Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Στατιστική Ι (ΨΥΧ-1202) Διάλεξη 7. Στατιστικός έλεγχος υποθέσεων"

Transcript

1 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 7 Στατιστικός έλεγχος υποθέσεων ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

2 Σημαντική Υπενθύμιση: Δεν υπάρχουν χαζές ερωτήσεις και δεν θα με προσβάλετε αν διακόπτετε με ρωτήσεις το μάθημα Διάλεξη 7/ 2

3 Άντε και βρίσκουμε ότι υπάρχει συσχέτιση ανάμεσα σε δύο μεταβλητές. Το επόμενο ερώτημα είναι: η σχέση αυτή είναι πραγματική ή μήπως είναι ένα τυχαίο αποτέλεσμα? Με άλλα λόγια πως μπορούμε να ξέρουμε αν το αποτέλεσμα από μια στατιστική διαδικασία είναι στατιστικά σημαντικό; Διάλεξη 7/ 3

4 Στατιστικά σημαντικό αποτέλεσμα = Όταν το αποτέλεσμα δεν έχει προέλθει από τυχαίους παράγοντες Στατιστικά μη σημαντικό αποτέλεσμα = Όταν το αποτέλεσμα έχει προέλθει από τυχαίους παράγοντες Όλα τα στατιστικά κριτήρια που θα μάθουμε, μας πληροφορούν για την πιθανότητα που υπάρχει τα αποτελέσματά μας να έχουν προκύψει από τυχαίους παράγοντες. Αν η πιθανότητα είναι μικρή >>>>>>>>>> ΟΧΙ ΤΥΧΑΙΑ Αν πιθανότητα είναι μεγάλη>>>>>>>>>>>>>>> ΤΥΧΑΙΑ Διάλεξη 7/ 4

5 Το επόμενο ερώτημα είναι: Πόσο μικρή θα πρέπει να είναι η πιθανότητα για να μην έχουμε τυχαία αποτελέσματα; Στις κοινωνικές επιστήμες έχει καθοριστεί ότι για να έχουμε στατιστικά σημαντικά αποτελέσματα η πιθανότητα σφάλματος θα πρέπει να είναι το πολύ 0,05 (5%) (συμβολίζεται με p<0.05) Βέβαια έχουμε και άλλα επίπεδα στατιστικής σημαντικότητας: 0,01 (1%)>>>> (p<0.01) αλλά και 0,001 (1%ο) >>> (p < 0.001). Διάλεξη 7/ 5

6 Στατιστικός Έλεγχος Υποθέσεων Πρόκειται για μια διαδικασία μέσω της οποίας ο αντικειμενικός στόχος είναι, χρησιμοποιώντας τη στατιστική, να ελέγξουμε αν η υπόθεση που έχουμε διατυπώσει είναι αποδεκτή ή όχι. Με άλλα λόγια, είναι ένα μοντέλο λήψης απόφασης με τη βοήθεια του οποίου αποφασίζουμε αν θα δεχθούμε ή θα απορρίψουμε την υπόθεση που έχουμε διατυπώσει. Διάλεξη 7/ 6

7 Τι σημαίνει η έννοια της υπόθεσης; Είναι μια σύντομη και ακριβής πρόταση στην οποία περιγράφουμε τι πιστεύουμε ότι θα συμβεί στην έρευνα ή το πείραμά μας. Σε κάθε έρευνα διατυπώνουμε 2 υποθέσεις: Μηδενική Υπόθεση (Η 0 ) Εναλλακτική ή Πειραματική Υπόθεση (Η 1 ) Διάλεξη 7/ 7

8 Είναι η υπόθεση που υποστηρίζει ότι δεν υπάρχει σχέση μεταξύ των μεταβλητών που μελετώνται Μηδενική Υπόθεση (Η 0 ) Διατυπώνεται με σκοπό να λειτουργήσει ως κριτήριο σύγκρισης για την εναλλακτική υπόθεση Στη διαδικασία του ελέγχου των υποθέσεων πάντοτε ελέγχουμε τη μηδενική υπόθεση έναντι της εναλλακτικής Διάλεξη 7/ 8

9 Εναλλακτική ή Πειραματική Υπόθεση (Η 1 ) Είναι η υπόθεση που αναφέρεται στην εκτίμηση που κάνει ο υπεύθυνος της έρευνας αναφορικά με τη σχέση που υπάρχει μεταξύ των μεταβλητών που μελετά Ουσιαστικά πρόκειται για την ερευνητική του υπόθεση Διάλεξη 7/ 9

10 Υπόθεση. Μονής Κατεύθυνσης; (one tailed) ή Διπλής Κατεύθυνσης; (two tailed) Διάλεξη 7/ 10

11 Υπόθεση Μονής Κατεύθυνσης: Είναι η υπόθεση που διατυπώνεται με κάποια σαφή πρόβλεψη για το αποτέλεσμα της έρευνάς μας προτού συλλέξουμε τα δεδομένα μας Διάλεξη 7/ 11

12 Υπόθεση Διπλής Κατεύθυνσης: Είναι η υπόθεση που διατυπώνεται χωρίς να επιχειρείται κάποια συγκεκριμένη πρόβλεψη Διάλεξη 7/ 12

13 ΠΑΡΑΔΕΙΓΜΑ Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο ομάδες ατόμων (τμήματα) και δίδαξε μια συγκεκριμένη ύλη τόσο εξ αποστάσεως όσο και δια ζώσης. Στο τέλος του χρόνου σύγκρινε τις επιδόσεις των φοιτητών των δύο ομάδων στο ίδιο τεστ ώστε να διαπιστώσει ποια μέθοδος είχε καλύτερα αποτελέσματα Διάλεξη 7/ 13

14 ΠΑΡΑΔΕΙΓΜΑ Κοιτώντας τα δεδομένα φαίνεται ότι οι δύο ομάδες παρουσιάζουν διαφορές στην επίδοση. Είναι όμως οι διαφορές αυτές πραγματικές (εξαιτίας της μεθόδου διδασκαλίας) ή οφείλονται σε τυχαίους παράγοντες (πχ εξαιτίας της δειγματοληψίας μας;) Διάλεξη 7/ 14

15 Στατιστικός Έλεγχος Υποθέσεων Σε κάθε έρευνα διατυπώνουμε 2 υποθέσεις: Μηδενική Υπόθεση (Η 0 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο ΔΕΝ θα είναι διαφορετικές από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Εναλλακτική Υπόθεση (Η 1 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο θα είναι διαφορετικές από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο ΔΕΝ επιχειρούμε κάποια συγκεκριμένη πρόβλεψη, οπότε αναφερόμαστε σε ΥΠΟΘΕΣΗ ΔΙΠΛΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Διάλεξη 7/ 15

16 Στατιστικός Έλεγχος Υποθέσεων Αν όμως έχουμε γνώση από προηγούμενες έρευνες μπορούμε να κάνουμε την υπόθεση μας πιο συγκεκριμένη δηλ. ΥΠΟΘΕΣΗ ΜΟΝΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Μηδενική Υπόθεση (Η 0 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο ΔΕΝ θα είναι καλύτερες από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Εναλλακτική Υπόθεση (Η 1 ) = Οι επιδόσεις των μαθητών που διδάχθηκαν την ύλη με την εξ αποστάσεως μέθοδο θα είναι καλύτερες από τις επιδόσεις των μαθητών που διδάχθηκαν την ύλη με τη δια ζώσης μέθοδο Διάλεξη 7/ 16

