Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download ""

Transcript

1 τ.1 ο Joan Mirό : The Lark s Wing, Encircled With Golden Blue, Rejoins the Heart of the Poppy Sleeping on a Diamond Studded Meadow. Λύκειο Εκϖαιδευτηρίου Το Παγκρήτιον Άγιος Ιωάννης Ηράκλειο Κρήτης 1

2 Περιεχόµενα 1. Χαιρετισµός..σελ.4 Κοϖιδάκης Νικόλαος 2. Εισαγωγή. σελ. 5 Παυλάκος Περικλής 3. Περί χρόνου και αλλαγής καταστάσεων. σελ. 7 Αλεξανδράκη Χρυσάνθη 4. Το Πυθαγόρειο Θεώρηµα. σελ.11 Σφακιανάκης Χρύσανθος 5. Τα Στοιχεία του Ευκλείδη....σελ.13 Γοργοράϖτης Λευτέρης 6. Τα τρία «άλυτα» ϖροβλήµατα της Ελληνικής αρχαιότητας....σελ.19 Καστρινάκης Γιώργος, Μϖαρελιέρ Νικόλας, Καρακώστας Θοδωρής, Κληρονόµου Μαριάννα 7. Descartes Rene...σελ.27 Μϖαρελιέρ Νικόλας 8. Bernoulli...σελ.32 Αλαµϖούντι Αλέξανδρος 9. Λογαριθµικοί είκτες Ασφάλειας...σελ.34 Σαµαριτάκη Μαριλένα 10.Μαθηµατικά ρώµενα και Σεµινάρια Μαθηµατικών στο Παγκρήτιο...σελ.36 Παυλάκος Περικλής + Μαθηµατικά Μια εϖιστήµη χιλιάδων ετών. (cd) Καρακώστας Θοδωρής, Καστρινάκης Γιώργος Υδατογράφηµα : Hilbert s seaside resort hotel 2

3 ΑΠΛΟΤΗΤΑ ΤΩΝ ΜΑΘΗΜΑΤΙΚΩΝ. Υϖάρχει µια ϖολύ γενικευµένη άϖοψη σύµφωνα µε την οϖοία τα µαθηµατικά είναι η ϖιο δύσκολη εϖιστήµη, τη στιγµή ϖου στην ϖραγµατικότητα είναι η ϖιο αϖλή. Η αιτία αυτού του ϖαράδοξου έγκειται στο γεγονός ότι, ακριβώς εξαιτίας της αϖλότητάς τους, οι λανθασµένοι µαθηµατικοί συλλογισµοί γίνονται έκδηλοι. Σε ένα ϖολύϖλοκο ϖολιτικό ή καλλιτεχνικό ζήτηµα, υϖάρχουν τόσοι ϖαράγοντες ϖου διακυβεύονται και άλλοι τόσοι άγνωστοι ή µη εµφανείς, ϖου είναι ϖολύ δύσκολο να διακρίνει κανείς το αληθινό αϖό το ψεύτικο. Το αϖοτέλεσµα είναι ότι ο κάθε ανόητος είναι σε θέση να συζητάει για ϖολιτική και για τέχνη και στ αλήθεια το κάνει-, ενώ κοιτάζει τα µαθηµατικά αϖό αϖόσταση ασφαλείας. Υδατογράφηµα: Ο Αρχιµήδης χειρίζεται τον διαβήτη. Ernesto Sabato : Άνθρωϖοι και Γρανάζια 3

