1. K a p itu lu a. Zenb a ki ko np lex u a k

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "1. K a p itu lu a. Zenb a ki ko np lex u a k"

Transcript

1 1. K a p itu lu a Zeb a ki ko p lex u a k 1

2 1. K A P IT U L U A Z E N B A K I K O N P L E X U A K 1.1 Z e b a ki ko p le x u a re ko tzep tu a. Iku s d itza g u a d ibid e ba tzu k o a g ertze d e ze ba ki ko p lex u a k d efi itzeko beh a rra Ad ib id e a y 1 = x p a ra bola eta y = 3x zu ze a re a rteko eba kid u ra ka lku la tu a h i d u g u (iku s 1.1 iru d ia ). 1.1 iru d ia 1.1 Iru d ia : O d ore g o sistema eba tziz { y = x x = 3x y = 3x { x 1 = 1 x = esa a h i fi sikoa d u e era tzu a lortze d u g u o ema itza N R mu ltzoa d a g oe. 1.. Ad ib id e a Ko tsid era d eza g u esp a zio/ d e bora erla zioa eza rtze d u e o d ore g o ku r- ba E = { 0 t < 0 ba d a t t 0 ba d a (iku s 1. iru d ia ) t 1 -re zer u eta eg ite d ira metro? Ka su h o eta ere esa a h i fi sikoa d u e era tzu a lortze d a eta ema itza R mu ltzoa d a g o. H a u d a : t 1 = t 1 = R Z er lortze d a E = 0.5 metro d e ea? t = 0.5 t = 0.5 Q R U E P D o o stia M ate m atik a Ap lik atu a S aila

3 1.1. ZENBAKI KONPLEXUAR EN KONTZEPTUA Irudia: 1.3. Adibidea P ilota bat v 0 abiaduraz goratz botatze dugu. Iza bedi h(t) t uea lortutako altuera. Ordua odorego ekuazioa idatz dezakegu: h = g t + v 0t = t (v 0 g ) t Adierazpe fisikoa dute problema batzuk platea dezakegu (ikus 1.3 irudia) 1.3 Irudia: Zer ueta lotze da H altuera? t 1 = v 0 g, H = h(t 1) uea. Zer ueta lortuko da h 1 altuera?.(0 h 1 H) t = v 0 ± { v0 gh 1 t = g t = t 3 H = v 0 g t 3

4 4 1. KAPITULUA ZENBAKI KONPLEXUAK Adibidez: Har ditzagu h 1 = 0. m, v 0 = 3 m/ s. Ordua: t = 0.07, t 3 = 0.53 t 1 = v 0 g = 0.31, H = v 0 g = Problema hoe soluzioak R multzoa adieraz ditzakegu (ikus 1.4 irudia) 1.4 Irudia: Ikus ditzagu orai aurrekoe atzekoak dire odorego gertaerak: (ikus 1.5 irudia) 1.5 Irudia: { y = x y = x 1 x = x 1 x = 1 ± 3

5 1.1. ZENBAKI KONPLEXUAREN KONTZEPTUA Irudia: 3?. Zer da hau?. N o kokatze dugu zuze errealea?(ikus 1.6 irudia) t = 3 z = 3 z / R Pilotare kasua: Zer ueta lortze da h 1?(ikus 1.7 irudia) 1.7 Irudia: z = v 0 ± v 0 gh g, H = v 0 g h > H ba d a h > v 0 g gh > v 0 Hau da v0 gh < 0 berriz zebaki egatibo bate erroa!! o dago v0 gh? Adibidez: h = 5 v 0 = 3, v 0 gh = 8 4 N ola adieraz dezaket zebaki hau? Zertarako erabil dezaket?

6 6 1. KAPITULUA ZENBAKI KONPLEXUAK E bakidurare adibidea: x = 1 ± 3 = 1 ± ( 1)(3) = 1 ± 1 3 = 1 ± 3 1 Arazoak sortze due zebaki bakarra 1 da gaiotzekoak zebaki errealak direlako. 1 = iera adierazte badugu (i = 1): 1 3 ola adieraziko dugu + 1 adibidez?. (Ikus 1.8 irudia) 1.8 Irudia: z = a + b i o a = Re(z) = z-re zati erreala de b = Im(z) = z-re zati irudikaria de 1.1. Defi iz ioa Zebaki ko p lexu are m u ltzoa o d o rego era d efi itu ko d u gu : C = {z = a + b i /a, b R} beraz R = {z = a + b i/a R, b = 0} era adierazte de. B eraz, zebaki errealak zati irudikaria ulua dute zebaki koplexuak dira.

7 1.. Z C ZENBAKIAREN ERA POLARRA Irudia: 1. z C zebakiare era polarra z zebaki koplexua bektore bat deez odorego era adieraz daiteke(ikus 1.9 irudia) z = a + b i ρ θ o ρ = z-re modulua = z θ = z-re argumetua = ar g(z) a = 0 eta b > 0 badira θ = π Adibidez: z = 0 + i = 1 π z = 1 i = π = 7π (ikus irud ia ) O rokorrea : Irud ia : ρ θ = ρ θ+kπ k Z P la oa re g a i eko p u tu berbera a d iera zte d ute.θ ed o θ+kπ a p lika tzea lortuta ko efecto fi sikoa oso d esberd i a iza d a iteke ord ea : (ikus irud ia ) Matematika A p likatu a S aila U E P D o o stia

8 8 1. K A P IT U L U A Z E N B A K I K O N P L E X U A K 1.11 Irudia: 1.. Defi iz ioa 0 θ < π deea, θ-ri a rgu m etu a gu sia deitu ko diogu. Adibidez, z = 31 π = π = 6π+ π = π π 5 = z-re argum etu agusia (ikus 1.1 irudia) 1.1 Irudia: 1.3 z C ze b a k ia re e ra e sp o e tzia la. Iza bedi z = a + b i = ρ θ o a = ρ co s θ b = ρ si θ de z = ρ co s θ + i si θ = ρ( co s θ + i si θ)

9 1.3. Z C ZENBAKIAR EN ER A ES PONENTZIALA eta 4. gaieta sakokiago aztertuko dugu kotzeptu erabiliko dugu: cos x = 1 x! + x4 4! x6 6! + x8 8! x1 0 10! + x R si x = x x3 3! + x5 5! x7 7! + x9 9! x1 1 11! + x R e x = 1 + x 1! + x! + x3 3! + x4 4! + x5 5! + x R Aurreko berditzak ifiitu gaie baturareki lortze de arre gero eta batugai gehiago hartuz hurbilketa hobeagoak lor ditzakegu. (Ikus 1.13 irudia) Adibidez: e x 1, e x 1 + x, e x 1 + x + x, etb Irudia: B este aldetik, i = 1, i = 1, i 3 = i, i 4 = 1, i 5 = i eta errepikatze dira.

10 10 1. KAPITULUA ZENBAKI KONPLEXUAK E matza hauek erabiliz: z = ρ(cos θ + i si θ) = ρ = ρ (1 + ( iθ) + ( iθ)4! 4! = ρ (1 + iθ + ( iθ)! Adibidez: z = 0 + i = 1 π = e i π ) ((1 θ! + θ4 4! θ6 6! + + i (θ θ3 3! + θ5 + ( iθ)6 6! + ( iθ)3 3! e iπ = 0 π + i si π = 1 < iθ + ( iθ)3 3! + ( iθ)4 4! + ( iθ)5 5! 5! θ7 )) 7! + = ) ordeatuz = + ( iθ)5 + ( iθ)7 + 5! 7! ) + = ρ e iθ z-re era espoetziala E ziezkoa da hau gertatzea R-, e x > 0 x R. e z = 1 bete daiteke ordea z C bada. Bereziki, ρ = 1, bad a e iθ = cos θ + si θ Euler-e formula deritzoa lortze da. L aister ikusiko ditugu zebaki koplex ue arteko eragiketa aritmetikoak, hala ere, aurrera dezakegu zebaki koplex ue biderkaketa oso erraz kalkula daitekela era espoetziala erabilita. H ots: ρ e iθ ρ e iθ = ρρ e iθ+iθ = ρρ e i(θ+θ ) beraz ρ θ ρ θ = ρρ θ+θ ρ θ ρ θ Bereziki: Ordua zatiketa: = ρ e iθ ρ e iθ = ρ ρ eiθ iθ = ρ ρ ei(θ θ ) = ρ θ 1 θ = ρ θ+θ ( ) ρ ρ θ θ 1 θ -z biderkaketak biraketa bat adierazte du o agelua θ eta zetroa koordeatu jatorria dire. (Ikus 1.14 eta 1.15 irudiak) Adibidea: Irudiari θ = π 3 biraketa eta eskalatua ρ = 0.5 (Ikus 1.15 irudia) z 1 = 1 + i = 1 π 4 ; z = 3 + i = 10 a rctg ; z 3 = + 6i = 40 a rctg z 1 = z π = (cos 1.83+i si 1.83) 0.5( i) = i