17 Αφού διατυπώσουμε τις υποθέσεις μας ο Στατιστικός Έλεγχος Υποθέσεων έχει ως σκοπό να Απορρίψουμε ή να Αποδεχτούμε τη μηδενική υπόθεση Διάλεξη 7/ 17

18 Γενική διαδικασία για τον έλεγχο υποθέσεων: 1. Πρώτα βρίσκουμε το αποτέλεσμα (δηλ. τη στατιστική τιμή) που προκύπτει από τη χρήση του στατιστικού κριτηρίου που εφαρμόσαμε. Το στατιστικό κριτήριο εξαρτάται από το πρόβλημα που μελετάμε (μπορεί να είναι μια απλή συσχέτιση, ή στην περίπτωση μας το κριτήριο τ για το έλεγχο της διαφοράς των μέσων όρων 2 διαφορετικών δειγμάτων) 2. Για κάθε πιθανή στατιστική τιμή έχει οριστεί από τους στατιστικολόγους και η πιθανότητα εμφάνισης μιας τιμής τουλάχιστον ίδιας με αυτή, όταν η Η0 είναι αληθινή ( η λεγόμενη κρίσιμη τιμή) 3. Στη συνέχεια, και με βάση την κρίσιμη τιμή, καθορίζουμε την περιοχή απόρριψης της Η0 4. Τέλος, εφόσον η στατιστική τιμή βρίσκεται μέσα στα όρια αυτής της περιοχής, θα πρέπει να απορρίψουμε την Η0. Σε αντίθετη περίπτωση θα πρέπει να την αποδεχθούμε Διάλεξη 7/ 18

19 Γενική διαδικασία για τον έλεγχο υποθέσεων: 1. Ας υποθέσουμε ότι από τη χρήση του στατιστικού κριτηρίου που χρησιμοποιήσαμε βρήκαμε τη στατιστική τιμή = 3,67 2. Από τους αντίστοιχους πίνακες βρίσκουμε ότι για επίπεδο στατιστικής σημαντικότητας α=0,05 και για υπόθεση διπλής κατεύθυνσης, η κρίσιμη τιμή είναι 2,09 Διάλεξη 7/ 19

20 3. Στη συνέχεια, και με βάση την κρίσιμη τιμή, καθορίζουμε την περιοχή απόρριψης της Η0 4. Η στατιστική τιμή πέφτει μέσα στην περιοχή απόρριψης της Η0 (γκρι περιοχή). Επομένως θα πρέπει να απορρίψουμε την Η0 και να δεχθούμε την Η1 Διάλεξη 7/ 20

21 Διάλεξη 7/ 21

22 Συνοψίζοντας για τον έλεγχο υποθέσεων 1. Κάθε φορά που επιθυμούμε να προσδιορίσουμε μια συσχέτιση, η μια διαφορά, στο δείγμα μας (ή σε διαφορετικά δείγματα), χρησιμοποιούμε ένα κατάλληλο στατιστικό κριτήριο (πχ το δείκτη συσχέτισης, ή το t- test) 2. To στατιστικό κριτήριο που χρησιμοποιούμε έχει εκ των προτέρων γνωστές ιδιότητες (ιδιαιτέρα η κατανομή συχνοτήτων του) 3. Αφού γνωρίζουμε την κατανομή του, μπορούμε να εκτιμήσουμε την πιθανότητα να λάβει το στατιστικό κριτήριο, την τιμή που έλαβε 4. Εφόσον η πιθανότητα να λάβει το στατιστικό κριτήριο την τιμή που έλαβε είναι μικρότερη από το επίπεδο στατιστικής σημαντικότητας που έχουμε ορίσει (συνήθως 0,05) τότε δεχόμαστε την εναλλακτική υπόθεση. Διάλεξη 7/ 22

23 Δηλ. έχοντας τα δεδομένα από το δείγμα μας: Εξετάζουμε ( με κατάλληλο στατιστικό τεστ) αν θα δεχτούμε Τη μηδενική υπόθεση Για τον πληθυσμό Διάλεξη 7/ 23

24 Σημαντική παρατήρηση: Ποτέ μα ποτέ δεν μπορούμε να είμαστε σίγουροι για το ποια από τις 2 υποθέσεις είναι η σωστή. Συνήθως λοιπόν, οι ερευνητές δουλεύουν με πιθανότητες. Συγκεκριμένα εξετάζουμε την πιθανότητα τα αποτελέσματα μας να είναι τυχαία. Όσο η πιθανότητα αυτή μειώνεται τόσο μεγαλύτερη είναι η εμπιστοσύνη μας προς την αποδοχή της εναλλακτικής υπόθεσης. Στην ψυχολογία, έχει επικρατήσει να χρησιμοποιούμε το όριο του 95% αναφορικά με τη βεβαιότητα: μόνο όταν είμαστε 95% βέβαιοι ότι τα αποτελέσματα μας δεν είναι τυχαία, μόνο τότε δεχόμαστε ότι τα αποτελέσματα μας είναι πραγματικά Διάλεξη 7/ 24

25 Υπάρχουν δύο πιθανά σφάλματα. Σφάλμα Τύπου Ι (Τype I error) συμβαίνει όταν απορρίπτουμε μία αληθής μηδενική υπόθεση (πχ ένα σφάλμα τύπου Ι συμβαίνει όταν ο δικαστής καταδικάσει κάποιον αθώο). Σφάλμα Τύπου ΙΙ (Type II error) συμβαίνει όταν δεχόμαστε τη μηδενική υπόθεση ενώ δεν είναι αληθινή (πχ ένοχος κατηγορούμενος αθωώνεται). Ισχύς (power) = η ικανότητα του κριτηρίου να απορρίπτει τη μηδενική υπόθεση ενώ αυτή είναι πράγματι λανθασμένη. (δείτε το video: errortypes.avi) Διάλεξη 7/ 25

26 Required Sample Size (N) (Algorithm: Fisher Z Refined) One Correlation: Sample Size Calculation One Correlation, t-test (H0: Rho = 0 N vs. Rho (Power = 0.9, Alpha = Population Correlation (Rho) Διάλεξη 7/ 26

27 Correlation is not causation Ο δείκτης συσχέτισης είναι ένα στατιστικό κριτήριο που μας πληροφορεί μόνο για τη συμμεταβολή των δύο μεταβλητών που μελετώνται και όχι για το εάν υπάρχει αιτιώδης σχέση μεταξύ τους Η υψηλή συσχέτιση δεν δηλώνει σχέσεις αιτίου και αποτελέσματος. Μπορεί να οφείλεται σε μια τρίτη μεταβλητή, την οποία δεν έχουμε συμπεριλάβει στην έρευνά μας, και η οποία να λειτουργεί ως αίτιο Διάλεξη 7/ 27

28 Διάλεξη 7/ 28

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων

Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Διαδικασία Ελέγχου Μηδενικών Υποθέσεων Πέτρος Ρούσσος, Τμήμα Ψυχολογίας, ΕΚΠΑ Η λογική της διαδικασίας Ο σάκος περιέχει έναν μεγάλο αλλά άγνωστο αριθμό (αρκετές χιλιάδες) λευκών και μαύρων βόλων: 1 Το

Διαβάστε περισσότερα

Διάλεξη 1 Βασικές έννοιες

Διάλεξη 1 Βασικές έννοιες Εργαστήριο SPSS Ψ-4201 (ΕΡΓ) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη

