 5 FUNGSI TRIGONOMETRI Peta Konsep 5.1 Sudut Positif dan Sudut Negatif 5. 6 Fungsi Trigonometri Bagi Sebarang Sudut FUNGSI TRIGONOMETRI 5. Graf Fungsi Sinus, Kosinus dan Tangen 5.4 Identiti Asas 5.5

Διαβάστε περισσότερα

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet

EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet UNIVERSITI SAINS MALAYSIA PUSAT PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK EEU104 - Teknologi Elektrik - Tutorial 11; Sessi 2000/2001 Litar magnet 1. Satu litar magnet mempunyai keengganan S = 4 x

Διαβάστε περισσότερα

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10}

FUNGSI P = {1, 2, 3} Q = {2, 4, 6, 8, 10} FUNGSI KERTAS 1 P = {1,, 3} Q = {, 4, 6, 8, 10} 1. Berdasarkan maklumat di atas, hubungan P kepada Q ditakrifkan oleh set pasangan bertertib {(1, ), (1, 4), (, 6), (, 8)}. Nyatakan (a) imej bagi 1, (b)

Διαβάστε περισσότερα

TOPIK 1 : KUANTITI DAN UNIT ASAS

TOPIK 1 : KUANTITI DAN UNIT ASAS 1.1 KUANTITI DAN UNIT ASAS Fizik adalah berdasarkan kuantiti-kuantiti yang disebut kuantiti fizik. Secara am suatu kuantiti fizik ialah kuantiti yang boleh diukur. Untuk mengukur kuantiti fizik, suatu

Διαβάστε περισσότερα

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR

LATIHAN. PENYUSUN: MOHD. ZUBIL BAHAK Sign. : FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA SKUDAI JOHOR 1. a) Nyatakan dengan jelas Prinsip Archimedes tentang keapungan. b) Nyatakan tiga (3) syarat keseimbangan STABIL jasad terapung. c) Sebuah silinder bergaris pusat 15 cm dan tinggi 50 cm diperbuat daripada

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X.

Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua nilai yang mungkin bagi X. BAB 8 : TABURAN KEBARANGKALIAN Sesi 1 Taburan Binomial A. Pembolehubah rawak diskret Contoh Jika X ialah satu pembolehubah rawak diskret yang mewakili bilangan hari hujan dalam seminggu, senaraikan semua

Διαβάστε περισσότερα

SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori Mei

SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori Mei NO. KAD PENGENALAN ANGKA GILIRAN LEMAGA PEPERIKSAAN KEMENTERIAN PENDIDIKAN MALAYSIA SIJIL VOKASIONAL MALAYSIA PENILAIAN AKHIR SEMESTER 3 SESI 1/2014 TEKNOLOGI ELEKTRIK Kertas Teori ETE Mei 1 _ 1 jam Satu

Διαβάστε περισσότερα

KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA

KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA NO KAD PENGENALAN ANGKA GILIRAN KOLEJ VOKASIONAL MALAYSIA BAHAGIAN PENDIDIKAN TEKNIK DAN VOKASIONAL KEMENTERIAN PENDIDIKAN MALAYSIA DIPLOMA VOKASIONAL MALAYSIA SAINS DAN MATEMATIK BERSEPADU UNTUK APLIKASI

Διαβάστε περισσότερα

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA

HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2006/2007 April 2007 HMT 221 FONETIK DAN FONOLOGI BAHASA MALAYSIA Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH

SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH SESI: MAC 2018 DSM 1021: SAINS 1 DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH TOPIK 1.0: KUANTITI FIZIK DAN PENGUKURAN COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: CLO3: Menjalankan

Διαβάστε περισσότερα

TOPIK 2 : MENGGAMBARKAN OBJEK

TOPIK 2 : MENGGAMBARKAN OBJEK 2.1 SIMETRI Definisi paksi simetri : Satu garis lipatan pada suatu bentuk geometri supaya bentuk itu dapat bertindih tepat apabila dilipat. Sesuatu bentuk geometri mungkin mempunyai lebih daripada satu

Διαβάστε περισσότερα

Bab 1 Mekanik Struktur

Bab 1 Mekanik Struktur Bab 1 Mekanik Struktur P E N S Y A R A H : D R. Y E E M E I H E O N G M O H D. N O R H A F I D Z B I N M O H D. J I M A S ( D B 1 4 0 0 1 1 ) R E X Y N I R O AK P E T E R ( D B 1 4 0 2 5 9 ) J O H A N