4 Χαιρετισµός Τα Μαθηµατικά συνυφασµένα µε τη σκέψη, τη γλώσσα και τη ζωή διαφοροποιούν τον άνθρωπο µέσα στο ζωικό κόσµο. Συνεχής παράγων πολιτισµού και προόδου τροφοδοτούν τη φλόγα που αναπτύσσει και ανανεώνει τον τεχνικό πολιτισµό. Συνυφασµένα µε τη φιλοσοφία άνοιξαν ορίζοντες και έδωσαν φως στην ανθρώπινη αντίληψη για να ευρύνει τα πεδία έρευνας και προόδου. Στο Παγκρήτιο Εκπαιδευτήριο από την πρώτη στιγµή δώσαµε προτεραιότητα στα Μαθηµατικά, όχι µόνο στον τοµέα του µαθήµατος αλλά στην ιστορική συµβολή τους, στους πολιτισµούς των λαών. Προβληµατιστήκαµε για το φαινόµενο του φόβου των παιδιών στο µάθηµα των Μαθηµατικών και εφαρµόσαµε µεθόδους που θα βοηθήσουν το µαθητή να ξεπεράσει τους δισταγµούς του και να οικειοποιηθεί τη Μαθηµατική σκέψη και πράξη. Είναι λοιπόν φυσικό να χαιρετίσουµε µε ιδιαίτερο ενδιαφέρον την προσπάθεια του καθηγητή Περικλή Παυλάκου και των µαθητών µας που δούλεψαν δηµιουργικά για µια προσέγγιση ελεύθερη πέρα από τα καθιερωµένα στη δουλειά των Μαθηµατικών. Ο λόγος δεν είναι µόνο για τα µαθηµατικά τετράδια που έχετε στα χέρια σας. Η αίθουσα Μαθηµατικών στο Λύκειό µας, οι επιτυχίες στους διαγωνισµούς της Μαθηµατικής Εταιρίας, οι εργασίες των µαθητών, οι οµιλίες, οι προβολές και τα Σεµινάρια Μαθηµατικών στο Λύκειό µας αποτελούν βήµατα ουσιαστικά στα δηµιουργικά ανοίγµατα του σχολείου µας και σ αυτόν τον τοµέα. Ν. Γ. Κοϖιδάκης Γενικός ιευθυντής του Εκϖαιδευτηρίου Το Παγκρήτιον 4

5 Εισαγωγή Το τεύχος που κρατάτε στα χέρια σας είναι µια µερική απεικόνιση των γεγονότων της µαθηµατικής ζωής του Λυκείου µας φέτος (µιάς και βιώµατα όπως η ευφορία του µαθητή όταν λύνει ένα µαθηµατικό πρόβληµα ή όπως η καταβαλλόµενη προσπάθειά του - για να αναφέρουµε δύο απλούστατα παραδείγµατα - δεν αποδίδονται πλήρως). Όµως η γέννηση αυτού του τεύχους µπορεί να θεωρηθεί και µία αναγκαιότητα αφού για άλλη µια χρονιά υπήρξαν µαθηµατικά συµβάντα όπως : διαγωνισµοί, εργασίες, οµιλίες, προβολές, Είναι νοµίζω καιρός µέσα στον κυκεώνα πληροφοριών - αµφισβητήσιµης ποιότητας - που µας περικυκλώνει, η καταγραφή των δηµιουργικών στιγµών της µαθηµατικής µας ζωής να λειτουργήσει ως ένα σηµείο αναφοράς για όλους όσους αγαπούν τα µαθηµατικά. Αν και η ύλη των µαθηµατικών στο λύκειο είναι µεγάλου εύρους και βάθους, επιλέχθηκαν παράλληλα θέµατά της, καθώς και θέµατα που επιτρέπουν την συνάφειά της. Παρουσιάζονται λοιπόν κοµµάτια της ιστορίας των µαθηµατικών (µε µια µικρή έµφαση στην ελληνιστική εποχή), δύο βιογραφίες, µία πρόταση για την χρήση των λογαρίθµων, µια Μαφάλντα του Quino 5

6 νύξη για τα παράδοξα και το άπειρο καθώς και µια µικρή ανασκόπηση των µαθηµατικών γεγονότων στο λύκειό µας την σχολική χρονιά Υπάρχει επίσης ένα cd µε µια εργασία (σε Powerpoint) για τα µαθηµατικά. Σήµερα, ίσως περισσότερο από άλλες φορές, τα µαθηµατικά διαπερνούν και αγκαλιάζουν κάθε γεγονός της καθηµερινής ζωής (νοητικά αλλά και υλικά) και για αυτό τα µαθηµατικά τετράδια δεν περιορίζονται σε µια συγκεκριµένη µορφή ή δοµή (προς το παρόν) αλλά φιλοδοξούν να µετασχηµατιστούν σε µια κατά το εφικτόν πιστή αντανάκλαση της δηµιουργικής αγάπης των µαθητών και µαθητριών µας για την µαθηµατική επιστήµη. Έτσι το 1 ο τεύχος αφιερώνεται στους µαθητές και µαθήτριες της φετινής χρονιάς, που µε οποιοδήποτε τρόπο συνέβαλλαν στην δηµιουργία του. Μαφάλντα του Quino Παυλάκος Περικλής 6