11 1.3. Z C ZENBAKIAREN ERA ESPONENTZIALA Irudia: 1.15 Irudia: z = z 0.5 π = (cos 1.37+i si 1.37) 1.58( i) = i z 3 = z π = (cos.3+i si.3) 3.17( i) =.1+.34i (ikus 1.16 irudia) Adibidea: Odorego irudiari ρ θ = π biraketa eta eskalatua aplikatu:(ikus 1.17 irudia) z 1 = 1 + i = π 4, z = + i = 5 arctg 1 z 1 = z 1 π = π 4 + π = 5π π 4

12 1 1. KAPITULUA ZENBAKI KONPLEXUAK 1.16 Irudia: z = z π = 5 arctg 1 π = 5 arctg 1 + π Ikus 1.18 irudia 4.48, Defiizioa z = ρ θ zebaki koplexuare kojokatua z = z odorego era defi itutako zebaki koplxeua da: z = ρ θ. (Ikus irudia) Propietatea: z z = ρ 0 = ρ R 1.1. Ariketa Eutziatu bete behar dire balditzak bi zebaki koplexu berdiak iza daiteze. Eb azpea Eragike tak C mu ltzo a Batura: (a + bi) + (a + b i) = (a + a ) + (b + b )i Bid erk ad ura: ρ θ ρ θ = ρ e iθ ρ e iθ = ρρ e i(θ+θ ) = ρρ θ+θ UEP D o o stia M ate m atik a A p lik atu a S aila

13 1.3. Z C Z E N B A K IA R E N E R A E S P O N E N T Z IA L A Irudia: D em ag u ze baki ko p lex uak era bi om ikoa idatzita daudela, h au da: z 1 = ρ θ = a + bi, z = ρ θ = a + b i z 1 z = A + Bi era idazte dadug u zei tzu dira A eta B-re balioak? z 1 z =ρρ θ+θ ρρ ( co s(θ + θ ) + i si (θ + θ ) ) = =ρρ ( co s θ co s θ si θ si θ + i(si θ co s θ + co s θ si θ ) ) = =ρ co s θρ co s θ ρ si θρ si θ + i(ρ si θρ co s θ + ρ co s θρ si θ ) = =aa bb + i(ab + ba ) Beraz (a + bi) (a + b i) = (aa bb ) + i(ab + ba ) O rdua era bi om ikoa idatz itako bi z e baki ko p lex ue biderkaketa bi om io erreale a tzera eg ite da i = 1 dela ko tuta iza ik. Z atiketa: ρ θ ρ θ = r α Bila dezag u r α -re balioa defi izioa bete dadi. ρ θ = ρ θ r α def. = ρ r θ +α ρ = ρ r r = ρ ρ θ + kπ = θ + α α = θ θ + kπ beste aldetik, era esp o e tziala erabiliz: ρ e iθ ρ = ρ r r = ρ ρ = r e iα ρ e iθ = ρ r e i(α+θ ) ρ e iθ θ = α + θ + kπ α = θ θ

14 14 1. KAPITU LU A ZENBAKI KONPLEX U AK 1.18 Irudia: 1.19 Irudia: 1.. Ariketa E ra biomikoa idatzitako bi zebaki koplexue zatiteka egi. Eb az pea a + bi a + b i = (a + bi)(a b i) (a + b i)(a b i) = aa bb + i(ab + a b) a + b 1.3. Ariketa i = 1,, 3, kalkulatu Eb az pea 1. 1.era = 1 i 1 = i

15 1.3. Z C ZENBAKIAREN ERA ESPONENTZIALA. 15 = i = 1 = 3 i 3 = i = 4 i 4 = 1. > 4 = 4k + r k N, r = 0, 1,, 3 i = i 4k+r = ( i 4) k i r = i r (ezagua)..era( ) i = 1 π = 1 π cos π + i si π { = bikoitia bada = k cos kπ = ( 1) k, k = 1,, 3, = bakoitia bada = k 1 i si(k 1) π = ( 1)k, k = 1,, 3, z-re berredura osoa: z-re berredura osoa odorego era kalkulatze da: (ρ θ ) = ρ θ (ρ cos θ + i si θ) = ρ (cos θ + i si θ) Moivre-re formula deritzoa. Errodura: ρθ = ρ θ ρ θ = ρ θ { ρ = ρ θ = θ + kπ { ρ = ρ θ = θ+kπ k Z Ifiitu erro lortze dira? Adibidez: i = 1 π = = 1 π + kπ = 1 π 4 +kπ k = 0 z 0 = 1 π 4 k = 1 z 1 = 1 π 4 +π = 1 5π 4 k = z = 1 π 4 +π = 1 π 4 = z 0 Errepikatze da k = 3 z 3 = 1 π 4 +3π = 1 π 4 +π = z 1 Errepikatze da. k egatiboeta berriz: k = 1 z 1 = 1 π 4 π = 1 π 4 +π = z 1 k = z = 1 π 4 π = 1 π = z 0 4

16 16 1. KAPITULUA ZENBAKI KONPLEXUAK Beraz, bakarrik bi erro desberbi lortze dira. Orokorrea: ρ θ+kπ k = 0 ρ θ = z 0 k = 1 ρ θ+π = z 1 =. k = 1 ρ θ+( 1 )π = z 1 Beraz, k = deea ρ θ+π = ρ θ+π = z 0 Ordua: ρ θ = k = ρ θ+kπ k = 0, 1,,, 1 erro desberdi lortze dira.(ikus 1.0 irudia) 1.0 Irudia: erro horiek (0, 0) zetroko ρ erradioko zirkuferetzia zati berdieta baatze du. Elkarre segidako bi erroe argumetue diferetzia kostate da: θ + kπ θ + (k 1)π = kπ kπ + π = π Ariketa: H autazko petagooa eraiki.(ikus 1.1 irudia) (.1

17 1.3. Z C ZENBAKIAREN ERA ESPONENTZIALA Irudia: 5 1 = = 1 0 +kπ 5 k = 0, 1,, 3, 4 z 0 = 1 0, z 1 = 1 π 5, z = 1 4π 5, z 3 = 1 6π, z 4 = 1 8π 5 5 Biraketa, eskala aldaketa eta traslazio trasformazioak erabiliz edozei petagoo lor daiteke:(ikus 1. irudia) 1. Irudia: z k = z k ρ θ + a + bi

18 18 1. KAPITULUA ZENBAKI KONPLEXUAK Zei da alde bakoitzare luzera? ( z 0 z 1 = π = 1 cos π 5 5 i si π 5 = 1 cos π 5 ) + si π 5 = cos π Ariketa R erradioko zirkuferetzi batea iskribatutako aldeko poligoo bate alde bate luzera kalkulatu. Ebazpea z 0 z 1 = R 0 R π = R R cos π R si π ( = R 1 cos π ) + si π = R cos π Aztertu zer gertatze de haditze deea. Zer baliora hurbiltze da?. Espero zitekee emaitza hau?. Perimetroa kalkulatu: L = R cos π = R ( 1 cos π ) = R si π = R si π N oratz joko du? Oharra: aldagai errealtzat hartu, eta L Hô pital aplikatu: lim R si π = lim R si π 1 L Hô pital = lim π cos R π = lim 1 πr cos π = πr a apotema kalkulatu:(ikus 1.3 irudia) z 0 z 1 =... = R + cos π = R ( 1 + cos π ) = R cos π = R cos π, a R (L OG IK OA).