Διαβάστε περισσότερα

KEMENTERIAN PELAJARAN MALAYSIA

KEMENTERIAN PELAJARAN MALAYSIA KEMENTERIAN PELAJARAN MALAYSIA DOKUMEN STANDARD PRESTASI MATEMATIK TINGKATAN 2 FALSAFAH PENDIDIKAN KEBANGSAAN Pendidikan di Malaysia adalah satu usaha berterusan ke arah memperkembangkan lagi potensi individu

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh

BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1. Sudut Positif dan Sudut Negatif. Contoh BAB 5 : FUNGSI TRIGONOMETRI (Jangka waktu : 9 sesi) Sesi 1 Sudut Positif dan Sudut Negatif Contoh Lukiskan setiap sudut berikut dengan menggunakan rajah serta tentukan sukuan mana sudut itu berada. (a)

Διαβάστε περισσότερα

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76

Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 LOGO SEKOLAH Nama Sekolah UJIAN BERTULIS 2 Jam Kemahiran Hidup Bersepadu Kemahiran Teknikal 76 NAMA :..... ANGKA GILIRAN : TERHAD 2 BAHAGIAN A [60 markah] Jawab semua soalan pada bahagian ini di ruang

Διαβάστε περισσότερα

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari

PERSAMAAN KUADRAT. 06. EBT-SMP Hasil dari PERSAMAAN KUADRAT 0. EBT-SMP-00-8 Pada pola bilangan segi tiga Pascal, jumlah bilangan pada garis ke- a. 8 b. 6 c. d. 6 0. EBT-SMP-0-6 (a + b) = a + pa b + qa b + ra b + sab + b Nilai p q = 0 6 70 0. MA-77-

Διαβάστε περισσότερα

tutormansor.wordpress.com

tutormansor.wordpress.com Nama: Sekolah: FASILITATOR PUAN ZALEHA BT TOMIJAN PUAN CHE RUS BT HASHIM ENCIK WAN MOHD SUHAIMI B WAN IBRAHIM PUAN NORAINI BT SALDAN PUAN FAUDZILAH BT MEHAT 1 Syarikat Cepat Sampai menyediakan perkhidmatan

Διαβάστε περισσότερα

Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron

Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri. Sakdiah Basiron Ukur Kejuruteraan DDPQ 1162 Ukur Tekimetri Sakdiah Basiron TEKIMETRI PENGENALAN TAKIMETRI ADALAH SATU KAEDAH PENGUKURAN JARAK SECARA TIDAK LANGSUNG BAGI MENGHASILKAN JARAK UFUK DAN JARAK TEGAK KEGUNAAN

Διαβάστε περισσότερα

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987).

TINJAUAN PUSTAKA. Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur. bilangan riil (Purcell dan Varberg, 1987). II. TINJAUAN PUSTAKA 2.1 Sistem Bilangan Riil Definisi Bilangan Riil Sekumpulan bilangan (rasional dan tak-rasional) yang dapat mengukur panjang, bersama-sama dengan negatifnya dan nol dinamakan bilangan

Διαβάστε περισσότερα

JAWAPAN. (b) Bilangan kad dalam Bentuk N = 3N 2 (c) (i) 148 (ii) Bentuk (a) 5, 5 6 (b) (i) 100, 101 (ii) 46, 46 (c) (i)

JAWAPAN. (b) Bilangan kad dalam Bentuk N = 3N 2 (c) (i) 148 (ii) Bentuk (a) 5, 5 6 (b) (i) 100, 101 (ii) 46, 46 (c) (i) JAWAAN BAB ola dan Jujukan. ola (a),, 9, (f), (g). Jujukan (a) Tambah kepada setiap nombor untuk memperoleh nombor seterusna. Tambah integer semakin besar, bermula dengan, kepada setiap nombor untuk memperoleh

Διαβάστε περισσότερα

Tegangan Permukaan. Kerja

Tegangan Permukaan. Kerja Tegangan Permukaan Kerja Cecair lebih cenderung menyesuaikan bentuknya ke arah yang luas permukaan yang minimum. Titisan cecair berbentuk sfera kerana nisbah luas permukaan terhadap isipadu adalah kecil.