7 Περί χρόνου και αλλαγής καταστάσεων Αυτό είναι ένα κείµενο που µας µεταφέρει µαθηµατικές γνώσεις µέσω µιας ιστορίας µε πρωταγωνιστές ένα ζευγάρι, Άνναµπελ -Αλέξανδρος και έναν Μάγο. Ο τελευταίος διαπίστωσε ότι το ζευγάρι είχε µια φιλοσοφική διάθεση. Έτσι αρχίζει τον µονόλογό του αναφέροντας ότι µερικοί µυστικιστές έχουν διατυπώσει την άποψη ότι ο χρόνος δεν είναι πραγµατικός. Με αυτή την φράση τράβηξε το ενδιαφέρον του ζευγαριού. Συνεχίζει ο Μάγος διαβάζοντας ένα απόσπασµα που ανακάλυψε από τον Κινέζο φιλόσοφο Τσουάνγκ Τσου. Είχε κύριο θέµα την γέννηση της αρχής και στην συνέχεια για τον χρόνο. Το ζευγάρι παραξενεύτηκε. Παρόλο αυτά, αυτός συνέχιζε λέγοντας ότι του θύµιζε την συνταγή του Smullyan για την αθανασία µε σκοπό να δει τις γνώσεις που έχουν και να ακούσει τις απόψεις τους. Εφόσον δεν την είχαν ακουστά τους είπε ότι είναι πολύ απλή και ότι χρειάζεται να κάνουν δυο πράγµατα: 1)Να λες πάντα την αλήθεια 2)Nα λες θα επαναλάβεις την πρόταση αυτή αύριο. Έτσι ήθελε να αποδείξει ότι και αύριο θα είσαι ειλικρινής και έτσι θα την επαναλαµβάνεις κάθε µέρα. ιατυπωθήκαν διαφορετικές απόψεις. Η Άνναµπελ ισχυρίζεται πως πρόκειται για ένα τέλειο σχέδιο και το πιο εφαρµόσιµο στην πράξη σχέδιο του κόσµου. Αντίθετα ο Αλέξανδρος πρόσθεσε ότι του θύµισε το σχέδιο του Λευκού Ιππότη για την υπερπήδηση της αυλόπορτας. Ο Μάγος απόρησε διότι δεν γνώριζε το σχέδιο αυτό γιατί οι γνώσεις του ήταν µόνο γύρω από την φιλοσοφία. Παρουσίασε το σχέδιο αυτό µέσα από µια ιστορία όπου ένας άνθρωπος αναζητούσε την αθανασία και πήγε σε έναν σοφό της ανατολής. Όµως όταν ο ενδιαφερόµενος άκουσε τον σοφό ρώτησε: Πως µπορώ να ισχυριστώ ότι θα επαναλάβω την πρόταση αυτή όταν δεν γνωρίζω αν θα ζω αύριο? Του απάντησε πως θέλει µια πρακτική λύση ενώ αυτός ασχολείται µονό µε την θεωρία. Έπειτα θυµήθηκε όταν ήταν µικρός (ο Μάγος) ο θεός του παρουσίασε µια απόδειξη για το ότι είναι λογικά αδύνατο να πεθάνει κανείς. Το ζευγάρι ζήτησε να την ακούσει.. Ξεκινάει µε µια 7