19 1.3. Z C ZENBAKIAREN ERA ESPONENTZIALA Irudia: Azalera kalkulatu: A = Perimetroa X Apotema = 1 R si π R cos π 1 πr R = πr (LOGIKOA) z C re espoetzial koplexua. z C, e z = e x+iy = e x e iy = e x (cos y+i si y) = e x y (modulua e x, argumetua y) Adibidea: e +i π = e π = ie = e ( cos π + i si π 1.5. Ariketa Odorego balditzak betetze dituzte z zebaki koplexuak aurkitu.: Im(e z ) = 0 edo R e(e z ) = 0 Ebazpea (Ikus 1.4 irudia) ) e x+iy R si y = 0 y = kπ, k Z R e(e z ) = 0 cos y = 0 y = (k + 1) π, k Z z-re logaritmo epertarra.

20 0 1. K A P IT U L U A Z E N B A K I K O N P L E X U A K 1.4 Iru d ia : Iza bed i z C. E sp o e tzia la re d efi izioa rek i ba tera g a rria d e p rozed u ra era biliz e z = z berd{ i tza tik z a sk a tu beh a r d a : z = ρ θ (eza g u a ) Iza bitez: z = x + iy (ezeza g u a ) bera z e z = z e x e iy = ρ θ { e x = ρ x = l ρ y = θ + kπ l (ρ θ ) = l ρ + i(θ + kπ) k Z (Ik u s 1.5 iru d ia ) B a d a u d e i fi itu ba lio. k = 0 eg i ez ba lio a gu sia lortze d a. Ad ibid ea : l ( 3) = l (3 π ) = l 3 + i(π + kπ) (B a lio h a u ek ez d ira errea la k l ( 3) R mu ltzoa ez d a g oela k o). l (3) = l (3 0 ) = l 3 + i(kπ). k = 0 ba d a, lortu ta k o ema itza errea la d a, eza g u tze d u g u ep erta r o rm a la d a bera z A rik e ta Z ei d a l z-re ba lioa z R ba d a g o? U E P D o o stia M ate m atik a A p lik atu a S aila

21 1.3. Z C ZENBAKIAR EN ER A ES PONENTZIALA Irudia: Ebazpea x > 0 bada arg z = 0 l z = l x + i(kπ) k = 0 bada epertar erreal l(x+0i) = l x +i(arg z+kπ) = x < 0 bada arg z = π l z = l( x) + i(π + kπ) ioiz ez erreala 1.7. Ariketa z C-re zei balioetarako l z R? Ebazpea Espoetzial orokorra: a, b R bada, a > 0, a b = e b l a. C multzoa berriz: z z 1 = ez l z Ariketa z 1 = ρ θ, z = ρ θ izaik, z z 1 -re zati erreal eta zati irudikaria kalkulatu. N oiz da erreala? Ebazpea Adibidea: i i = e i l i = e i(l 1+ i( π + kp i)) = e ( π + kπ) R k Z

22 1. KAPITULUA ZENBAKI KONPLEXUAK Futzio trigoometriko koplex uak: Iza bedi h(z) = eiz e iz i h(x + 0i) = eix e ix i futzioa. Zer gertatze da z R?: = co s x + i si x co s x + i si x i H au dela eta odorego era defiituko dugu si z: = si x co s z = si z = eiz e iz i 1 si z = z C 1 + eiz + e iz 4 = e iz + e iz + = (e iz + e iz ) = eiz + e iz ordua: co s z = eiz + e iz i z C 1.9. Ariketa z C, z = ±z dela frogatu. Ebazpea z = ρ θ z = ρ θ = ρ θ + kπ Adibidea: si( π + i) = ei( π +i) e i( π +i) i = { (k = 0) ρ θ (k = 1) ρ θ+π = z = ei π e 1 e i π e i = ie 1 + ie i = e + e Ariketa O dore si x, co s x futzioe propietateak x R deea agertze dira. Aztertu zeitzu betetze dire z C deea: 1. si( x) si x. co s( x) = co s x 3. si(a + b) = si a co s b + co s a si b 4. co s(a + b) = co s a co s b si a si b

23 1.3. Z C ZENBAKIAREN ERA ESPONENTZIALA si x = si x cos x 6. cos x = cos x si x 7. si 1 cos x x = 8. cos 1 + cos x x = 9. si x cos x si(x + π) = si x 1. cos(x + π) = cos x 13. si(x + π ) = cos x 14. cos(x + π ) = si x Futzio hiperboliko koplexuak: sih z = ez e z, cosh z = ez + e z Ariketa sih ( z), cosh ( z), cosh (z) sih (z) kalkulatu

24 4 1. KAPITULUA ZENBAKI KONPLEXUAK

4.GAIA. ESPAZIO BEKTORIALAK

4.GAIA. ESPAZIO BEKTORIALAK 4.GAIA. ESPAZIO BEKTORIALAK. Defiizioa. Propietateak 3. Azpiespazio bektorialak 4. Kobiazio liealak 5. Depedetzia eta idepedetzia lieala 6. Oiarria eta dimetsioa 7. Oiarri-aldaketa 8. Azpiespazio bektoriale

Διαβάστε περισσότερα

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( )

DERIBAZIO-ERREGELAK 1.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. ( ) ( ) DERIBAZIO-ERREGELAK.- ALDAGAI ERREALEKO FUNTZIO ERREALAREN DERIBATUA. Izan bitez D multzo irekian definituriko f funtzio erreala eta puntuan deribagarria dela esaten da baldin f ( f ( D puntua. f zatidurak

Διαβάστε περισσότερα

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak

9. K a p itu lu a. Ekuazio d iferen tzial arrun tak 9. K a p itu lu a Ekuazio d iferen tzial arrun tak 27 28 9. K A P IT U L U A E K U A Z IO D IF E R E N T Z IA L A R R U N T A K UEP D o n o stia M ate m atik a A p lik atu a S aila 29 Oharra: iku rra rekin

Διαβάστε περισσότερα

= 32 eta β : z = 0 planoek osatzen duten angelua.

= 32 eta β : z = 0 planoek osatzen duten angelua. 1 ARIKETA Kalkulatu α : 4x+ 3y+ 10z = 32 eta β : z = 0 planoek osatzen duten angelua. Aurki ezazu α planoak eta PH-k osatzen duten angelua. A'' A' 27 A''1 Ariketa hau plano-aldaketa baten bidez ebatzi

Διαβάστε περισσότερα

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1

GIZA GIZARTE ZIENTZIEI APLIKATUTAKO MATEMATIKA I BINOMIALA ETA NORMALA 1 BINOMIALA ETA NORMALA 1 PROBABILITATEA Maiztasu erlatiboa: fr i = f i haditze bada, maiztasuak egokortzera joko dira, p zebaki batera hurbilduz. Probabilitatea p zebakia da. Probabilitateak maiztasue idealizazioak

Διαβάστε περισσότερα

Definizioa. 1.Gaia: Estatistika Deskribatzailea. Definizioa. Definizioa. Definizioa. Definizioa

Definizioa. 1.Gaia: Estatistika Deskribatzailea. Definizioa. Definizioa. Definizioa. Definizioa Defiizioa 1Gaia: Estatistika Deskribatzailea Cristia Alcalde - Aratxa Zatarai Doostiako Uibertsitate Eskola Politekikoa - UPV/EHU Populazioa Elemetu multzo bate ezaugarrire bat ezagutu ahi duguea elemetu

Διαβάστε περισσότερα

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak 3. K a p itu lu a Aldagai errealek o fu n tzio errealak 49 50 3. K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 3.1. ARAZOAREN

Διαβάστε περισσότερα

Banaketa normala eta limitearen teorema zentrala

Banaketa normala eta limitearen teorema zentrala eta limitearen teorema zentrala Josemari Sarasola Estatistika enpresara aplikatua Josemari Sarasola Banaketa normala eta limitearen teorema zentrala 1 / 13 Estatistikan gehien erabiltzen den banakuntza

Διαβάστε περισσότερα

Aldagai bakunaren azterketa deskribatzailea (I)

Aldagai bakunaren azterketa deskribatzailea (I) Aldagai bakuare azterketa deskribatzailea (I) 2007ko otsaila Cotets 1 Datu multzoe ezaugarriak 4 2 Zetralizazio eurriak 4 2.1 Batezbesteko aritmetiko siplea................... 5 2.2 Mediaa................................