Διαβάστε περισσότερα

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk

Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk SOALAN 1 Rajah S1 menunjukkan talisawat dari jenis rata dengan dua sistem pacuan, digunakan untuk menyambungkan dua takal yang terpasang kepada dua aci selari. Garispusat takal pemacu, pada motor adalah

Διαβάστε περισσότερα

KEKUATAN KELULI KARBON SEDERHANA

KEKUATAN KELULI KARBON SEDERHANA Makmal Mekanik Pepejal KEKUATAN KELULI KARBON SEDERHANA 1.0 PENGENALAN Dalam rekabentuk sesuatu anggota struktur yang akan mengalami tegasan, pertimbangan utama ialah supaya anggota tersebut selamat dari

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit

PEPERIKSAAN PERCUBAAN SPM /1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam Dua jam tiga puluh minit SULIT Nama :. 2 8201/1 Kelas :. NO. KAD PENGENALAN: ANGKA GILIRAN: SEKOLAH MENENGAH VOKASIONAL ZON TENGAH PEPERIKSAAN PERCUBAAN SPM 2011 8201/1 PRINSIP ELEKTRIK DAN ELEKTRONIK Kertas 1 September 2 ½ jam

Διαβάστε περισσότερα

ANALISIS LITAR ELEKTRIK OBJEKTIF AM

ANALISIS LITAR ELEKTRIK OBJEKTIF AM ANALSS LTA ELEKTK ANALSS LTA ELEKTK OBJEKTF AM Unit Memahami konsep-konsep asas Litar Sesiri, Litar Selari, Litar Gabungan dan Hukum Kirchoff. OBJEKTF KHUSUS Di akhir unit ini anda dapat : Menerangkan

Διαβάστε περισσότερα

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2

SESI: MAC 2018 DSM 1021: SAINS 1. Kelas: DCV 2 SESI: MAC 2018 DSM 1021: SAINS 1 TOPIK 4.0: KERJA, TENAGA DAN KUASA Kelas: DCV 2 PENSYARAH: EN. MUHAMMAD AMIRUL BIN ABDULLAH COURSE LEARNING OUTCOMES (CLO): Di akhir LA ini, pelajar akan boleh: 1. Menerangkan

Διαβάστε περισσότερα

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar

Sistem Koordinat dan Fungsi. Matematika Dasar. untuk Fakultas Pertanian. Uha Isnaini. Uhaisnaini.com. Matematika Dasar untuk Fakultas Pertanian Uhaisnaini.com Contents 1 Sistem Koordinat dan Fungsi Sistem Koordinat dan Fungsi Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam

Διαβάστε περισσότερα

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04

Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia. Mekanik Bendalir I KERJA RUMAH. Sem II Sesi 2003/04 Fakulti Kejuruteraan Mekanikal Universiti Teknologi Malaysia Mekanik Bendalir I KERJA RUMAH Sem II Sesi 2003/04 Pensyarah: Mohd. Zubil Bahak mzubil@fkm.utm.my ext 34737 Arahan: Pelajar diwajibkan menghantar

Διαβάστε περισσότερα

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun

TH3813 Realiti Maya. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun. Transformasi kompaun TH383 Realiti Maa Transformasi 3D menggunakan multiplikasi matriks untuk hasilkan kompaun transformasi menggunakan kompaun transformasi - hasilkan sebarang transformasi dan ungkapkan sebagai satu transformasi

Διαβάστε περισσότερα

Matematika

Matematika Sistem Bilangan Real D3 Analis Kimia FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa D3 Analis Kimia angkatan

Διαβάστε περισσότερα

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia

Kalkulus 1. Sistem Bilangan Real. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia Kalkulus 1 Sistem Bilangan Real Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem Bilangan Real Himpunan: sekumpulan obyek/unsur dengan kriteria/syarat tertentu. 1 Himpunan mahasiswa

Διαβάστε περισσότερα

Hendra Gunawan. 16 April 2014

Hendra Gunawan. 16 April 2014 MA101 MATEMATIKA A Hendra Gunawan Semester II, 013/014 16 April 014 Kuliah yang Lalu 13.11 Integral Lipat Dua atas Persegi Panjang 13. Integral Berulang 13.3 33Integral Lipat Dua atas Daerah Bukan Persegi