Διαβάστε περισσότερα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα

Κεφάλαιο 7. Έλεγχος Υποθέσεων. Ένα παράδειγµα Κεφάλαιο 7 Έλεγχος Υποθέσεων 1 Ένα παράδειγµα Ένας ερευνητής θέλησε να διαπιστώσει κατά πόσο η από απόσταση εκπαίδευση είναι καλύτερη από τη δια ζώσης εκπαίδευση. Για το σκοπό αυτό, επέλεξε δύο οµάδες

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 1 Εισαγωγή (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις αναρτημένες στο: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 1 Εισαγωγή ΠΑΝΕΠΙΣΤΗΜΙΟ

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 5

Στατιστική Ι (ΨΥΧ-122) Διάλεξη 5 (ΨΥΧ-122) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com Διαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ Διάλεξη 5 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ

ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Α εξάμηνο 2010-2011 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΕΚΠΑΙΔΕΥΤΙΚΗ ΤΕΧΝΟΛΟΓΙΑ ΚΑΙ ΑΝΑΠΤΥΞΗ ΑΝΘΡΩΠΙΝΩΝ ΠΟΡΩΝ Ποιοτικές και Ποσοτικές μέθοδοι και προσεγγίσεις για την επιστημονική έρευνα users.sch.gr/abouras

Διαβάστε περισσότερα

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4

Στατιστική Ι (ΨΥΧ-1202) ιάλεξη 4 (ΨΥΧ-1202) Λεωνίδας Α. Ζαμπετάκης Β.Sc., M.Env.Eng., M.Ind.Eng., D.Eng. Εmail: statisticsuoc@gmail.com ιαλέξεις: ftp://ftp.soc.uoc.gr/psycho/zampetakis/ ιάλεξη 4 ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΤΜΗΜΑ ΨΥΧΟΛΟΓΙΑΣ Ρέθυμνο,

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΚΕΦΑΛΑΙΟ 17 ΚΕΦΑΛΑΙΟ 17 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ Στο κεφάλαιο αυτό θα αναφερθούμε σε ένα άλλο πρόβλημα της Στατιστικής που έχει κυρίως (αλλά όχι μόνο) σχέση με τις παραμέτρους ενός πληθυσμού (τις παραμέτρους της κατανομής

Διαβάστε περισσότερα

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες

Επαγωγική Στατιστική. Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Εισαγωγή Βασικές έννοιες Επαγωγική Στατιστική Πως μπορούμε να συγκρίνουμε μεταβλητές μεταξύ τους? Διαφορά συγκρίνοντας το μέσο μιας μεταβλητής (λόγος ή διάστημα) στις ομάδες πχ. t-test

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Έλεγχοι Υποθέσεων Ένα Ερευνητικό Παράδειγμα Σκοπός της έρευνας ήταν να διαπιστωθεί εάν ο τρόπος αντίδρασης μιας γυναίκας απέναντι σε φαινόμενα

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΜΑΘΗΜΑΤΙΚΩΝ ΤΟΜΕΑΣ ΣΤΑΤΙΣΤΙΚΗΣ ΚΑΙ ΕΠΙΧΕΙΡΗΣΙΑΚΗΣ ΕΡΕΥΝΑΣ ΕΡΓΑΣΤΗΡΙΟ ΣΤΑΤΙΣΤΙΚΗΣ Χ 2 test ανεξαρτησίας: σχέση 2 ποιοτικών μεταβλητών

Διαβάστε περισσότερα

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ

ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ A εξάμηνο 2009-2010 ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΚΟΙΝΩΝΙΟΒΙΟΛΟΓΙΑ, ΝΕΥΡΟΕΠΙΣΤΗΜΕΣ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ Μεθοδολογία Έρευνας και Στατιστική ΑΝΤΩΝΙΟΣ ΧΡ. ΜΠΟΥΡΑΣ Χειμερινό Εξάμηνο 2009-2010 Ποιοτικές και Ποσοτικές

Διαβάστε περισσότερα

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών

Ενότητα 3. Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Ενότητα 3 Έλεγχος υπόθεσης. Σύγκριση μέσων τιμών Εκτός από τις μέσες τιμές, τυπικές αποκλίσεις κλπ, θέλουμε να βρούμε κατά πόσον αυτές οι παρατηρούμενες τάσεις εξαρτώνται από συγκεκριμένες συνθήκες ή προϋποθέσεις.

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2

Έλεγχοι Υποθέσεων. Χρήση της Στατιστικής. Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-2 Έλεγχοι Υποθέσεων 7-2 7 Έλεγχοι Υποθέσεων Χρήση της Στατιστικής Η λογική του Ελέγχου Υπόθεσης Ο Έλεγχος Υπόθεσης 7-3 7 Μαθησιακοί Στόχοι Όταν θα έχετε ολοκληρώσει την μελέτη του κεφαλαίου θα πρέπει να

Διαβάστε περισσότερα

Κεφάλαιο 9. Έλεγχοι υποθέσεων

Κεφάλαιο 9. Έλεγχοι υποθέσεων Κεφάλαιο 9 Έλεγχοι υποθέσεων 9.1 Εισαγωγή Όταν παίρνουμε ένα ή περισσότερα τυχαία δείγμα από κανονικούς πληθυσμούς έχουμε τη δυνατότητα να υπολογίζουμε στατιστικά, όπως μέσους όρους, δειγματικές διασπορές

Διαβάστε περισσότερα

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων

6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6 ο ΜΑΘΗΜΑ Έλεγχοι Υποθέσεων 6.1 Το Πρόβλημα του Ελέγχου Υποθέσεων Ενός υποθέσουμε ότι μία φαρμακευτική εταιρεία πειραματίζεται πάνω σε ένα νέο φάρμακο για κάποια ασθένεια έχοντας ως στόχο, τα πρώτα θετικά

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΙΓΑΙΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ ΤΗΣ ΔΙΟΙΚΗΣΗΣ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΔΙΟΙΚΗΣΗΣ ΣΤΑΤΙΣΤΙΚΗ Ακαδ. Έτος 5-6 Διδάσκων: Βασίλης ΚΟΥΤΡΑΣ Λέκτορας v.koutras@fme.aegea.gr Τηλ: 735468 Σε αρκετές εφαρμογές

Διαβάστε περισσότερα

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων

ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ. Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Επαγωγική στατιστική (Στατιστική Συμπερασματολογία) Εκτιμητική Έλεγχος Στατιστικών Υποθέσεων α) Σημειοεκτιμητική β) Εκτιμήσεις Διαστήματος ΕΛΕΓΧΟΣ ΣΤΑΤΙΣΤΙΚΩΝ ΥΠΟΘΕΣΕΩΝ Παράδειγμα

Διαβάστε περισσότερα

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού

Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Μέθοδοι δειγματοληψίας, καθορισμός μεγέθους δείγματος, τύποι σφαλμάτων, κριτήρια εισαγωγής και αποκλεισμού Γεσθημανή Μηντζιώρη MD, MSc, PhD Μονάδα Ενδοκρινολογίας της Αναπαραγωγής, Α Μαιευτική και Γυναικολογική

Διαβάστε περισσότερα

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος

Το τυπικό σφάλμα του μέσου (standard error of mean) ενός δείγματος Το σύμβολο μ απεικονίζει 92.4% το μέσο όρο του πληθυσμού 121 92.4% το μέσο όρο του δείγματος 8 6.1% το μέσο όρο της κατανομής t 0 0% το μέσο όρο της κανονικής κατανομής 2 1.5% Το σύμβολο X απεικονίζει