Διαβάστε περισσότερα

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna

ANGELUAK. 1. Bi zuzenen arteko angeluak. Paralelotasuna eta perpendikulartasuna Metika espazioan ANGELUAK 1. Bi zuzenen ateko angeluak. Paalelotasuna eta pependikulatasuna eta s bi zuzenek eatzen duten angelua, beaiek mugatzen duten planoan osatzen duten angeluik txikiena da. A(x

Διαβάστε περισσότερα

!"#!"!"# $ "# '()!* '+!*, -"*!" $ "#. /01 023 43 56789:3 4 ;8< = 7 >/? 44= 7 @ 90A 98BB8: ;4B0C BD :0 E D:84F3 B8: ;4BG H ;8

Διαβάστε περισσότερα

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos

3. KOADERNOA: Aldagai anitzeko funtzioak. Eugenio Mijangos 3. KOADERNOA: Aldagai anitzeko funtzioak Eugenio Mijangos 3. KOADERNOA: ALDAGAI ANITZEKO FUNTZIOAK Eugenio Mijangos Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori,

Διαβάστε περισσότερα

MATEMATIKARAKO SARRERA OCW 2015

MATEMATIKARAKO SARRERA OCW 2015 MATEMATIKARAKO SARRERA OCW 2015 Mathieu Jarry iturria: Flickr CC-BY-NC-ND-2.0 https://www.flickr.com/photos/impactmatt/4581758027 Leire Legarreta Solaguren EHU-ko Zientzia eta Teknologia Fakultatea Matematika

Διαβάστε περισσότερα

1 Aljebra trukakorraren oinarriak

1 Aljebra trukakorraren oinarriak 1 Aljebra trukakorraren oinarriak 1.1. Eraztunak eta gorputzak Geometria aljebraikoa ikasten hasi aurretik, hainbat egitura aljebraiko ezagutu behar ditu irakurleak: espazio bektorialak, taldeak, gorputzak,

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika II

Giza eta Gizarte Zientziak Matematika II Giza eta Gizarte Zietziak Matematika II 3. ebaluazioa Probabilitatea Baaketa Normala eta Biomiala Lagi estatistikoak Iferetzia estatistikoa Hipotesiak Igacio Zuloaga B.H.I. (Eibar) 1 PROBABILITATEA Igazio

Διαβάστε περισσότερα

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA:

MATEMATIKAKO ARIKETAK 2. DBH 3. KOADERNOA IZENA: MATEMATIKAKO ARIKETAK. DBH 3. KOADERNOA IZENA: Koaderno hau erabiltzeko oharrak: Koaderno hau egin bazaizu ere, liburuan ezer ere idatz ez dezazun izan da, Gogora ezazu, orain zure liburua den hori, datorren

Διαβάστε περισσότερα

Giza eta Gizarte Zientziak Matematika I

Giza eta Gizarte Zientziak Matematika I Gia eta Giarte Zietiak Matematika I. eta. ebaluaioak Zue erreala Segida errealak Ekuaio espoetialak Logaritmoak Ekuaio lieale sistemak ESTATISTIKA Aldagai diskretuak eta jarraiak Parametro estatistikoak

Διαβάστε περισσότερα

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i

7.GAIA. ESTATISTIKA DESKRIBATZAILEA. x i n i N i f i 7.GAIA. ESTATISTIKA DESKRIBATZAILEA 1. Osatu ondorengo maiztasun-taula: x i N i f i 1 4 0.08 2 4 3 16 0.16 4 7 0.14 5 5 28 6 38 7 7 45 0.14 8 2. Ondorengo banaketaren batezbesteko aritmetikoa 11.5 dela

Διαβάστε περισσότερα

Aldagai Anitzeko Funtzioak

Aldagai Anitzeko Funtzioak Aldagai Anitzeko Funtzioak Bi aldagaiko funtzioak Funtzio hauen balioak bi aldagai independenteen menpekoak dira: 1. Adibidea: x eta y aldeetako laukizuzenaren azalera, S, honela kalkulatzen da: S = x

Διαβάστε περισσότερα

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης

Σηµειώσεις Μιγαδικής Ανάλυσης Θέµης Μήτσης Σηµειώσεις Μιαδικής Ανάλυσης Θέµης Μήτσης Τµηµα Μαθηµατικων Πανεπιστηµιο Κρητης Ηρακλειο Περιεχόµενα Κεφάλαιο 1. Εισαωικά 5 Η αλεβρική δοµή 5 Η τοπολοική δοµή τού 6 Το εκτεταµένο µιαδικό επίπεδο 7 Συνεκτικότητα

Διαβάστε περισσότερα

Parts Manual. Trio Mobile Surgery Platform. Model 1033

Parts Manual. Trio Mobile Surgery Platform. Model 1033 Trio Mobile Surgery Platform Model 1033 Parts Manual For parts or technical assistance: Pour pièces de service ou assistance technique : Für Teile oder technische Unterstützung Anruf: Voor delen of technische

Διαβάστε περισσότερα

Presentation of complex number in Cartesian and polar coordinate system

Presentation of complex number in Cartesian and polar coordinate system 1 a + bi, aεr, bεr i = 1 z = a + bi a = Re(z), b = Im(z) give z = a + bi & w = c + di, a + bi = c + di a = c & b = d The complex cojugate of z = a + bi is z = a bi The sum of complex cojugates is real:

Διαβάστε περισσότερα

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa

Hasi baino lehen. Zenbaki errealak. 2. Zenbaki errealekin kalkulatuz...orria 9 Hurbilketak Erroreen neurketa Notazio zientifikoa 1 Zenbaki errealak Helburuak Hamabostaldi honetan hau ikasiko duzu: Zenbaki errealak arrazional eta irrazionaletan sailkatzen. Zenbaki hamartarrak emandako ordena bateraino hurbiltzen. Hurbilketa baten

Διαβάστε περισσότερα

Zirkunferentzia eta zirkulua

Zirkunferentzia eta zirkulua 10 Zirkunferentzia eta zirkulua Helburuak Hamabostaldi honetan, hau ikasiko duzu: Zirkunferentzian eta zirkuluan agertzen diren elementuak identifikatzen. Puntu, zuzen eta zirkunferentzien posizio erlatiboak

Διαβάστε περισσότερα

4. GAIA: Ekuazio diferenzialak

4. GAIA: Ekuazio diferenzialak 4. GAIA: Ekuazio diferenzialak Matematika Aplikatua, Estatistika eta Ikerkuntza Operatiboa Saila Zientzia eta Teknologia Fakultatea Euskal Herriko Unibertsitatea Aurkibidea 4. Ekuazio diferentzialak......................................

Διαβάστε περισσότερα

Unibertsitatera sartzeko Hautaprobak

Unibertsitatera sartzeko Hautaprobak Uibertsitatera sartzeko Hautaprobak. Froga ezazu, idukzioz, zebaki atural guztietarako odoko berditza ( + )( + ) beteko dela: + + 3 + 4 +... + = 6. Aurki ezazu 57 +5 adierazpeare azke zifra 3. Motorista

Διαβάστε περισσότερα

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018

ΠΑΡΟΡΑΜΑΤΑ ΕΚΔΟΣΗ 12 ΜΑΡΤΙΟΥ 2018 ΝΙΚΟΛΑΟΣ M. ΣΤΑΥΡΑΚΑΚΗΣ: «Μερικές Διαφορικές Εξισώσεις & Μιγαδικές Συναρτήσεις: Θεωρία και Εφαρμογές» η Έκδοση, Αυτοέκδοση) Αθήνα, ΜΑΡΤΙΟΣ 06, Εξώφυλλο: ΜΑΛΑΚΟ, ΕΥΔΟΞΟΣ: 5084750, ISBN: 978-960-93-7366-

Διαβάστε περισσότερα

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri

LAN PROPOSAMENA. ASKATASUNA BHI. Unitatea: MEKANISNOAK Orri zk: 1 Burlata 1. JARDUERA. IRAKASLEA: Arantza Martinez Iturri ASKATASUNA BHI. Uitatea: MEKANISNOAK Orri zk: 1 1. JARDUERA LAN PROPOSAMENA LAN PROPOSAMENA Diseiatu eta eraiki ERAKUSLEIHO ZINETIKOA jedeare arreta erakartzeko edo produktu bat iragartzeko. Erakusleihoare