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Fungsi Dua Peubah atau Lebih dan Statistika FMIPA Universitas Islam Indonesia 2015 dengan Dua Peubah Real dengan Dua Peubah Real Pada fungsi satu peubah f : D R R D adalah daerah asal (domain) suatu fungsi

Διαβάστε περισσότερα

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN

RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN Jurnal Teknologi, 38(C) Jun 003: 5 8 Universiti Teknologi Malaysia RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN 5 RUMUS AM LINGKARAN KUBIK BEZIER SATAHAN YEOH WENG KANG & JAMALUDIN MD. ALI Abstrak. Rumus untuk

Διαβάστε περισσότερα

Ciri-ciri Taburan Normal

Ciri-ciri Taburan Normal 1 Taburan Normal Ciri-ciri Taburan Normal Ia adalah taburan selanjar Ia adalah taburan simetri Ia adalah asimtot kepada paksi Ia adalah uni-modal Ia adalah keluarga kepada keluk Keluasan di bawah keluk

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2011 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA

S T A T I S T I K A OLEH : WIJAYA S T A T I S T I K A OLEH : WIJAYA email : zeamays_hibrida@yahoo.com FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2009 II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan

Διαβάστε περισσότερα

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang

EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2003/2004 September / Oktober 2003 EAS 353/3 Rekabentuk Struktur Konkrit Bertetulang Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan

Διαβάστε περισσότερα

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON

S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON S T A T I S T I K A OLEH : WIJAYA FAKULTAS PERTANIAN UNIVERSITAS SWADAYA GUNUNG JATI CIREBON 2010 SEBARAN PELUANG II. SEBARAN PELUANG Ruang Contoh (S) adalah Himpunan semua kemungkinan hasil suatu percobaan.

Διαβάστε περισσότερα

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS

Unit PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM OBJEKTIF KHUSUS PENGENALAN KEPADA LITAR ELEKTRIK OBJEKTIF AM Memahami konsep-konsep asas litar elektrik, arus, voltan, rintangan, kuasa dan tenaga elektrik. Unit OBJEKTIF KHUSUS Di akhir unit ini anda dapat : Mentakrifkan

Διαβάστε περισσότερα

EAG 345/2 - Analisis Geoteknik

EAG 345/2 - Analisis Geoteknik UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 004/05 Oktober 004 EAG 345/ - Analisis Geoteknik Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua

Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Matematika, 1999, Jilid 15, bil. 1, hlm. 37 43 c Jabatan Matematik, UTM. Klasifikasi bagi Kumpulan-Dua dengan Dua Penjana yang Mempunyai Kelas Nilpoten Dua Nor Haniza Sarmin Jabatan Matematik, Fakulti

Διαβάστε περισσότερα

JAWAPAN. Poligon II. 2.1 Poligon Sekata 1 (a) (b) (c) (d) 2 (a) (b) (c) 3 (a) 4, 4 (b) 5, 5 (c) 4 (d) 5 4 (a) (c)

JAWAPAN. Poligon II. 2.1 Poligon Sekata 1 (a) (b) (c) (d) 2 (a) (b) (c) 3 (a) 4, 4 (b) 5, 5 (c) 4 (d) 5 4 (a) (c) A Sudut dan Garis II. iri-ciri Sudut ang erkaitan dengan Garis Rentas Lintang dan Garis Selari (a) (i) A p dan s, q dan t (iii) q dan s (iv) q dan r (i) AF dan E a dan c, dan z (iii) b dan d, c dan e,

Διαβάστε περισσότερα

JAWAPAN. = (a + 2b) (a b) = 3b Jujukan ini bukan J.A. sebab beza antara sebarang dua sebutan berturutan adalah tidak sama. 3. d 1 = T 2 T 1 =

JAWAPAN. = (a + 2b) (a b) = 3b Jujukan ini bukan J.A. sebab beza antara sebarang dua sebutan berturutan adalah tidak sama. 3. d 1 = T 2 T 1 = JAWAPAN BAB : JANJANG. A. d T T ( ) ( ) d T T ( ) Jujukan ini ialah J.A. sebab beza antara sebarang dua sebutan berturutan adalah sama, iaitu.. d T T (a b) (a + b) b d T T (a + b) (a b) b Jujukan ini bukan