Διαβάστε περισσότερα

T-tests One Way Anova

T-tests One Way Anova William S. Gosset Student s t Sir Ronald Fisher T-tests One Way Anova ΣΤΑΤΙΣΤΙΚΗ Νίκος Ζουρμπάνος Ρούσσος, Π.Λ., & Τσαούσης, Γ. (2002). Στατιστική εφαρμοσμένη στις κοινωνικές επιστήμες. Αθήνα: Ελληνικά

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για την Μέση Τιμή ενός Δείγματος (One Sample t-test) Το κριτήριο One sample t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε τον αριθμητικό

Διαβάστε περισσότερα

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης

Έλεγχος υπόθεσης: διαδικασία αποδοχής ή απόρριψης της υπόθεσης Ν161_(262)_Στατιστική στη Φυσική Αγωγή 06_01_Έλεγχος_Υποθέσεων Γούργουλης Βασίλειος Καθηγητής Τ.Ε.Φ.Α.Α. Σ.Ε.Φ.Α.Α. Δ.Π.Θ. 1 Υπόθεση: "μπορεί ο αριθμητικός μέσος του δείγματος να είναι ίδιος με τον αριθμητικό

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 2: Στατιστική Ι (2/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά

ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ. Επικ. Καθ. Στέλιος Ζήμερας. Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ Επικ. Καθ. Στέλιος Ζήμερας Τμήμα Μαθηματικών Κατεύθυνση Στατιστικής και Αναλογιστικά Χρηματοοικονομικά Μαθηματικά 015 Ανάλυση Διακύμανσης Η Ανάλυση Διακύμανσης είναι μία τεχνική που

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2

ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 1 Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α ΕΙΣΑΓΩΓΗ σ. 2 Α. ΕΡΕΥΝΑ ΚΑΙ ΕΠΕΞΕΡΓΑΣΙΑ Ε ΟΜΕΝΩΝ 2 Β. ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΚΑΙ ΕΡΕΥΝΑ 1. Γενικά Έννοιες.. 2 2. Πρακτικός Οδηγός Ανάλυσης εδοµένων.. 4 α. Οδηγός Λύσεων στο πλαίσιο

Διαβάστε περισσότερα

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t

Κεφάλαιο 12. Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t Κεφάλαιο 12 Σύγκριση μεταξύ δύο δειγμάτων: Το κριτήριο t 1 Πώς δημιουργήθηκε W. S. Gosset (1908) Χημικός στη βιομηχανία Μπύρας Guiness Σύγκριση διαφόρων δειγμάτων μπύρας Δημοσίευση αποτελεσμάτων ως Student

Διαβάστε περισσότερα

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση.

Κεφάλαιο 16. Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 2. Προϋποθέσεις για τη χρήση του τεστ. ιαφορές ή συσχέτιση. Κεφάλαιο 16 Σύγκριση συχνοτήτων κατηγοριών: το στατιστικό κριτήριο χ 1 Προϋποθέσεις για τη χρήση του τεστ ιαφορές ή συσχέτιση Κλίµακα µέτρησης Σχεδιασµός Σηµείωση ιαφορές Κατηγορική Ανεξάρτητα δείγµατα

Διαβάστε περισσότερα

5. Έλεγχοι Υποθέσεων

5. Έλεγχοι Υποθέσεων 5. Έλεγχοι Υποθέσεων Υποθέσεις Η μηδενική υπόθεση Η (ή ΗΑ) εναλλακτική υπόθεση Δεχόμαστε Η Απορρίπτουμε Η Η σωστή Σωστή απόφαση -α Σφάλμα τύπου Ι α Η λάθος Σφάλμα τύπου ΙΙ β Σωστή απόφαση -β ΒΙΟ39-Έλεγχος

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 12ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 12ο ΑΙΤΙΟΤΗΤΑ Ένα από τα βασικά προβλήματα που υπάρχουν στην εξειδίκευση ενός υποδείγματος είναι να προσδιοριστεί η κατεύθυνση που μία μεταβλητή

Διαβάστε περισσότερα

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40]

Εργαστήριο Μαθηματικών & Στατιστικής 2η Πρόοδος στο Μάθημα Στατιστική 28/01/2011 (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) 1ο Θέμα [40] α) στ) 2ο Θέμα [40] Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική 8// (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [4] Τα τελευταία χρόνια παρατηρείται συνεχώς αυξανόμενο ενδιαφέρον για τη μελέτη της συγκέντρωσης

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης

ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ. Ερωτήσεις πολλαπλής επιλογής. Συντάκτης: Δημήτριος Κρέτσης ΠΑΝΕΠΙΣΤΗΜΙΑΚΑ ΦΡΟΝΤΙΣΤΗΡΙΑ ΚΟΛΛΙΝΤΖΑ Ερωτήσεις πολλαπλής επιλογής Συντάκτης: Δημήτριος Κρέτσης 1. Ο κλάδος της περιγραφικής Στατιστικής: α. Ασχολείται με την επεξεργασία των δεδομένων και την ανάλυση

Διαβάστε περισσότερα

Στατιστική Επιχειρήσεων ΙΙ

Στατιστική Επιχειρήσεων ΙΙ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Στατιστική Επιχειρήσεων ΙΙ Ενότητα #4: Έλεγχος Υποθέσεων Μιλτιάδης Χαλικιάς Τμήμα Διοίκησης Επιχειρήσεων Άδειες Χρήσης Το παρόν

Διαβάστε περισσότερα

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Στατιστική Ι. Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Στατιστική Ι Ενότητα 1: Στατιστική Ι (1/4) Αναπλ. Καθηγητής Νικόλαος Σαριαννίδης Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing)

Μέρος IV. Ελεγχοι Υποθέσεων (Hypothesis Testing) Μέρος IV. Ελεγχοι Υποθέσεων (ypothesis Testig) Βασικές έννοιες Γενική μεθοδολογία Σφάλμα τύπου Ι και -vlue Στατιστικοί έλεγχοι υποθέσεων για ειδικές περιπτώσεις Εφαρμοσμένη Στατιστική Μέρος 4 ο - Κ. Μπλέκας

Διαβάστε περισσότερα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα

Ανάλυση Διασποράς Ανάλυση Διασποράς διακύμανση κατά παράγοντες διακύμανση σφάλματος Παράδειγμα 1: Ισομεγέθη δείγματα Ανάλυση Διασποράς Έστω ότι μας δίνονται δείγματα που προέρχονται από άγνωστους πληθυσμούς. Πόσο διαφέρουν οι μέσες τιμές τους; Με άλλα λόγια: πόσο πιθανό είναι να προέρχονται από πληθυσμούς με την ίδια

Διαβάστε περισσότερα

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση

Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Εκπαιδευτική Έρευνα: Μέθοδοι Συλλογής και Ανάλυσης εδομένων Συσχέτιση Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα Φυσική Νέα Ελληνικά Μουσική Α 65 63 35 61 Β 60 58 38 35 Γ 60 60 40 46

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 9Α: Απλή Τυχαία Δειγματοληψία Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες

Διαβάστε περισσότερα

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x

Για το δείγμα από την παραγωγή της εταιρείας τροφίμων δίνεται επίσης ότι, = 1.3 και για το δείγμα από το συνεταιρισμό ότι, x Εργαστήριο Μαθηματικών & Στατιστικής η Πρόοδος στο Μάθημα Στατιστική // (Για τα Τμήματα Ε.Τ.Τ. και Γ.Β.) ο Θέμα [] Επιλέξαμε φακελάκια (της μισής ουγκιάς) που περιέχουν σταφίδες από την παραγωγή μιας εταιρείας