Διαβάστε περισσότερα

HONDA. Έτος κατασκευής

HONDA. Έτος κατασκευής Accord + Coupe IV 2.0 16V (CB3) F20A2-A3 81 110 01/90-09/93 0800-0175 11,00 2.0 16V (CB3) F20A6 66 90 01/90-09/93 0800-0175 11,00 2.0i 16V (CB3-CC9) F20A8 98 133 01/90-09/93 0802-9205M 237,40 2.0i 16V

Διαβάστε περισσότερα

7. K a p itu lu a. Integ ra l a nizk o itza k

7. K a p itu lu a. Integ ra l a nizk o itza k 7. K a p itu lu a Integ ra l a nizk o itza k 61 62 7. K A P IT U L U A IN T E G R A L A N IZ K O IT Z A K UEP D o n o stia M ate m atik a A p lik atu a S aila 7.1. ARAZOAREN AURKEZPENA 63 7.1 A ra zo a

Διαβάστε περισσότερα

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA)

ΓΗ ΚΑΙ ΣΥΜΠΑΝ. Εικόνα 1. Φωτογραφία του γαλαξία μας (από αρχείο της NASA) ΓΗ ΚΑΙ ΣΥΜΠΑΝ Φύση του σύμπαντος Η γη είναι μία μονάδα μέσα στο ηλιακό μας σύστημα, το οποίο αποτελείται από τον ήλιο, τους πλανήτες μαζί με τους δορυφόρους τους, τους κομήτες, τα αστεροειδή και τους μετεωρίτες.

Διαβάστε περισσότερα

(1)σ (2)σ (3)σ (a)σ n

(1)σ (2)σ (3)σ (a)σ n 5 Gaia 5 Determinanteak 1 51 Talde Simetrikoa Gogoratu, X = {1,, n} bada, X-tik X-rako aplikazio bijektiboen multzoa taldea dela konposizioarekiko Talde hau, n mailako talde simetrikoa deitzen da eta S

Διαβάστε περισσότερα

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea.

Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M A K I N A. Sorgailua. Motorea. Magnetismoa M1. MGNETISMO M1.1. Unitate magnetikoak Makina elektrikoetan sortzen diren energi aldaketak eremu magnetikoaren barnean egiten dira: M K I N Energia Mekanikoa Sorgailua Energia Elektrikoa Energia

Διαβάστε περισσότερα

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK

Zenbaki errealak ZENBAKI ERREALAK HURBILKETAK ERROREAK HURBILKETETAN ZENBAKI ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK IRRAZIONALAK Zenbaki errealak ZENBAKI ERREALAK ZENBAKI ARRAZIONALAK ORDENA- ERLAZIOAK ZENBAKI IRRAZIONALAK HURBILKETAK LABURTZEA BIRIBILTZEA GEHIAGOZ ERROREAK HURBILKETETAN Lagun ezezaguna Mezua premiazkoa zirudien

Διαβάστε περισσότερα

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1,

C 1 D 1. AB = a, AD = b, AA1 = c. a, b, c : (1) AC 1 ; : (1) AB + BC + CC1, AC 1 = BC = AD, CC1 = AA 1, AC 1 = a + b + c. (2) BD 1 = BD + DD 1, 1 1., BD 1 B 1 1 D 1, E F B 1 D 1. B = a, D = b, 1 = c. a, b, c : (1) 1 ; () BD 1 ; () F; D 1 F 1 (4) EF. : (1) B = D, D c b 1 E a B 1 1 = 1, B1 1 = B + B + 1, 1 = a + b + c. () BD 1 = BD + DD 1, BD =

Διαβάστε περισσότερα

Ατρέας. Μέρος I. Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς)

Ατρέας. Μέρος I.  Σημειώσεις: Ατρέας Κεφ Κεχαγιάς Κεφ Βιβλία: Churchill - Brown (για μηχανικούς) http://users.auth.gr/natreas Σημειώσεις: Ατρέας Κεφ. 3-4-5 Κεχαγιάς Κεφ. --6 Βιβλία: Churchill - Brown (για μηχανικούς) Marsden (πιο μαθηματικό) Μέρος I Ατρέας Κεφάλαιο Μιγαδικοί Αριθμοί γεωμετρική παράσταση

Διαβάστε περισσότερα

Εφαρμοσμένα Μαθηματικά - Σημειώσεις

Εφαρμοσμένα Μαθηματικά - Σημειώσεις Εφαρμοσμένα Μαθηματικά - Σημειώσεις https://github.com/kongr45gpen/ece-notes 06 Περιεχόμενα I Ατρέας 3 Μιγαδικοί Αριθμοί 3 Μιγαδικές συναρτήσεις 5. Όριο & Συνέχεια μιγαδικών συναρτήσεων μιγαδικής μεταβλητής............

Διαβάστε περισσότερα

1. Gaia: Mekanika Kuantikoaren Aurrekoak

1. Gaia: Mekanika Kuantikoaren Aurrekoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 12 Laburpena 1 Uhin-Partikula Dualtasuna 2 Trantsizio Atomikoak eta Espektroskopia Hidrogeno Atomoaren Espektroa Bohr-en Eredua 3 Argia: Partikula (Newton)

Διαβάστε περισσότερα

Errata (Includes critical corrections only for the 1 st & 2 nd reprint)

Errata (Includes critical corrections only for the 1 st & 2 nd reprint) Wedesday, May 5, 3 Erraa (Icludes criical correcios oly for he s & d repri) Advaced Egieerig Mahemaics, 7e Peer V O eil ISB: 978474 Page # Descripio 38 ie 4: chage "w v a v " "w v a v " 46 ie : chage "y

Διαβάστε περισσότερα

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h

I S L A M I N O M I C J U R N A L J u r n a l E k o n o m i d a n P e r b a n k a n S y a r i a h A n a l i s a M a n a j e m e n B P I H d i B a n k S y a r i a h I S S N : 2 0 8 7-9 2 0 2 I S L A M I N O M I C P e n e r b i t S T E S I S L A M I C V I L L A G E P e n a n g g u n g J a w a b H. M

Διαβάστε περισσότερα

ESTATISTIKA 8. UNITATEA orrialdea orrialdea

ESTATISTIKA 8. UNITATEA orrialdea orrialdea 8. UNITATEA ESTATISTIKA 198. orrialdea Irakasleare ohar koaderoa agertze dire idatzi eta ohar guztiak berak egi due taula edo grafiko horreki koparatze baditugu, argi esa behar dugu iformazio mordoa galdu

Διαβάστε περισσότερα

ARRAZOI TRIGONOMETRIKOAK

ARRAZOI TRIGONOMETRIKOAK ARRAZOI TRIGONOMETRIKOAK 1.- LEHEN DEFINIZIOAK Jatorri edo erpin berdina duten bi zuzenerdien artean gelditzen den plano zatiari, angelua planoan deitzen zaio. Zirkunferentziaren zentroan erpina duten

Διαβάστε περισσότερα

f(z) 1 + z a lim f (n) (0) n! = 1

f(z) 1 + z a lim f (n) (0) n! = 1 ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ & ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ 3η Σειρά Ασκήσεων στη Μιγαδική Ανάλυση. Υποθέτουμε ότι η f : C C είναι ακέραια συνάρτηση και ότι το όριο Αποδείξτε ότι η f είναι σταθερή.

Διαβάστε περισσότερα

10. K a p itu lu a. Laplaceren transfo rm atu a

10. K a p itu lu a. Laplaceren transfo rm atu a 1. K a p itu lu a Laplaceren transfo rm atu a 239 24 1. K A P IT U L U A L A P L A C E R E N T R A N S F O R M A T U A 1.1 A ra zo a re n a u rk e zp e n a K u rtsoan zehar, ald ag ai an itzen ald aketa

Διαβάστε περισσότερα

Διευθύνοντα Μέλη του mathematica.gr

Διευθύνοντα Μέλη του mathematica.gr Το «Εικοσιδωδεκάεδρον» παρουσιάζει ϑέματα που έχουν συζητηθεί στον ιστότοπο http://www.mathematica.gr. Η επιλογή και η ϕροντίδα του περιεχομένου γίνεται από τους Επιμελητές του http://www.mathematica.gr.