Διαβάστε περισσότερα

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK

PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK PENGAJIAN KEJURUTERAAN ELEKTRIK DAN ELEKTRONIK 2 SKEMA MODUL PECUTAN AKHIR 20 No Jawapan Pembahagian (a) 00000 0000 0000 Jumlah 000 TIM00 #0300 TIM00 000 000 0M END Simbol dan data betul : 8 X 0.5M = 4M

Διαβάστε περισσότερα

HMT 504 Morfologi dan Sintaksis Lanjutan

HMT 504 Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari/Mac 2003 HMT 504 Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

Transformasi Koordinat 2 Dimensi

Transformasi Koordinat 2 Dimensi Transformasi Koordinat 2 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat 2 Dimensi Digunakan untuk mempresentasikan

Διαβάστε περισσότερα

Keterusan dan Keabadian Jisim

Keterusan dan Keabadian Jisim Pelajaran 8 Keterusan dan Keabadian Jisim OBJEKTIF Setelah selesai mempelajari Pelajaran ini anda sepatutnya dapat Mentakrifkan konsep kadar aliran jisim Mentakrifkan konsep kadar aliran Menerangkan konsep

Διαβάστε περισσότερα

JANGAN BUKA KERTAS SOALAN SEBELUM DIARAHKAN

JANGAN BUKA KERTAS SOALAN SEBELUM DIARAHKAN J17(ELEKTRONIK)KT2(K) PP KJ KK JUM - 2-2 No. Kad Pengenalan: PEPERIKSAAN PERKHIDMATAN JURUTEKNIK J17 KERTAS II (ELEKTRONIK) Tarikh : 18 Disember 2013 (Rabu) Masa : 9.00 pagi 12.00 tgh (3 jam) Tempat :

Διαβάστε περισσότερα

Jawab semua soalan. 2. Maklumat berikut adalah tentang tanggam dalam reka bentuk dan teknologi

Jawab semua soalan. 2. Maklumat berikut adalah tentang tanggam dalam reka bentuk dan teknologi Panitia Kemahiran Hidup KBSM Jerantut Bahagian A [ 60 markah] Jawab semua soalan 1. Tandakan ( ) bagi cara pemakaian yang betul ketika di bengkel dan (x) yang salah pada petak yang disediakan. Memastikan

Διαβάστε περισσότερα

JAWAPAN BAB 1 BAB 2 = = Bentuk Piawai

JAWAPAN BAB 1 BAB 2 = = Bentuk Piawai JAWAAN BAB Bentuk iawai. Angka Bererti (a) angka bererti angka bererti angka bererti (d) angka bererti (e) angka bererti (a). (d). (e). Bundarkan kepada angka bererti Faktor penghubung. as (a).. as (d).

Διαβάστε περισσότερα

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat

Kalkulus 1. Sistem Koordinat. Atina Ahdika, S.Si, M.Si. Statistika FMIPA Universitas Islam Indonesia. Sistem Koordinat Kalkulus 1 Atina Ahdika, S.Si, M.Si Statistika FMIPA Universitas Islam Indonesia Sistem koordinat adalah suatu cara/metode untuk menentukan letak suatu titik. Ada beberapa macam sistem koordinat, yaitu:

Διαβάστε περισσότερα

Bahagian A [ 60 markah] Jawab semua soalan

Bahagian A [ 60 markah] Jawab semua soalan Bahagian A [ 60 markah] Jawab semua soalan 1. Tandakan ( ) bagi cara pemakaian yang betul ketika di bengkel dan (x) yang salah pada petak yang disediakan. Memastikan rambut pendek, rapi dan kemas. Menanggalkan

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA /2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam Dua jam tiga puluh minit

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA /2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam Dua jam tiga puluh minit 1 SULIT NAMA:. TING : ANGKA GILIRAN : MAJLIS PENGETUA-PENGETUA SEKOLAH MENENGAH MALAYSIA CAWANGAN KELANTAN PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2017 4531/2 FIZIK Kertas 2 Ogos / Sept 2 ½ jam

Διαβάστε περισσότερα

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID

Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID Disediakan oleh Guru Matematik Tingkatan 4 GEORGE DAVID 1.1.15 MATHEMATIK TINGKATAN 4 TAHUN 2015 KANDUNGAN MUKA SURAT 1. Bentuk Piawai 3 2. Ungkapan & Persamaan Kuadratik 4 3. Sets 5 Penggal 1 4 Penaakulan