Διαβάστε περισσότερα

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό;

συγκέντρωση της ουσίας στον παραπόταμο είναι αυξημένη σε σχέση με τον ίδιο τον ποταμό; Γραπτή Εξέταση Περιόδου Ιουνίου 008 στο Μάθημα Στατιστική /07/08. Η πιθανότητα να υπάρχει στο υπέδαφος μιας συγκεκριμένης περιοχής εκμεταλλεύσιμο κοίτασμα πετρελαίου είναι 50%. Μια εταιρεία, που πρόκειται

Διαβάστε περισσότερα

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη,

Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, Ποσοτική & Ποιοτική Ανάλυση εδομένων Συσχέτιση Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη, 2013-2014 Οι επιδόσεις δέκα μαθητών σε τέσσερα μαθήματα Μαθητής Άλγεβρα

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ ΕΙΣΑΓΩΓΗ ΣΤΗ ΒΙΟΛΟΓΙΑ Εξάμηνο Υ/Ε Ώρες Θεωρίας Ώρες Ασκήσης Διδακτικές μονάδες ECTS A Υ 3 3 4 6 Διδάσκουσα Μ. Αλεξίου Χατζάκη, Επίκ. Καθηγήτρια Γεν. Βιολογίας. Aντικειμενικοί στόχοι του μαθήματος Οι στόχοι

Διαβάστε περισσότερα

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS)

ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) ΕΙΔΙΚΑ ΘΕΜΑΤΑ ΣΤΗΝ ΣΤΑΤΙΣΤΙΚΗ ΕΡΓΑΣΤΗΡΙΟ (SPSS) Έλεγχος Υποθέσεων για τους Μέσους - Εξαρτημένα Δείγματα (Paired samples t-test) Το κριτήριο Paired samples t-test χρησιμοποιείται όταν θέλουμε να συγκρίνουμε

Διαβάστε περισσότερα

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική

Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Μεθοδολογία των Επιστημών του Ανθρώπου: Στατιστική Ενότητα : Βασίλης Γιαλαμάς Σχολή Επιστημών της Αγωγής Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Περιεχόμενα ενότητας Παρουσιάζονται οι βασικές

Διαβάστε περισσότερα

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας

Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας A. Montgomery Θεμελιώδεις αρχές επιστήμης και μέθοδοι έρευνας Καρολίνα Δουλουγέρη, ΜSc Υποψ. Διαδάκτωρ Σήμερα Αναζήτηση βιβλιογραφίας Επιλογή μεθοδολογίας Ερευνητικός σχεδιασμός Εγκυρότητα και αξιοπιστία

Διαβάστε περισσότερα

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500

Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Εισόδημα Κατανάλωση 1500 500 1600 600 1300 450 1100 400 600 250 700 275 900 300 800 352 850 400 1100 500 Πληθυσμός Δείγμα Δείγμα Δείγμα Ο ρόλος της Οικονομετρίας Οικονομική Θεωρία Διατύπωση της

Διαβάστε περισσότερα

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R

Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R Ανάλυση Δεδομένων με χρήση του Στατιστικού Πακέτου R, Επίκουρος Καθηγητής, Τομέας Μαθηματικών, Σχολή Εφαρμοσμένων Μαθηματικών και Φυσικών Επιστημών, Εθνικό Μετσόβιο Πολυτεχνείο. Περιεχόμενα Εισαγωγή στο

Διαβάστε περισσότερα

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος

Δημήτρης Ι. Οικονομόπουλος Δάσκαλος Eπιστημονικό Bήμα, τ. 10, - Ιανουάριος 2009 Επίδοση στο γυμνάσιο και εγκατάλειψη της εννιάχρονης υποχρεωτικής εκπαίδευσης για τους μαθητές που προέρχονται από ολιγοθέσια και πολυθέσια δημοτικά σχολεία

Διαβάστε περισσότερα

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ

ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΕΦΑΛΑΙΟ 19 ΕΛΕΓΧΟΙ ΥΠΟΘΕΣΕΩΝ ΓΙΑ ΤΗΝ ΣΥΓΚΡΙΣΗ ΜΕΣΩΝ ΤΙΜΩΝ ΚΑΙ ΑΝΑΛΟΓΙΩΝ ΔΥΟ ΚΑΝΟΝΙΚΩΝ ΠΛΗΘΥΣΜΩΝ Όταν ενδιαφερόμαστε να συγκρίνουμε δύο πληθυσμούς, η φυσιολογική προσέγγιση είναι να προσπαθήσουμε να συγκρίνουμε

Διαβάστε περισσότερα

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ

2.4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ .4 ΔΙΑΣΤΗΜΑΤΑ ΕΜΠΙΣΤΟΣΥΝΗΣ ΓΙΑ ΜΙΑ ΠΙΘΑΝΟΤΗΤΑ Η μέθοδος για τον προσδιορισμό ενός διαστήματος εμπιστοσύνης για την άγνωστη πιθανότητα =P(A) ενός ενδεχομένου A συνδέεται στενά με τον διωνυμικό έλεγχο. Ένα

Διαβάστε περισσότερα

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ

ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΤΕΙ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «ΕΛΕΓΧΟΣ ΥΠΟΘΕΣΕΩΝ» ΚΑΛΥΒΑ ΠΑΝΑΓΙΩΤΑ ΛΑΖΑΡΟΥ ΜΑΡΙΕΛΕΝΑ ΜΥΛΩΝΑ ΔΙΟΝΥΣΙΑ ΕΠΟΠΤΕΥΩΝ ΚΑΘΗΓΗΤΗΣ: ΔΡ. ΒΑΣΙΛΙΚΗ ΚΑΡΙΩΤΗ ΕΙΣΗΓΗΤΗΣ:

Διαβάστε περισσότερα

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική

Εξαμηνιαία Εργασία Β. Κανονική Κατανομή - Επαγωγική Στατιστική 1 ΕΞΑΜΗΝΙΑΙΑ Β ΤΟ ΦΩΤΟΒΟΛΤΑΙΚΟ ΠΑΡΚΟ ΑΣΠΑΙΤΕ Τμήμα Εκπαιδευτικών Ηλεκτρολογίας Εργαστήριο Συλλογής και Επεξεργασίας Δεδομένων Διδάσκοντες: Σπύρος Αδάμ, Λουκάς Μιχάλης, Παναγιώτης Καράμπελας Εξαμηνιαία

Διαβάστε περισσότερα

Κάποιες βασικές έννοιες στη μεθοδολογία της ψυχολογίας

Κάποιες βασικές έννοιες στη μεθοδολογία της ψυχολογίας Κάποιες βασικές έννοιες στη μεθοδολογία της ψυχολογίας 3 βασικές μέθοδοι έρευνας: ενδοσκόπηση παρατήρηση πείραμα (+ μοντέλλα) πειραματική ψυχολογία υποκείμενα/συμμετέχοντες πειραματική διαδικασία, έργο

Διαβάστε περισσότερα

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση

Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Κεφάλαιο 10 Εισαγωγή στην Εκτίμηση Εκεί που είμαστε Κεφάλαια 7 και 8: Οι διωνυμικές,κανονικές, εκθετικές κατανομές και κατανομές Poisson μας επιτρέπουν να κάνουμε διατυπώσεις πιθανοτήτων γύρω από το Χ