Διαβάστε περισσότερα

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s

ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s P P P P ss rt çã r s t Pr r Pós r çã ê t çã st t t ê s 1 t s r s r s r s r q s t r r t çã r str ê t çã r t r r r t r s r t r 3 2 r r r 3 t r ér t r s s r t s r s r s ér t r r t t q s t s sã s s s ér t

Διαβάστε περισσότερα

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak

3. K a p itu lu a. Aldagai errealek o fu n tzio errealak 3 K a p itu lu a Aldagai errealek o fu n tzio errealak 13 14 3 K AP IT U L U A AL D AG AI E R R E AL E K O F U N T Z IO E R R E AL AK UEP D o n o stia M ate m atik a A p lik atu a S aila 31 FUNTZIOAK:

Διαβάστε περισσότερα

Ax = b. 7x = 21. x = 21 7 = 3.

Ax = b. 7x = 21. x = 21 7 = 3. 3 s st 3 r 3 t r 3 3 t s st t 3t s 3 3 r 3 3 st t t r 3 s t t r r r t st t rr 3t r t 3 3 rt3 3 t 3 3 r st 3 t 3 tr 3 r t3 t 3 s st t Ax = b. s t 3 t 3 3 r r t n r A tr 3 rr t 3 t n ts b 3 t t r r t x 3

Διαβάστε περισσότερα

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko

9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomiko 9. Gaia: Espektroskopiaren Oinarriak eta Espektro Atomikoak 1) Kimika Teorikoko Laborategia 2012.eko irailaren 21 Laburpena 1 Espektroskopiaren Oinarriak 2 Hidrogeno Atomoa Espektroskopia Esperimentua

Διαβάστε περισσότερα

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen

Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation for the degree philosophiae doctor (PhD) at the University of Bergen Dissertation date: GF F GF F SLE GF F D Ĉ = C { } Ĉ \ D D D = {z : z < 1} f : D D D D = D D, D = D D f f : D D

Διαβάστε περισσότερα

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa

I. KAPITULUA Zenbakia. Aldagaia. Funtzioa I. KAPITULUA Zenbakia. Aldagaia. Funtzioa 1. ZENBAKI ERREALAK. ZENBAKI ERREALEN ADIERAZPENA ZENBAKIZKO ARDATZEKO PUNTUEN BIDEZ Matematikaren oinarrizko kontzeptuetariko bat zenbakia da. Zenbakiaren kontzeptua

Διαβάστε περισσότερα

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c

Antzekotasuna ANTZEKOTASUNA ANTZEKOTASUN- ARRAZOIA TALESEN TEOREMA TRIANGELUEN ANTZEKOTASUN-IRIZPIDEAK BIGARREN IRIZPIDEA. a b c ntzekotasuna NTZEKOTSUN IRUI NTZEKOK NTZEKOTSUN- RRZOI NTZEKO IRUIK EGITE TLESEN TEOREM TRINGELUEN NTZEKOTSUN-IRIZPIEK LEHEN IRIZPIE $ = $' ; $ = $' IGRREN IRIZPIE a b c = = a' b' c' HIRUGRREN IRIZPIE

Διαβάστε περισσότερα

Chapter 1 Complex numbers

Chapter 1 Complex numbers Complex numbers MC Qld- Chapter Complex numbers Exercise A Operations on and representations of complex numbers a u ( i) 8i b u + v ( i) + ( + i) + i c u + v ( i) + ( + i) i + + i + 8i d u v ( i) ( + i)

Διαβάστε περισσότερα

Ekuazioak eta sistemak

Ekuazioak eta sistemak 4 Ekuazioak eta sistemak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Bigarren mailako ekuazio osoak eta osatugabeak ebazten. Ekuazio bikarratuak eta bigarren mailako batera murriztu daitezkeen beste

Διαβάστε περισσότερα

PROGRAMA LABURRA (gutxiengoa)

PROGRAMA LABURRA (gutxiengoa) PROGRAMA LABURRA gutiengoa Batilergo Zientiiko-Teknikoa MATEMATIKA I Ignacio Zuloaga BHI Eibar IGNACIO ZULOAGA B.I. EIBAR Gutiengo programa Zientiiko-Teknikoa. maila Ekuaio esponentialak Ariketa ebatiak:

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ ΣΗΜΕΙΩΣΕΙΣ ΥΠΟ ΠΡΟΕΤΟΙΜΑΣΙΑ για το μάθημα ΜΙΓΑΔΙΚΕΣ ΣΥΝΑΡΤΗΣΕΙΣ I Τμήμα Μαθηματικών Πανεπιστήμιο Ιωαννίνων Εαρινό Εξάμηνο 2018 Ιωάννης Γιαννούλης Τμήμα Μαθηματικών Πανεπιστήμιο

Διαβάστε περισσότερα

Poisson prozesuak eta loturiko banaketak

Poisson prozesuak eta loturiko banaketak Gizapedia Poisson banaketa Poisson banaketak epe batean (minutu batean, ordu batean, egun batean) gertaera puntualen kopuru bat (matxura kopurua, istripu kopurua, igarotzen den ibilgailu kopurua, webgune

Διαβάστε περισσότερα

Το άτομο του Υδρογόνου

Το άτομο του Υδρογόνου Το άτομο του Υδρογόνου Δυναμικό Coulomb Εξίσωση Schrödinger h e (, r, ) (, r, ) E (, r, ) m ψ θφ r ψ θφ = ψ θφ Συνθήκες ψ(, r θφ, ) = πεπερασμένη ψ( r ) = 0 ψ(, r θφ, ) =ψ(, r θφ+, ) π Επιτρεπτές ενέργειες

Διαβάστε περισσότερα

!"!# ""$ %%"" %$" &" %" "!'! " #$!

!!# $ %% %$ & % !'!  #$! " "" %%"" %" &" %" " " " % ((((( ((( ((((( " %%%% & ) * ((( "* ( + ) (((( (, (() (((((* ( - )((((( )((((((& + )(((((((((( +. ) ) /(((( +( ),(, ((((((( +, 0 )/ (((((+ ++, ((((() & "( %%%%%%%%%%%%%%%%%%%(

Διαβάστε περισσότερα

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης

Μιγαδική Ανάλυση. Δρ. Θ. Ζυγκιρίδης Μιγαδική Ανάλυση Δρ. Θ. Ζυγκιρίδης 2 Περιεχόμενα 1 Μιγαδικοί αριθμοί 1 1.1 Βασικοί ορισμοί και ιδιότητες............................. 1 1.2 Γεωμετρική αναπαράσταση των μιγαδικών αριθμών.................

Διαβάστε περισσότερα

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#%

!#$%!& '($) *#+,),# - '($) # -.!, '$%!%#$($) # - '& %#$/0#!#%! % '$%!%#$/0#!#%! % '#%3$-0 4 '$%3#-!#, '5&)!,#$-, '65!.#% " #$%& '($) *#+,),# - '($) # -, '$% %#$($) # - '& %#$0##% % '$% %#$0##% % '1*2)$ '#%3$-0 4 '$%3#-#, '1*2)$ '#%3$-0 4 @ @ @

Διαβάστε περισσότερα

,, #,#, %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, )

,, #,#, %&'(($#(#)&*& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) !! "#$%&'%( (%)###**#+!"#$ ',##-.#,,, #,#, /01('/01/'#!2#! %&'(($#(#)&*"& 3,,#!4!4! +&'(#,-$#,./$012 5 # # %, ) 6###+! 4! 4! 4,*!47! 4! (! 8!9%,,#!41! 4! (! 4!5),!(8! 4! (! :!;!(7! (! 4! 4!!8! (! 8! 4!!8(!44!

Διαβάστε περισσότερα

Zinematika 2: Higidura zirkular eta erlatiboa

Zinematika 2: Higidura zirkular eta erlatiboa Zinematika 2: Higidura zirkular eta erlatiboa Gaien Aurkibidea 1 Higidura zirkularra 1 1.1 Azelerazioaren osagai intrintsekoak higidura zirkularrean..... 3 1.2 Kasu partikularrak..........................