Διαβάστε περισσότερα

Sebaran Peluang Gabungan

Sebaran Peluang Gabungan Sebaran Peluang Gabungan Peubah acak dan sebaran peluangnya terbatas pada ruang sampel berdimensi satu. Dengan kata lain, hasil percobaan berasal dari peubah acak yan tunggal. Tetapi, pada banyak keadaan,

Διαβάστε περισσότερα

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21

PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH Tafsiran Sejarah Bentuk Bumi 21 TAJUK MONOGRAF : GEODESI GEOMETRIK KANDUNGAN PRAKATA 1 SENARAI JADUAL 3 SENARAI RAJAH 7 BAB 1 PENGENALAN 1.1 Tafsiran 10 1.2 Sejarah 12 1.3 Bentuk Bumi 21 BAB 2 CIRI-CIRI ELIPSOID 2.1 Sifat Khas Elip dan

Διαβάστε περισσότερα

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF)

KOMPONEN ELEKTRIK (PASIF) KOMPONEN ELEKTRIK (PASIF) E1001 / UNIT 2/ 1 UNIT 2 KOMPONEN ELEKTRIK (PASIF) OBJEKTIF Objektif am : Mempelajari dan memahami konsep asas bagi komponenkomponen elektrik (pasif) seperti perintang, pearuh dan pemuat. Objektif khusus

Διαβάστε περισσότερα

EAL 572/4 Rekabentuk dan Perancangan Lebuhraya

EAL 572/4 Rekabentuk dan Perancangan Lebuhraya UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2002/2003 Februari / Mac 2003 EAL 572/4 Rekabentuk dan Perancangan Lebuhraya Masa : 3 jam Arahan Kepada Calon: 1. Sila pastikan kertas

Διαβάστε περισσότερα

Konvergen dalam Peluang dan Distribusi

Konvergen dalam Peluang dan Distribusi limiting distribution Andi Kresna Jaya andikresna@yahoo.com Jurusan Matematika July 5, 2014 Outline 1 Review 2 Motivasi 3 Konvergen dalam peluang 4 Konvergen dalam distribusi Back Outline 1 Review 2 Motivasi

Διαβάστε περισσότερα

KONSEP ASAS & PENGUJIAN HIPOTESIS

KONSEP ASAS & PENGUJIAN HIPOTESIS KONSEP ASAS & PENGUJIAN HIPOTESIS HIPOTESIS Hipotesis = Tekaan atau jangkaan terhadap penyelesaian atau jawapan kepada masalah kajian Contoh: Mengapakah suhu bilik kuliah panas? Tekaan atau Hipotesis???

Διαβάστε περισσότερα

Kalkulus Multivariabel I

Kalkulus Multivariabel I Limit dan Statistika FMIPA Universitas Islam Indonesia Operasi Aljabar pada Pembahasan pada limit untuk fungsi dua peubah adalah memberikan pengertian mengenai lim f (x, y) = L (x,y) (a,b) Masalahnya adalah

Διαβάστε περισσότερα

BAB 2 KEAPUNGAN DAN HIDROSTATIK

BAB 2 KEAPUNGAN DAN HIDROSTATIK BAB 2 KEAPUNGAN DAN HIDROSTATIK 2.1 Hukum Keapungan Archimedes Sebuah badan yang terendam di air ditindak oleh beberapa daya. Pertama ialah berat atau jisim badan itu sendiri yang dianggap bertindak ke

Διαβάστε περισσότερα

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H

FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK : LENGKUK KEMAGNETAN ATAU CIRI B - H FAKULTI KEJURUTERAAN ELEKTRIK UNIVERSITI TEKNOLOGI MALAYSIA MAKMAL ELEKTROTEKNIK UJIKAJI TAJUK : E : LENGKUK KEMAGNETAN ATAU CIRI B - H 1. Tujuan : 2. Teori : i. Mendapatkan lengkuk kemagnetan untuk satu

Διαβάστε περισσότερα

Transformasi Koordinat 3 Dimensi

Transformasi Koordinat 3 Dimensi Transformasi Koordinat 3 Dimensi RG141227 - Sistem Koordinat dan Transformasi Semester Gasal 2016/2017 Ira M Anjasmara PhD Jurusan Teknik Geomatika Sistem Koordinat Tiga Dimensi (3D) Digunakan untuk mendeskripsikan