Διαβάστε περισσότερα

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21

Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ. (Power of a Test) ΚΕΦΑΛΑΙΟ 21 ΚΕΦΑΛΑΙΟ 21 Η ΙΣΧΥΣ ΕΝΟΣ ΕΛΕΓΧΟΥ (Power of a Test) Όπως είδαμε προηγουμένως, στον Στατιστικό Έλεγχο Υποθέσεων, ορίζουμε δύο είδη πιθανών λαθών (κινδύνων) που μπορεί να συμβούν όταν παίρνουμε αποφάσεις

Διαβάστε περισσότερα

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης

Κεφάλαιο 14. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης. Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Κεφάλαιο 14 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης 1 Ανάλυση ιακύµανσης Μονής Κατεύθυνσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη της επίδρασης µιας ανεξάρτητης µεταβλητής στην εξαρτηµένη Λογική παρόµοια

Διαβάστε περισσότερα

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ

Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ ΠΕΡΙΕΧΟΜΕΝΑ Πρόλογος 75 Κεφ. Ιο ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΘΕΩΡΙΑΣ ΠΙΘΑΝΟΤΗΤΩΝ 1.1. Τυχαία γεγονότα ή ενδεχόμενα 17 1.2. Πειράματα τύχης - Δειγματικός χώρος 18 1.3. Πράξεις με ενδεχόμενα 20 1.3.1. Ενδεχόμενα ασυμβίβαστα

Διαβάστε περισσότερα

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA)

Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) Κεφάλαιο 7 Ανάλυση Διακύμανσης με ένα Παράγοντα (One Way ANOVA) 7.1 Γενικότητες Η ANOVA περιλαμβάνει μία ομάδα στατιστικών μεθόδων κατάλληλων για την ανάλυση δεδομένων που προκύπτουν από πειραματικούς

Διαβάστε περισσότερα

Εισαγωγή στην Εκτιμητική

Εισαγωγή στην Εκτιμητική Εισαγωγή στην Εκτιμητική Πληθυσμός Εκτίμηση παραμέτρου πληθυσμού μ, σ 2, σ, p Δείγμα Υπολογισμός στατιστικού Ερώτηματα: Πόσο κοντά στην πραγματική τιμή της παραμέτρου του πληθυσμού βρίσκεται η εκτίμηση

Διαβάστε περισσότερα

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός.

Περιπτώσεις που η στατιστική συνάρτηση ελέγχου είναι η Ζ: 1. Η σ είναι γνωστή και ο πληθυσμός κανονικός. ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ: ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ (Πάτρας) Διεύθυνση: Μεγάλου Αλεξάνδρου 1, 263 34 ΠΑΤΡΑ Τηλ.: 2610 369051, Φαξ: 2610 396184, email: mitro@teipat.gr Καθ η γη

Διαβάστε περισσότερα

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test)

2.5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) .5 ΕΛΕΓΧΟΣ ΠΟΣΟΣΤΙΑΙΩΝ ΣΗΜΕΙΩΝ ΜΙΑΣ ΚΑΤΑΝΟΜΗΣ (The Quantile Test) Ο διωνυμικός έλεγχος μπορεί να χρησιμοποιηθεί για τον έλεγχο υποθέσεων αναφερομένων στα ποσοστιαία σημεία μίας τυχαίας μεταβλητής. Στην

Διαβάστε περισσότερα

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.

Μέρος Β /Στατιστική. Μέρος Β. Στατιστική. Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua. Μέρος Β /Στατιστική Μέρος Β Στατιστική Γεωπονικό Πανεπιστήμιο Αθηνών Εργαστήριο Μαθηματικών&Στατιστικής/Γ. Παπαδόπουλος (www.aua.gr/gpapadopoulos) Από τις Πιθανότητες στη Στατιστική Στα προηγούμενα, στο

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2013 στη Στατιστική Εργαστήριο Μαθηματικών & Στατιστικής ΣΕΙΡΑ Α Γραπτή Εξέταση Περιόδου Φεβρουαρίου 013 στη Στατιστική για τα Τμήματα Ε.Τ.Τ., Γ.Β., Α.Ο.Α. και Ε.Ζ.Π.&Υ. 08/0/013 1. [0] Η ποσότητα, έστω Χ, καλίου που περιέχεται

Διαβάστε περισσότερα

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις

Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Διαστήματα Εμπιστοσύνης και Στατιστικοί Έλεγχοι Υποθέσεων Προβλήματα και Ασκήσεις Για κάθε πρόβλημα που ακολουθεί, εκτός των ερωτημάτων που διατυπώνονται, να γίνουν (με τη βοήθεια κάποιου στατιστικού πακέτου)

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών

ΕΙΣΑΓΩΓΗ. Μη Παραµετρική Στατιστική, Κ. Πετρόπουλος. Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Τµήµα Μαθηµατικών, Πανεπιστήµιο Πατρών Εισαγωγή Στα προβλήµατα που έχουµε ασχοληθεί µέχρι τώρα, υποστηρίζουµε ότι έχουµε ένα δείγµα X = (X 1, X 2,...,X n ) F(,θ). π.χ. X 1, X 2,...,X n τ.δ. N(µ,σ 2 ),

Διαβάστε περισσότερα

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011

Γραπτή Εξέταση Περιόδου Φεβρουαρίου 2011 για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 25/02/2011 Εργαστήριο Μαθηματικών & Στατιστικής Γραπτή Εξέταση Περιόδου Φεβρουαρίου για τα Τμήματα Ε.Τ.Τ. και Γ.Β. στη Στατιστική 5//. [] Η ποσότητα, έστω Χ, ενός συντηρητικού που περιέχεται σε φιάλες αναψυκτικού

Διαβάστε περισσότερα

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή

Στατιστικοί Έλεγχοι Υποθέσεων. Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Στατιστικοί Έλεγχοι Υποθέσεων Σαλαντή Γεωργία Εργαστήριο Υγιεινής και Επιδημιολογίας Ιατρική Σχολή Τι θέλουμε να συγκρίνουμε; Δύο δείγματα Μέση αρτηριακή πίεση σε δύο ομάδες Πιθανότητα θανάτου με δύο διαφορετικά

Διαβάστε περισσότερα

Εφαρμοσμένη Στατιστική

Εφαρμοσμένη Στατιστική ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Εφαρμοσμένη Στατιστική Έλεγχοι υποθέσεων Διδάσκων: Επίκουρος Καθηγητής Κωνσταντίνος Μπλέκας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες

Διαβάστε περισσότερα

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο

Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Κεφάλαιο 15 Έλεγχοι χ-τετράγωνο Copyright 2009 Cengage Learning 15.1 Ένα Κοινό Θέμα Τι πρέπει να γίνει; Τύπος Δεδομένων; Πλήθος Κατηγοριών; Στατιστική Μέθοδος; Περιγραφή ενός πληθυσμού Ονομαστικά Δύο ή

Διαβάστε περισσότερα

Έλεγχος υποθέσεων Ι z-test & t-test

Έλεγχος υποθέσεων Ι z-test & t-test Έλεγχος υποθέσεων Ι z-test & t-test Μοντέλα στην Επιστήμη Τροφίμων 53Ε Τομέας Επιστήμης & Τεχνολογίας Τροφίμων Έλεγχος υποθέσεων Συνεχή δεδομένα z-test Student s test (t-test) Ανάλυση παραλλακτικότητας