Διαβάστε περισσότερα

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak

Inekuazioak. Helburuak. 1. Ezezagun bateko lehen orria 74 mailako inekuazioak Definizioak Inekuazio baliokideak Ebazpena Inekuazio-sistemak 5 Inekuazioak Helburuak Hamabostaldi honetan hauxe ikasiko duzu: Ezezagun bateko lehen eta bigarren mailako inekuazioak ebazten. Ezezagun bateko ekuaziosistemak ebazten. Modu grafikoan bi ezezaguneko lehen

Διαβάστε περισσότερα

2 ΑΛΓΕΒΡΑ. 2.1 Ταυτότητες

2 ΑΛΓΕΒΡΑ. 2.1 Ταυτότητες SECTIN ΑΛΓΕΒΡΑ. Ταυτότητες ( ) + ( + ) + + ( ) 3 3 3 + 3 3 ( + ) 3 3 + 3 + 3 + 3 ( ) 4 4 4 3 + 6 4 3 + 4 ( + ) 4 4 + 4 3 + 6 + 4 3 + 4 ( )( + ) 3 3 ( )( + + ) 3 + 3 ( + )( + ) 4 4 ( )( + )( + ) 4 + 4 (

Διαβάστε περισσότερα

Mate+K. Koadernoak. Ikasplay, S.L.

Mate+K. Koadernoak. Ikasplay, S.L. Mate+K Koadernoak Ikasplay, S.L. AURKIBIDEA Aurkibidea 1. ZENBAKI ARRUNTAK... 3. ZENBAKI OSOAK... 0 3. ZATIGARRITASUNA... 34 4. ZENBAKI HAMARTARRAK... 53 5. ZATIKIAK... 65 6. PROPORTZIONALTASUNA ETA EHUNEKOAK...

Διαβάστε περισσότερα

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK

Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK Trigonometria ANGELU BATEN ARRAZOI TRIGONOMETRIKOAK SINUA KOSINUA TANGENTEA ANGELU BATEN ARRAZOI TRIGONOMETRIKOEN ARTEKO ERLAZIOAK sin α + cos α = sin α cos α = tg α 0º, º ETA 60º-KO ANGELUEN ARRAZOI TRIGONOMETRIKOAK

Διαβάστε περισσότερα

(2), ,. 1).

(2), ,. 1). 178/1 L I ( ) ( ) 2019/1111 25 2019,, ( ), 81 3,,, ( 1 ), ( 2 ),, : (1) 15 2014 ( ). 2201/2003. ( 3 ) ( ). 2201/2003,..,,. (2),..,,, 25 1980, («1980»),.,,. ( 1 ) 18 2018 ( C 458 19.12.2018,. 499) 14 2019

Διαβάστε περισσότερα

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n

(a b) c = a (b c) e a e = e a = a. a a 1 = a 1 a = e. m+n Z 6 D 3 G = {a, b, c,... } G a, b G a b = c c (a b) c = a (b c) e a e = e a = a a a 1 = a 1 a = e Q = {0, ±1, ±2,..., ±n,... } m, n m+n m + 0 = m m + ( m) = 0 Z N = {a n }, n = 1, 2... N N Z N = {1, ω,

Διαβάστε περισσότερα

2. GAIA. KALKULU MATRIZIALA

2. GAIA. KALKULU MATRIZIALA . GI. KLKULU MTRIZIL. Mtrizek. Defiiziok. Mtrizee rteko ergiketk. Mtrizee tuket. Esklr te et mtrize te rteko iderket. Mtrizee iderket. Mtrize iruli,simetriko et tisimetriko 4. Mtrize krrtu te determite

Διαβάστε περισσότερα

1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour

1. [Carrier, Krook and Pearson, Section 3-1 problem 1] Using the contour . [Carrier, Krook and Pearson, Section 3- problem ] Using the contour Γ R Γ show that if a, b and c are real with b < 4ac, then dx ax + bx + c π 4ac b. Let r and r be the roots of ax + bx + c. By hypothesis

Διαβάστε περισσότερα

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7

AURKIBIDEA I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 AURKIBIDEA Or. I. KORRONTE ZUZENARI BURUZKO LABURPENA... 7 1.1. MAGNITUDEAK... 7 1.1.1. Karga elektrikoa (Q)... 7 1.1.2. Intentsitatea (I)... 7 1.1.3. Tentsioa ()... 8 1.1.4. Erresistentzia elektrikoa

Διαβάστε περισσότερα

ITU-R P (2009/10)

ITU-R P (2009/10) ITU-R.45-4 (9/) % # GHz,!"# $$ # ITU-R.45-4.. (IR) (ITU-T/ITU-R/ISO/IEC).ITU-R http://www.tu.t/itu-r/go/patets/e. (http://www.tu.t/publ/r-rec/e ) () ( ) BO BR BS BT F M RA S RS SA SF SM SNG TF V.ITU-R

Διαβάστε περισσότερα

! "# $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 "$ 6, ::: ;"<$& = = 7 + > + 5 $?"# 46(A *( / A 6 ( 1,*1 B"',CD77E *+ *),*,*) F? $G'& 0/ (,.

! # $ % $&'& () *+ (,-. / 0 1(,21(,*) (3 4 5 $ 6, ::: ;<$& = = 7 + > + 5 $?# 46(A *( / A 6 ( 1,*1 B',CD77E *+ *),*,*) F? $G'& 0/ (,. ! " #$%&'()' *('+$,&'-. /0 1$23(/%/4. 1$)('%%'($( )/,)$5)/6%6 7$85,-9$(- /0 :/986-$, ;2'$(2$ 1'$-/-$)('')5( /&5&-/ 5(< =(4'($$,'(4 1$%$2/996('25-'/(& ;/0->5,$ 1'$-/%'')$(($/3?$%9'&-/?$( 5(< @6%-'9$

Διαβάστε περισσότερα

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο

Γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού χρονών - σύνολο πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό συμμετοχής στην αγορά εργασίας πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση του αριθμού του οικονομικά ενεργού

Διαβάστε περισσότερα

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean

Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Hidrogeno atomoaren energi mailen banatzea eremu kubiko batean Pablo Mínguez Elektrika eta Elektronika Saila Euskal Herriko Unibertsitatea/Zientzi Fakultatea 644 P.K., 48080 BILBAO Laburpena: Atomo baten

Διαβάστε περισσότερα

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών

Η γεωργία στην ΕΕ απαντώντας στην πρόκληση των κλιματικών αλλαγών Ευρωπαϊκή Επιτροπή Γε ν ι κ ή Δ ι ε ύ θ υ ν σ η Γε ω ρ γ ί α ς κ α ι Αγ ρ ο τ ι κ ή ς Α ν ά π τ υ ξ η ς Ευρωπαϊκή Επιτροπή Γεωργία και αγροτική ανάπτυξη Για περισσότερες πληροφορίες 200 Rue de la Loi,

Διαβάστε περισσότερα

MATEMATIKA DISKRETUA ETA ALGEBRA. Lehenengo zatia

MATEMATIKA DISKRETUA ETA ALGEBRA. Lehenengo zatia MATEMATIKA DISKRETUA ETA ALGEBRA Lehenengo zatia http ://www.sc.ehu.es/ccwalirx/docs/materiala.htm 1. KALKULU PROPOSIZIONALA 2. PREDIKATU KALKULUA 3. MULTZOAK, OSOKOAK 4. ERLAZIOAK ETA FUNTZIOAK 5. GRAFOAK

Διαβάστε περισσότερα

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2

ΦΥΛΛΑΔΙΟ 2 ΑΝΑΛΥΣΗΣ/ ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ., (γ) sin 5xdx sin x cos x. x + x + 1 dx.. 2x 1 2 2 ΦΥΛΛΑΔΙΟ ΑΝΑΛΥΣΗΣ/00- ΥΠΟΛΟΓΙΣΜΟΣ ΑΟΡΙΣΤΩΝ ΟΛΟΚΛΗΡΩΜΑΤΩΝ ΑΣΚΗΣΕΙΣ Να υπολογιστούν τα ολοκληρώματα 6 d (α) d, (β), (γ) si 5d si cos, d (δ) cos cos cos 5d, (ε), (στ) d 5 6 (α) Έχουμε =, οπότε θα είναι: 6

Διαβάστε περισσότερα

COURBES EN POLAIRE. I - Définition

COURBES EN POLAIRE. I - Définition Y I - Définition COURBES EN POLAIRE On dit qu une courbe Γ admet l équation polaire ρ=f (θ), si et seulement si Γ est l ensemble des points M du plan tels que : OM= ρ u = f(θ) u(θ) Γ peut être considérée

Διαβάστε περισσότερα

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο

Γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού - σύνολο απασχολούμενου πληθυσμού - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το γενικό ποσοστό απασχόλησης ισοδύναμου πλήρως απασχολούμενου πληθυσμού υπολογίζεται με τη διαίρεση του αριθμού του ισοδύναμου πλήρως

Διαβάστε περισσότερα

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra.