Διαβάστε περισσότερα

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57

KALKULUS LANJUT. Integral Lipat. Resmawan. 7 November Universitas Negeri Gorontalo. Resmawan (Math UNG) Integral Lipat 7 November / 57 KALKULUS LANJUT Integral Lipat Resmawan Universitas Negeri Gorontalo 7 November 218 Resmawan (Math UNG) Integral Lipat 7 November 218 1 / 57 13.3. Integral Lipat Dua pada Daerah Bukan Persegipanjang 3.5

Διαβάστε περισσότερα

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan

BAB 5 DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan BAB DAPATAN KAJIAN DAN PERBINCANGAN Pengenalan Kajian ini adalah untuk meneroka Metakognisi dan Regulasi Metakognisi murid berpencapaian tinggi, sederhana dan rendah dalam kalangan murid tingkatan empat

Διαβάστε περισσότερα

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH

Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. RAJAH Pemeriksa SULIT 6 Bahagian A [ 60 markah ] Jawab semua soalan dibahagian ini Masa yang dicadangkan untuk menjawab bahagian ini ialah 90 minit. 1 Rajah 1.1 menunjukkan sejenis alat pengukur yang terdapat

Διαβάστε περισσότερα

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK

PEPERIKSAAN PERCUBAAN SIJIL PELAJARAN MALAYSIA 2006 FIZIK SULIT Fizik Kertas 1 September 2006 1 ¼ jam MKT RENH SINS MR PEPERIKSN PERUN SIJIL PELJRN MLYSI 2006 FIZIK Kertas 1 Satu jam lima belas minit JNGN UK KERTS SOLN INI SEHINGG IERITHU 1. Kertas soalan ini

Διαβάστε περισσότερα

Sudut positif. Sudut negatif. Rajah 7.1: Sudut

Sudut positif. Sudut negatif. Rajah 7.1: Sudut Bab 7 FUNGSI TRIGONOMETRI Dalam bab ini kita akan belajar secara ringkas satu kelas fungsi penting untuk penggunaan dipanggil fungsi trigonometri Fungsi trigonometri pada mulana timbul dalam pengajian

Διαβάστε περισσότερα

HMT Morfologi dan Sintaksis Lanjutan

HMT Morfologi dan Sintaksis Lanjutan UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Kedua Sidang Akademik 2001/2002 Februari/Mac 2002 HMT 504 - Morfologi dan Sintaksis Lanjutan Masa : 3 jam Sila pastikan bahawa kertas peperiksaan ini mengandungi

Διαβάστε περισσότερα

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000

SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 SARJANA MUDA KEJURUTERAAN MEKANIKAL FAKULTI KEJURUTERAAN MEKANIKAL UNIVERSITI TEKNOLOGI MALAYSIA PEPERIKSAAN AKHIR SEMESTER DISEMBER SESI 1999/2000 KOD MATAPELAJARAN : SMJ 3403 NAMA MATAPELAJARAN : TERMODINAMIK

Διαβάστε περισσότερα

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor

JAWAPAN BAB 1 BAB 2. x y x y x y Asas Nombor sas Nombor. Nombor dalam sas Dua, sas Lapan dan sas Lima (a) (e) (f) (g) (a) (e) (a) (e) (f) (g) (h) (i) (j) (k) (a) (e) (a) as as (a) 9 (a) (e) (a) 9 (a) (a) (e) 9 (a) as 9 as JWN (e) (f) (a) (a) (a)

Διαβάστε περισσότερα

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR

LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR TNR 1 space 1.15 LABORATORIUM STATISTIK DAN OPTIMASI INDUSTRI FAKULTAS TEKNIK PROGRAM STUDI TEKNIK INDUSTRI UNIVERSITAS PEMBANGUNAN NASIONAL VETERAN JAWA TIMUR LAPORAN RESMI MODUL III TNR 1 Space.0 STATISTIK

Διαβάστε περισσότερα

JAWAPAN. (c) Hukum Kalis Agihan (d) Hukum Kalis Tukar Tertib (e) Hukum Kalis Sekutuan (f) Hukum Idemtiti