Διαβάστε περισσότερα

Σχεδιασμός και Διεξαγωγή Πειραμάτων

Σχεδιασμός και Διεξαγωγή Πειραμάτων Σχεδιασμός και Διεξαγωγή Πειραμάτων Πρώτο στάδιο: λειτουργικοί ορισμοί της ανεξάρτητης και της εξαρτημένης μεταβλητής Επιλογή της ανεξάρτητης μεταβλητής Επιλέγουμε μια ανεξάρτητη μεταβλητή (ΑΜ), την οποία

Διαβάστε περισσότερα

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη

Εισαγωγή στην Κανονική Κατανομή. Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Εισαγωγή στην Κανονική Κατανομή Παιδαγωγικό Τμήμα ημοτικής Εκπαίδευσης ημοκρίτειο Πανεπιστήμιο Θράκης Αλεξανδρούπολη Ένα πρόβλημα Πρόβλημα: Ένας μαθητής είχε επίδοση στο τεστ Μαθηματικών 18 και στο τεστ

Διαβάστε περισσότερα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα

Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα ΚΕΦΑΛΑΙΟ ΕΚΤΟ Έλεγχος για τις παραμέτρους θέσης δύο πληθυσμών με εξαρτημένα δείγματα Στο κεφάλαιο αυτό θα ασχοληθούμε με τον έλεγχο της υπόθεσης της ισότητα δύο μέσων τιμών με εξαρτημένα δείγματα. Εξαρτημένα

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 10. Εισαγωγή στην εκτιμητική ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

3.4.1 Ο Συντελεστής ρ του Spearman

3.4.1 Ο Συντελεστής ρ του Spearman 3.4. Ο Συντελεστής ρ του Spearma Έστω (, ), (, ),..., (, ) ένα δείγμα παρατηρήσεων πάνω στο τυχαίο διάνυσμα (, ). Έστω ( ) ο βαθμός ή η τάξη μεγέθους της μεταβλητής όταν αυτή συγκρίνεται με τις άλλες Χ

Διαβάστε περισσότερα

Συσχέτιση μεταξύ δύο συνόλων δεδομένων

Συσχέτιση μεταξύ δύο συνόλων δεδομένων Διαγράμματα διασποράς (scattergrams) Συσχέτιση μεταξύ δύο συνόλων δεδομένων Η οπτική απεικόνιση δύο συνόλων δεδομένων μπορεί να αποκαλύψει με παραστατικό τρόπο πιθανές τάσεις και μεταξύ τους συσχετίσεις,

Διαβάστε περισσότερα

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2.

Κεφάλαιο 17. Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. Κεφάλαιο 17 Σύγκριση συχνοτήτων κατηγοριών: Το στατιστικό κριτήριο χ 2 17.1. ΠΡΟΫΠΟΘΕΣΕΙΣ ΓΙΑ ΤΗ ΧΡΗΣΗ ΤΟΥ ΚΡΙΤΗΡΙΟΥ 17.2. ΕΙΣΑΓΩΓΗ 17.3. ΤΟ χ 2 ΓΙΑ ΜΙΑ ΠΟΙΟΤΙΚΗ ΜΕΤΑΒΛΗΤΗ 17.3.1. Ένα ερευνητικό παράδειγμα

Διαβάστε περισσότερα

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail:

Μπεττίνα Χάιδιτς. Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: Μπεττίνα Χάιδιτς Επίκουρη Καθηγήτρια Υγιεινής Ιατρικής Στατιστικής e mail: haidich@med.auth.gr Υπολογισμός μεγέθους δείγματος Πιο πολλές επιδημιολογικές μελέτες έχουν ως στόχο να εκτιμηθεί κάποιο χαρακτηριστικό

Διαβάστε περισσότερα

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος

1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος Έλεγχοι Υποθέσεων 1. Εισαγωγή Ο έλεγχος υποθέσεων αναφέρεται στις ιδιότητες µιας άγνωστης παραµέτρους του πληθυσµού: Ο κατηγορούµενος είναι αθώος µ = 100 Κάθε υπόθεση συνοδεύεται από µια εναλλακτική: Ο

Διαβάστε περισσότερα

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ

ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ ΠΕΡΙΓΡΑΦΙΚΗ και ΕΠΑΓΩΓΙΚΗ ΣΤΑΤΙΣΤΙΚΗ Εισήγηση 6Α: Ανάλυση Συσχέτισης Διδάσκων: Δαφέρμος Βασίλειος ΤΜΗΜΑ ΠΟΛΙΤΙΚΗΣ ΕΠΙΣΤΗΜΗΣ ΣΧΟΛΗΣ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ Άδειες Χρήσης

Διαβάστε περισσότερα

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ.

Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Μάθημα: Στατιστική ανάλυση δεδομένων με χρήση Η/Υ (του 8 ου Εξαμήνου Σπουδών του Τμήματος Βιοτεχνολογίας) Διδάσκων: Γιώργος Κ. Παπαδόπουλος 3. Ανάλυση Διακύμανσης Σύντομη ανασκόπηση βασικών εννοιών, προτάσεων

Διαβάστε περισσότερα

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ

ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ. Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ ΔΗΜΟΚΡΙΤΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΡΑΚΗΣ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ Μεταπτυχιακό πρόγραμμα ΑΣΚΗΣΗ ΚΑΙ ΠΟΙΟΤΗΤΑ ΖΩΗΣ ΠΛΗΡΟΦΟΡΙΑΚΟ ΕΝΤΥΠΟ ΜΑΘΗΜΑΤΟΣ 1. ΤΙΤΛΟΣ ΜΑΘΗΜΑΤΟΣ: Θεωρία και Εφαρμογές Επεξεργασίας Πληροφορίας 2.

Διαβάστε περισσότερα

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ

ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ Ε. ΞΕΚΑΛΑΚΗ Καθηγήτριας του Τμήματος Στατιστικής του Οικονομικού Πανεπιστημίου Αθηνών ΤΕΧΝΙΚΕΣ ΔΕΙΓΜΑΤΟΛΗΨΙΑΣ B ΕΚΔΟΣΗ ΑΘΗΝΑ 2004 ΠΡΟΛΟΓΟΣ Η συλλογή και επεξεργασία δεδομένων από πεπερασμένους πληθυσμούς

Διαβάστε περισσότερα

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών

Ο είκτης Συσχέτισης. Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών Κεφάλαιο 8 Ο είκτης Συσχέτισης 1 Η έννοια της Αλληλεξάρτησης Υπάρχουν πολλές οι έρευνες στις οποίες µας ενδιαφέρει να µελετήσουµε αν υπάρχει ΑΛΛΗΛΕΞΑΡΤΗΣΗ µεταξύ δύο µεταβλητών ηλαδή, µας ενδιαφέρει να

Διαβάστε περισσότερα

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή

4.3.3 Ο Έλεγχος των Shapiro-Wilk για την Κανονική Κατανομή 4.3.3 Ο Έλεγχος των Shapro-Wlk για την Κανονική Κατανομή Ένας άλλος πολύ γνωστός έλεγχος καλής προσαρμογής για την κανονική κατανομή, ο οποίος μπορεί να χρησιμοποιηθεί στην θέση του ελέγχου Lllefors, είναι