8 ερώτηση: Αν κάποιος πεθάνει πότε πεθαίνει? Και αν πεθάνει κανείς είναι νεκρός η ζωντανός? Απαντάει µε την φιλοσοφική άποψη πως δεν µπορεί να πεθάνει όσο βρίσκεται στην ζωή διότι τότε θα ήταν ταυτόχρονα ζωντανός και νεκρός που είναι αδύνατο. Η δήλωση αυτή δηµιούργησε διάφορες απόψεις. Παρόλο αυτά καταλήγει στην τελική ερώτηση : Τι στιγµή ακριβώς που πεθαίνει ο άνθρωπος είναι ζωντανός η νεκρός? Μετά από ώρας σκέψης η Άνναµπελ ρώτησε αν όλα αυτά έχουν σχέση µε τα παράδοξα του Ζήνωνα. Με ενθουσιασµό απάντησε ναι ο Μάγος και τότε ο Αλέξανδρος ζήτησε να του τα πει. Αρχίζει λοιπόν..... ΠΡΩΤΟ ΠΑΡΑ ΟΞΟ: Παίρνουµε ένα σώµα που κινείται από το σηµείο Α στο σηµείο Β. Όµως πριν φτάσει στο Β πρέπει να περάσει από το µέσο της ΑΒ το Α 1. Η µετάβαση αυτή λέγεται πρώτο βήµα. Όταν ολοκληρωθεί το πρώτο βήµα πρέπει να κινηθεί από το Α 1 στο Α 2, όπου Α 2 το µέσο της Α 1 Β. Η µετάβαση αυτή λέγεται δεύτερο βήµα. Έτσι στην συνεχεία θα κινηθεί από το Α 2 στο Α 3 που είναι το µέσο της Α 2 Β. Αυτό ονοµάζεται το τρίτο βήµα. Α Α 1 Α 2 Α 3 Β Το σώµα πρέπει να πραγµατοποιήσει άπειρα βήµατα για να φτάσει στο Β και αφού είναι αδύνατο να συµβεί σε ένα πεπερασµένο χρονικό διάστηµα δεν θα µπορεί να πάει από το Α στο Β. Ενώ πριν το σώµα µεταβεί από το Α στο Β πρέπει να περάσει το µέσο Β 1. Αλλά πριν φτάσει πρέπει να περάσει από το Β 3 µέσο του ΑΒ 2. Άρα το σώµα δεν θα κινηθεί. Α Β 3 Β 2 Β 1 Β ΕΥΤΕΡΟ ΠΑΡΑ ΟΞΟ : Αναφέρεται στον Αχιλλέα που προσπαθεί να ξεπεράσει µια χελώνα. ηλαδή οποτεδήποτε ο Αχιλλέας φτάνει στο σηµείο που βρισκόταν η χελώνα η τελευταία 8

9 δεν βρίσκεται πλέον εκεί. Έτσι δεν θα ξεπεράσει ποτέ την χελώνα. ( ο Αχιλλέας άρχισε όταν βρισκόταν 100 µετρά πιο πίσω) ΤΡΙΤΟ ΠΑΡΑ ΟΞΟ: Το οποίο είναι και το πιο εξεζητηµένο και αναφέρεται σε ένα ιπτάµενο βέλος λέγοντας πως είναι αδύνατο να κινείται το βέλος κατά την διάρκεια κάποιας στιγµής διότι έχει διάρκεια µηδέν. Έτσι το βέλος δεν µπορεί να βρίσκεται σε δυο διαφορετικά σηµεία την ιδία στιγµή. Συνεπώς σε κάθε στιγµή το βέλος είναι ακίνητο άρα παραµένει ακίνητο στο συγκεκριµένο χρονικό διάστηµα. ικαιολογηµένα η Άνναµπελ δεν καταλαβαίνει και ο Μάγος προσπαθεί να την διευκολύνει. Έπειτα ο Αλέξανδρος κάνει µια πρωτότυπη ερώτηση : Ποια είναι τα σοφίσµατα? Απαντάει λοιπόν ο Μάγος και εξηγεί ότι όταν κάτι είναι λάθος πρέπει να υπάρχει και ένα εσφαλµένο βήµα. Έτσι όταν το συµπέρασµα είναι λανθασµένο και όλα τα προηγούµενα σωστά τότε το πρώτο λανθασµένο βήµα είναι το ίδιο το συµπέρασµα. Συνέχισε µε την αναφορά του στον Ζήνωνα. Ο Ζήνων υποστήριξε ότι κάποιος δεν µπορεί να εκτελέσει άπειρο αριθµό βηµάτων σε ένα ορισµένο χρονικό διάστηµα, υπόθεση που είναι αδικαιολόγητη. Παράδειγµα στα µαθηµατικά: 1+ ½ + ¼ + 1/8 + 1/16 + 1/ /2 n +....= 2 Η απειροσειρά αυτή ονοµάζεται συγκλίνουσα. Που έδωσε το συµπέρασµα ότι το σώµα θα φτάσει στο Β. 1+ ½ + 1/3 + ¼ + 1/ /n+.... Η απειροσειρά αυτή ονοµάζεται αποκλίνουσα (ξεπερνά οποιονδήποτε αριθµό) Όµως προσπαθεί πάλι να εξηγήσει ο Μάγος ότι για το τρίτο παράδοξο χρειάζονται αρκετές µαθηµατικές γνώσεις για την ανάλυση του. Κάτι το οποίο δεν παρέχουν. Η Άνναµπελ περιµένοντας την σειρά της είπε την γνώµη της παρόλο που συνέχιζε να µην καταλαβαίνει. Ανέφερε (ο Μάγος) τον Νεύτωνα και τον Leibniz που όρισαν µε επακριβή τρόπο τι σηµαίνει για ένα σώµα να βρίσκεται σε κίνηση σε κάποια χρονική στιγµή και τι εννοούµε λέγοντας ότι η ταχύτητα του σώµατος είναι η τάδε... η δείνα... (εκείνη την στιγµή) Υστέρα πήρε τον 9