1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 1. Higidura periodikoak. Higidura oszilakorra. Higidura bibrakorra. 2. Higidura harmoniko sinplearen ekuazioa. Grafikoak. 3. Abiadura eta azelerazioa hhs-an. Grafikoak. 4. Malguki baten oszilazioa. Osziladore

Διαβάστε περισσότερα

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο

Γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού χρονών - σύνολο 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Ο γενικός ρυθμός μεταβολής οικονομικά ενεργού πληθυσμού 15-64 χρονών υπολογίζεται με τη διαίρεση της ετήσιας αύξησης του οικονομικά ενεργού πληθυσμού

Διαβάστε περισσότερα

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο"" ο φ.

Q π (/) ^ ^ ^ Η φ. <f) c>o. ^ ο. ö ê ω Q. Ο. o 'c. _o _) o U 03. ,,, ω ^ ^ -g'^ ο 0) f ο. Ε. ιη ο Φ. ο 0) κ. ο 03.,Ο. g 2< οο ο φ. II 4»» «i p û»7'' s V -Ζ G -7 y 1 X s? ' (/) Ζ L. - =! i- Ζ ) Η f) " i L. Û - 1 1 Ι û ( - " - ' t - ' t/î " ι-8. Ι -. : wî ' j 1 Τ J en " il-' - - ö ê., t= ' -; '9 ',,, ) Τ '.,/,. - ϊζ L - (- - s.1 ai

Διαβάστε περισσότερα

!"! #!"!!$ #$! %!"&' & (%!' #!% #" *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2!

!! #!!!$ #$! %!&' & (%!' #!% # *! *$' *.!! )#/'.0! )#/.*!$,)# * % $ %!!#!!%#'!)$! #,# #!%# ##& )$&# 11!!#2! # $ #$ % (% # )*%%# )# )$ % # * *$ * #,##%#)#% *-. )#/###%. )#/.0 )#/.* $,)# )#/ * % $ % # %# )$ #,# # %# ## )$# 11 #2 #**##%% $#%34 5 # %## * 6 7(%#)%%%, #, # ## # *% #$# 8# )####, 7 9%%# 0 * #,, :;

Διαβάστε περισσότερα

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο

Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού χρονών - σύνολο Ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό απασχόλησης στον τριτογενή τομέα του πληθυσμού 15-64 χρονών υπολογίζεται με

Διαβάστε περισσότερα

Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι

Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι .. ΑΣΚΗΣΕΙΣ ΚΕΦΑΛΑΙΟΥ. Ασκήσεις Κεφαλαίου Ασκήσεις Μαθηµατικών Μεθόδων Φυσικής Ι Κατά τη λύση των ασκήσεων επάνω στους µιγαδικούς αριθµούς είναι χρήσιµο να έχουµε υπόψη ότι ένας µιγαδικός αριθµός µπορεί

Διαβάστε περισσότερα

Batigoal_mathscope.org ñược tính theo công thức

Batigoal_mathscope.org ñược tính theo công thức SỐ PHỨC TRONG CHỨNG MINH HÌNH HỌC PHẲNG Batigoal_mathscope.org Hoangquan9@gmail.com I.MỘT SỐ KHÁI NIỆM CƠ BẢN. Khoảng cách giữa hai ñiểm Giả sử có số phức và biểu diễn hai ñiểm M và M trên mặt phẳng tọa

Διαβάστε περισσότερα

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο

Ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο οικονομικά ενεργού πληθυσμού 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το ποσοστό μακροχρόνιας ανεργίας (διάρκεια 12+ μήνες) οικονομικά ενεργού πληθυσμού 15+ χρονών υπολογίζεται με τη διαίρεση

Διαβάστε περισσότερα

2. PROGRAMEN ESPEZIFIKAZIOA

2. PROGRAMEN ESPEZIFIKAZIOA 2. PROGRAMEN ESPEZIFIKAZIOA 2.1. Asertzioak: egoera-multzoak adierazteko formulak. 2.2. Aurre-ondoetako espezifikazio formala. - 1 - 2.1. Asertzioak: egoera-multzoak adierazteko formulak. Programa baten

Διαβάστε περισσότερα

Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak

Antzekotasuna. Helburuak. Hasi baino lehen. 1.Antzekotasuna...orria 92 Antzeko figurak Talesen teorema Antzeko triangeluak 6 Antzekotasuna Helburuak Hamabostaldi honetan haue ikasiko duzu: Antzeko figurak ezagutzen eta marrazten. Triangeluen antzekotasunaren irizpideak aplikatzen. Katetoaren eta altueraren teoremak erakusten

Διαβάστε περισσότερα

Email: dsourlas@physics.upatras.gr Ιστοσελίδα: www.physics.upatras.gr

Email: dsourlas@physics.upatras.gr Ιστοσελίδα: www.physics.upatras.gr ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΤΜΗΜΑ ΦΥΣΙΚΉΣ ΜΙΓΑΔΙΚΗ ΑΝΑΛΥΣΗ Δημήτρης Σουρλάς Αναπλ. Καθηγητής f ( ) ( ) α! f() π i ( α) + d Πάτρα Email: dsourlas@physics.upatras.gr Ιστοσελίδα: www.physics.upatras.gr Περιεχόμενα.

Διαβάστε περισσότερα

rs r r â t át r st tíst Ó P ã t r r r â

rs r r â t át r st tíst Ó P ã t r r r â rs r r â t át r st tíst P Ó P ã t r r r â ã t r r P Ó P r sã rs r s t à r çã rs r st tíst r q s t r r t çã r r st tíst r t r ú r s r ú r â rs r r â t át r çã rs r st tíst 1 r r 1 ss rt q çã st tr sã

Διαβάστε περισσότερα

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής

ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Σηµειωσεις: ΛΟΓΙΣΜΟΣ Συναρτήσεων µιας Μεταβλητής Θ. Κεχαγιάς Σεπτέµβρης 9 v..85 Περιεχόµενα Προλογος Εισαγωγη Βασικες Συναρτησεις. Θεωρια..................................... Λυµενα Προβληµατα.............................

Διαβάστε περισσότερα

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο

Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Μερίδιο εργοδοτουμένων με μερική ή / και προσωρινή απασχόληση στον εργοδοτούμενο πληθυσμό 15+ χρονών - σύνολο Περιγραφή δείκτη και πηγή πληροφοριών Το μερίδιο εργοδοτουμένων με μερική ή/και προσωρινή απασχόληση

Διαβάστε περισσότερα

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ

ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ. ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ 2010 ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ ΜΙΓΑ ΙΚΟΣ ΛΟΓΙΣΜΟΣ ΚΑΙ ΟΛΟΚΛ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΙ ΘΕΜΑ ΓΡΑΠΤΕΣ ΕΞΕΤΑΣΕΙΣ ΣΕΠΤΕΜΒΡΙΟΥ ΛΥΣΕΙΣ ΤΩΝ ΘΕΜΑΤΩΝ α) Η f ( ) έχει πραγµατικό µέρος φανταστικό µέρος u( x, y) x y = και v( x, y) = ( x + y xy), όπου = x+

Διαβάστε περισσότερα

COMPLEX NUMBERS. 1. A number of the form.

COMPLEX NUMBERS. 1. A number of the form. COMPLEX NUMBERS SYNOPSIS 1. A number of the form. z = x + iy is said to be complex number x,yєr and i= -1 imaginary number. 2. i 4n =1, n is an integer. 3. In z= x +iy, x is called real part and y is called

Διαβάστε περισσότερα

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a

Formulas of Agrawal s Fiber-Optic Communication Systems. Section 2-1 (Geometrical Optics Description) NA n 2 ; n n. NA( )=n1 a Formula o grawal Fier-Oti Commuiatio Sytem Chater (troutio 8 max m M E h h M m 4 6.66. J e.6 9 m log mw S, Chater (Otial Fier SFMMF: i i ir Z Setio - (Geometrial Oti eritio i Z S log i h max E ii o ; GFMMF:

Διαβάστε περισσότερα

Microscopie photothermique et endommagement laser

Microscopie photothermique et endommagement laser Microscopie photothermique et endommagement laser Annelise During To cite this version: Annelise During. Microscopie photothermique et endommagement laser. Physique Atomique [physics.atom-ph]. Université

Διαβάστε περισσότερα