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ

ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ 2. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ ΚΕΦΑΛΑΙΟ II ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΕΝΟΤΗΤΕΣ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΔΥΟ ΚΡΙΤΗΡΙΑ 1. ΑΝΑΛΥΣΗ ΔΙΑΚΥΜΑΝΣΗΣ ΚΑΤΑ ΕΝΑ ΚΡΙΤΗΡΙΟ (One-Way Analyss of Varance) Η ανάλυση

Διαβάστε περισσότερα

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων

Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Ποιοτική και ποσοτική ανάλυση ιατρικών δεδομένων Κωνσταντίνος Τζιόμαλος Επίκουρος Καθηγητής Παθολογίας ΑΠΘ Α Προπαιδευτική Παθολογική Κλινική, Νοσοκομείο ΑΧΕΠΑ 1 ο βήμα : καταγραφή δεδομένων Το πιο πρακτικό

Διαβάστε περισσότερα

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων

Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Επιμέλεια Καραβλίδης Αλέξανδρος. Πίνακας περιεχομένων Γ Γυμνασίου: Οδηγίες Γραπτής Εργασίας και Σεμιναρίων. Πίνακας περιεχομένων Τίτλος της έρευνας (title)... 2 Περιγραφή του προβλήματος (Statement of the problem)... 2 Περιγραφή του σκοπού της έρευνας (statement

Διαβάστε περισσότερα

Ανάλυση Διασποράς Προβλήματα και Ασκήσεις

Ανάλυση Διασποράς Προβλήματα και Ασκήσεις Ανάλυση Διασποράς Προβλήματα και Ασκήσεις 1. Ένας ερευνητής προκειμένου να συγκρίνει τρία σιτηρέσια εκτροφής κοτόπουλων (Σ1, Σ2 και Σ3, αντίστοιχα), σχεδίασε και εκτέλεσε το εξής πείραμα. Επέλεξε 15 νεογέννητα

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ. ΜΑΘΗΜΑ 4ο ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΟΙΚΟΝΟΜΙΚΩΝ ΚΑΙ ΚΟΙΝΩΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΜΑΘΗΜΑ 4ο Διαδικασία των συντελεστών αυτοσυσχέτισης Ονομάζουμε συνάρτηση αυτοσυσχέτισης (autocorrelation function) και συμβολίζεται με τα γράμματα

Διαβάστε περισσότερα

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής

Περιεχόμενα. Γιατί Ένας Manager Πρέπει να Ξέρει Στατιστική. Περιεχόμενα. Η Ανάπτυξη και Εξέλιξη της Σύγχρονης Στατιστικής Chapter 1 Student Lecture Notes 1-1 Ανάλυση Δεδομένων και Στατιστική για Διοικήση Επιχειρήσεων [Basic Business Statistics (8 th Edition)] Κεφάλαιο 1 Εισαγωγή και Συλλογή Δεδομένων Περιεχόμενα Γιατί ένας

Διαβάστε περισσότερα

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ

ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ ΚΥΚΛΟΣ ΣΤΑΤΙΣΤΙΚΗΣ ΕΡΕΥΝΑΣ Βασίλης Καραγιάννης Η παρέμβαση πραγματοποιήθηκε στα τμήματα Β2 και Γ2 του 41 ου Γυμνασίου Αθήνας και διήρκησε τρεις διδακτικές ώρες για κάθε τμήμα. Αρχικά οι μαθητές συνέλλεξαν

Διαβάστε περισσότερα

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε.

Χημική Τεχνολογία. Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων. Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ Ανώτατο Εκπαιδευτικό Ίδρυμα Πειραιά Τεχνολογικού Τομέα Χημική Τεχνολογία Ενότητα 1: Στατιστική Επεξεργασία Μετρήσεων Ευάγγελος Φουντουκίδης Τμήμα Μηχανολόγων Μηχανικών Τ.Ε. Άδειες Χρήσης

Διαβάστε περισσότερα

9. Παλινδρόμηση και Συσχέτιση

9. Παλινδρόμηση και Συσχέτιση 9. Παλινδρόμηση και Συσχέτιση Παλινδρόμηση και Συσχέτιση Υπάρχει σχέση ανάμεσα σε δύο ή περισσότερες μεταβλητές; Αν ναι, ποια είναι αυτή η σχέση; Πως μπορεί αυτή η σχέση να χρησιμοποιηθεί για να προβλέψουμε

Διαβάστε περισσότερα

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER

SOURCE DF SUM OF SQUARES MEAN SQUARE F VALUE PR F MODEL (a) 2.882 E04 (e) (g) (h) ERROR (b) (d) (f) TOTAL (c) 4.063 E04 R SQUARE (i) PARAMETER ΑΣΚΗΣΕΙΣ. Θεωρήστε το παράδειγμα που αναφέρεται στη συσχέτιση του βαθμού ικανοποίησης των εργαζομένων σε ένα εργαστήριο σε σχέση με τις οκτώ μεταβλητές που ορίστηκαν εκεί. (Χ =ηλικία, Χ =φύλο, Χ =εβδομαδιαίος

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29

ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 3 ΠΕΡΙΓΡΑΦΙΚΗ ΣΤΑΤΙΣΤΙΚΗ: Η ΜΕΣΗ ΤΙΜΗ ΚΑΙ Η ΔΙΑΜΕΣΟΣ... 29 ΠΕΡΙΕΧΟΜΕΝΑ 1 ΕΙΣΑΓΩΓΗ... 1 Μεταβλητές...5 Πληθυσμός, δείγμα...7 Το ευρύτερο γραμμικό μοντέλο...8 Αναφορές στη βιβλιογραφία... 11 2 ΤΟ PASW ΜΕ ΜΙΑ ΜΑΤΙΑ... 13 Περίληψη... 13 Εισαγωγή... 13 Με μια ματιά...

Διαβάστε περισσότερα

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30

Ιωάννης Ντζούφρας. Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα. (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα δείγματα. Ανάλυση εδομένων ιαφάνεια 4-30 Ιωάννης Ντζούφρας Ενότητα 4 Συγκρίσεις για 1 & 2 είγματα (II) Έλεγχοι υποθέσεων για 2 εξαρτημένα Ανάλυση εδομένων ιαφάνεια 4-30 Έστωότιέχουμεμετρήσειςγιαταίδιαάτομα Σε 2 παρόμοιες μεταβλητές (π.χ. Με ίδιες

Διαβάστε περισσότερα

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού

ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ. Κεφάλαιο 12. Εκτίμηση των παραμέτρων ενός πληθυσμού ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΔΥΤΙΚΗΣ ΕΛΛΑΔΑΣ ΤΜΗΜΑ ΔΙΟΙΚΗΣΗΣ ΕΠΙΧΕΙΡΗΣΕΩΝ ΠΑΤΡΑΣ Εργαστήριο Λήψης Αποφάσεων & Επιχειρησιακού Προγραμματισμού Καθηγητής Ι. Μητρόπουλος ΣΤΑΤΙΣΤΙΚΗ ΕΠΙΧΕΙΡΗΣΕΩΝ ΕΙΔΙΚΑ ΘΕΜΑΤΑ

Διαβάστε περισσότερα

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική

Κεφάλαιο 15. Παραγοντική ανάλυση διακύµανσης. Παραγοντική Κεφάλαιο 15 Παραγοντική ανάλυση διακύµανσης 1 Παραγοντική ανάλυση διακύµανσης Παραµετρικό στατιστικό κριτήριο για τη µελέτη των επιδράσεων περισσότερων από µια ανεξάρτητων µεταβλητών στην εξαρτηµένη καθώς

Διαβάστε περισσότερα