10 λόγο ο Αλέξανδρος ρωτώντας για τον συλλογισµό του θείου του για την αδυνατότητα της κίνησης. Απάντησε υποστηρίζοντας ότι αν γενικευτεί µπορεί να αποδείξει ότι τίποτα δεν µεταβάλλεται. Μολονότι είχε ολοκληρώσει έθεσε και άλλο ένα ερώτηµα σε σχέση µε τον χρόνο καταλήγοντας να ρωτήσει το ζευγάρι αν θα φύγει για κάποιο διάστηµα. Ναι, αποκριθήκαν, αλλά συνεπαρµένοι µε όσα άκουσαν και διψασµένοι και για άλλες γνώσεις αποφάσισαν να µετακοµίσουν σε αυτό το µέρος. Το επόµενο ζήτηµα θα είναι το ταξίδι στο άπειρο ΤΕΛΟΣ Αλεξανδράκη Χρυσάνθη 10

11 «ΤΟ ΠΥΘΑΓΟΡΕΙΟ ΘΕΩΡΗΜΑ» Το πυθαγόρειο θεώρηµα αποτελεί ένα πολύ σηµαντικό θεώρηµα. Η ύπαρξη του θεωρήµατος µας δίνει την ευκαιρία να συγκρίνουµε τα µαθηµατικά στυλ και να δούµε τι απασχολούσε µερικούς από τους µαθηµατικούς των διαφόρων αρχαίων πολιτισµών. Ο Πυθαγόρας έζησε το π.χ. περίπου. Περιόδευσε στην Μ. Ασία, Αίγυπτο, Βαβυλωνία και τελικά εγκαταστάθηκε στο νότιο τµήµα της Ιταλικής Χερσονήσου. Ο Πυθαγόρας άνοιξε εκεί σχολή, όπου κήρυττε τις ιδέες του, απευθυνόµενος στις ανώτερες κοινωνικές τάξεις. Μυστικιστικό σύµβολο της Πυθαγόρειας τάξης, όπου εκεί απευθυνόταν στους µαθητές µε ιδιαίτερες ικανότητες, ήταν η πεντάλφα. Οι Πυθαγόρειοι πίστευαν ότι το θεµέλιο όλων ήταν ο αριθµός. Ο αριθµός είναι το θεµέλιο κάθε φυσικής επιστήµης. Οι αριθµοί είχαν και φιλοσοφικό και αποκαλυπτικό ρόλο. Σε αυτούς αποδίδεται η αριθµητική ανάλυση της µουσικής και εδώ η τετρακτύς συµβόλιζε τις βασικές αναλογίες ανάµεσα στις ώρες, αρχίζοντας από τον λόγο 1:2 για την οκτάβα. Η όλη έννοια της αρµονίας των σφαιρών προέρχεται από αυτήν την αριθµολογία της µουσικής η οποία έµελλε να επηρεάσει το πλανητικό µοντέλο του Κέπλερ µετά από χρόνια. Το Πυθαγόρειο Θεώρηµα, το γνωστό µας από το σχολείο : για ένα ορθογώνιο τρίγωνο, το άθροισµα των τετραγώνων των 2 µικρών πλευρών ισούται µε το τετράγωνο της µακρύτερης πλευράς. Είναι δυνατόν να σχηµατιστούν τέτοια τρίγωνα µε ακέραιες πλευρές. Το πιο φηµισµένο είναι το τρίγωνο µε πλευρές µήκους 3, 4 και 5 υπάρχει άπειρος αριθµός τέτοιων πυθαγορείων τριάδων όπως ονοµάζονται π.χ. οι 5, 12, 13 και 7, 24, 25. Ο Πυθαγόρας έµαθε την πρόταση από τους Αιγυπτίους, όµως την απέδειξε κατά την παράδοση. Το Πυθαγόρειο Θεώρηµα αποτελεί το πρώτο µεγάλο θεώρηµα της γεωµετρίας. Πάνω στο θεώρηµα βασίστηκαν ενδιαφέρουσες παρατηρήσεις. 11