JAWAPAN. (c) Hukum Kalis Agihan (d) Hukum Kalis Tukar Tertib (e) Hukum Kalis Sekutuan (f) Hukum Idemtiti BB Nombor Nisbah. Integer (a) +8%, %. m, +0. m + 00 m, 00 m (a) 8,, 9 0, 08, 6 (a),, 0, 0 8, 0, 96, 7, (a), 9, 7,,, 8, 60,, 0,,, 6, 90 0, 0, 0,,,, (a) 0, 9,, 0,, 0, 7 0, 90, 8, 0, 90, 00 8, 8, 0, 8, 8,

Διαβάστε περισσότερα

Pembinaan Homeomorfisma dari Sfera ke Elipsoid

Pembinaan Homeomorfisma dari Sfera ke Elipsoid Matematika, 003, Jilid 19, bil., hlm. 11 138 c Jabatan Matematik, UTM. Pembinaan Homeomorfisma dari Sfera ke Elipsoid Liau Lin Yun & Tahir Ahmad Jabatan Matematik, Fakulti Sains Universiti Teknologi Malasia

Διαβάστε περισσότερα

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA

UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA UNTUK EDARAN DI DALAM JABATAN FARMASI SAHAJA KEPUTUSAN MESYUARAT KALI KE 63 JAWATANKUASA FARMASI DAN TERAPEUTIK HOSPITAL USM PADA 24 SEPTEMBER 2007 (BAHAGIAN 1) DAN 30 OKTOBER 2007 (BAHAGIAN 2) A. Ubat

Διαβάστε περισσότερα

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1

ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 MAKTAB RENDAH Add SAINS your company MARA BENTONG slogan Bab 1 ELEKTRIK KEMAHIRAN TEKNIKAL : BAB 1 LOGO Kandungan 1 Jenis Litar Elektrik 2 Meter Pelbagai 3 Unit Kawalan Utama 4 Kuasa Elektrik 1 1.1 Jenis

Διαβάστε περισσότερα

A. Distribusi Gabungan

A. Distribusi Gabungan HANDOUT PERKULIAHAN Mata Kuliah Pokok Bahasan : Statistika Matematika : Distibusi Dua peubah Acak URAIAN POKOK PERKULIAHAN A. Distribusi Gabungan Definisi 1: Peubah Acak Berdimensi Dua Jika S merupakan

Διαβάστε περισσότερα

STQS1124 STATISTIK II LAPORAN KAJIAN TENTANG GAJI BULANAN PENSYARAH DAN STAF SOKONGAN DI PUSAT PENGAJIAN SAINS MATEMATIK (PPSM), FST, UKM.

STQS1124 STATISTIK II LAPORAN KAJIAN TENTANG GAJI BULANAN PENSYARAH DAN STAF SOKONGAN DI PUSAT PENGAJIAN SAINS MATEMATIK (PPSM), FST, UKM. STQS114 STATISTIK II LAPORAN KAJIAN TENTANG GAJI BULANAN PENSYARAH DAN STAF SOKONGAN DI PUSAT PENGAJIAN SAINS MATEMATIK (PPSM), FST, UKM. Dihantar kepada : Puan Rofizah Binti Mohammad @ Mohammad Noor Disediakan

Διαβάστε περισσότερα

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan

TEORI PELUANG* TKS 6112 Keandalan Struktur. Pendahuluan TKS 6112 Keandalan Struktur TEORI PELUANG* * www.zacoeb.lecture.ub.ac.id Pendahuluan Sebuah bangunan dirancang melalui serangkaian perhitungan yang cermat terhadap beban-beban rencana dan bangunan tersebut

Διαβάστε περισσότερα

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK

Lukisan Bergambar. Lukisan Skematik 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK 2.1 NAMA, SIMBOL DAN FUNGSI KOMPONEN ELEKTRONIK Satu litar elektronik dikenali juga sebagai sistem. Satu sistem elektronik terdiri daripada beberapa komponen. Setiap komponen elektronik mempunyai fungsinya

Διαβάστε περισσότερα

HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK

HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK Angka Giliran: No. Tempat Duduk: _ UNIVERSITI SAINS MALAYSIA Peperiksaan Semester Pertama Sidang Akademik 2006/2007 Oktober/November 2006 HMT 503 TEORI DAN KAEDAH PENYELIDIKAN LINGUISTIK Masa: 3 jam Sila

Διαβάστε περισσότερα