12 Οι Πυθαγόρειοι και το Πυθαγόρειο Θεώρηµα θα αποτελούν το σηµείο αναφοράς γιατί είναι µια επιστήµη και ολόκληρη η επιστήµη τους είναι τα µαθηµατικά και η θεωρία των αριθµών, «η αριθµητική» µε τη γεωµετρία. Σφακιανάκης Χρύσανθος Ευκλείδεια Αϖόδειξη του Πυθαγορείου Θεωρήµατος 12

13 Ευκλέιδης ϖερ. 300 ϖ.χ. Εισαγωγή: Τα «Στοιχεία του Ευκλείδη» είναι ένα αϖό τα σηµαντικότερα και διαχρονικότερα εϖιστηµονικά έργα όλων των εϖοχών. Για 2300 χρόνια χρησιµεύει ως το σταθερό κείµενο για τη διδασκαλία των βασικών Μαθηµατικών κυρίως της Γεωµετρίας. Αξιοσηµείωτο είναι το γεγονός ότι κανένα άλλο έργο εϖιστηµονικό ή µη δεν έχει αϖασχολήσει ϖερισσότερο τους εκδότες αϖό τα «Στοιχεία». Έχει µεταφραστεί σε ϖάρα ϖολλές γλώσσες και οι εκδόσεις του υϖολογίζεται ότι υϖερβαίνουν τις 2000(!), ο αριθµός των εκδόσεων του συναγωνίζεται τη «Θεία Κωµωδία» του άντη και µόλις υϖολείϖεται αυτών της Αγίας Γραφής. Το Περιεχόµενο των Στοιχείων: Το ϖεριεχόµενο των «Στοιχείων του Ευκλείδη» δεν είναι έργο µόνο του ίδιου και ασφαλώς δεν είναι έµϖνευση κάϖοιας συγκεκριµένης χρονικής στιγµής. Στηρίζεται στο έργο όλων των µαθηµατικών και φιλοσόφων ϖου ϖροηγήθηκαν και είναι αϖοτέλεσµα µεγάλων ϖροσϖαθειών. Πιο συγκεκριµένα, η ϖρωτοτυϖία και η σηµαντικότητα του έργου αυτού έγκειται στο ότι ο Έλληνας µαθηµατικός συγκέντρωσε, εϖεξεργάστηκε ανέλυσε, συµϖλήρωσε, ιεράρχησε και ταξινόµησε τα έργα των ϖαραϖάνω και µάλιστα τα ενέταξε σε ένα νέο αξιοθαύµαστο µαθηµατικό σύστηµα ϖου ο ίδιος εϖινόησε. Γεγονός ϖου τεκµηριώνει την ϖληρότητα και το εκτόϖισµα των «Στοιχείων» είναι ότι, όταν στα τέλη του 19 ου αιώνα οι γεωµέτρες θέλησαν να δηµιουργήσουν µια σύγχρονη αξιωµατική θεµελίωση της Γεωµετρίας, ακολούθησαν ϖιστά τον Ευκλείδη και τους βασικούς ϖροσανατολισµούς του. 13

14 Ο Ευκλείδης, εκτός αϖό την αξιωµατική θεµελίωση της Γεωµετρίας ϖου εισήγαγε, δηµιούργησε και µία µαθηµατική θεωρία µε δοµή ϖου είναι σήµερα σύγχρονη. Καθιέρωσε έναν τρόϖο και µία διαδικασία ϖαρουσίασης της ύλης, µε γενικές αϖοδείξεις άψογες, στις οϖοίες κάθε ϖρόταση τοϖοθετείται στην κατάλληλη θέση και ακολουθεί η εϖόµενη µε µία αυστηρώς λογικότατη, µε τις λιγότερες δυνατές υϖοθέσεις, χωρίς την ϖαρεµβολή οϖοιουδήϖοτε άσχετου ή ϖεριττού στοιχείου. Θα ϖρέϖει να διευκρινιστεί ότι τα «Στοιχεία» δεν είναι ένα ανθολόγιο ϖρο Ευκλείδειων ϖροτάσεων. Υϖάρχουν αξιόλογες γεωµετρικές ϖροτάσεις, όϖως τα τρία ϖροβλήµατα της αρχαιότητας, τα οϖοία είναι: ο διϖλασιασµός του κύβου, η τριχοτόµηση της γωνίας και ο τετραγωνισµός του κύκλου, τα οϖοία δεν ϖεριέχονται στο έργο. Η Μέθοδος του Ευκλείδη: Στα έργα των αρχαίων Ελλήνων συναντώνται όλες σχεδόν οι µέθοδοι αϖόδειξης ϖου χρησιµοϖοιούνται σήµερα. Μερικές αϖό αυτές είναι η µέθοδος της συνεϖαγωγής, η συνθετική, η αναλυτική, η µέθοδος της εις άτοϖου αϖαγωγής καθώς και η µέθοδος της τέλειας εϖαγωγής. Μια ακόµη µέθοδος είναι η αξιωµατική θεµελίωση. Χαρακτηριστικό ϖαράδειγµα της τελευταίας είναι τα «Στοιχεία» του Ευκλείδη. Ο αρχαίος Έλληνας εϖιστήµονας κατέγραψε τις αρχικές έννοιες ή αρχικούς όρους των γεωµετρικών αντικειµένων όϖως είναι το σηµείο, η ευθεία κ.λ.ϖ. Έϖειτα αντέγραψε τις βασικές τους ιδιότητες και καθιέρωσε τους ορισµούς, τα αιτήµατα και τις κοινές έννοιες. ηµιούργησε έτσι µία µαθηµατική θεωρία, στην οϖοία κάθε ϖρόταση µϖορεί να αϖοδειχθεί µε τη βοήθεια ορισµών, των αιτηµάτων, των κοινών εννοιών και των ϖροτάσεων ϖου έχουν ϖροηγουµένως αϖοδειχθεί. Αφού ορίσει το σηµείο, την ευθεία, τον κύκλο κ.λ.ϖ., ο Ευκλείδης ϖαραθέτει τα ϖέντε (5) αιτήµατα µία έννοια ϖου υφίσταται και στα έργα του Αριστοτέλη και του Πλάτωνα βάσει των οϖοίων αϖοδεικνύει την ύϖαρξη γεωµετρικών µεγεθών, διατύϖωσε τις ιδιότητες ϖου έχουν καθώς και τις σχέσεις ϖου διέϖουν αυτά τα µεγέθη. Το κάθε αίτηµα δεν είναι µια αϖλή ϖαραδοχή, αλλά συνεϖάγεται και την αϖοδοχή αλήθειας άλλων ϖροτάσεων ϖου ϖροκύϖτουν ως λογική συνέχεια αυτού. 14

15 Τα αιτήµατα αυτά είναι τα εξής: I. Αϖό δύο σηµεία µόνο µία ευθεία γραµµή διέρχεται. II. Κάθε ϖεϖερασµένη ευθεία ϖροεκτείνεται συνεχώς και ευθύγραµµα και ϖρος τα δύο άκρα της. III. Με κάθε κέντρο και κάθε ακτίνα µϖορεί να γραφεί ένας κύκλος. IV. Όλες οι ορθές γωνίες είναι ίσες µεταξύ τους. V. Αν µία ευθεία τέµνει δύο άλλες και σχηµατίζει τις εντός και εϖί τα αυτά µέρη γωνίες ίσες να έχουν άθροισµα µικρότερο αϖό δύο ορθές, τότε οι ευθείες, όταν ϖροεκταθούν έϖ άϖειρον θα συναντηθούν ϖρος το µέρος ϖου σχηµατίζονται οι µικρότερες των δύο ορθών γωνίες. Το αίτηµα αυτό είναι γνωστό και ως αίτηµα ϖαραλλήλων. Το ϖέµϖτο και τελευταίο αίτηµα αϖασχόλησε τόσο τους αρχαίους όσο και τους νεότερους και τους σύγχρονους µαθηµατικούς. Κι αυτό γιατί ϖολλοί ϖίστευαν ότι το αίτηµα αυτό ήταν ϖολύϖλοκο για αίτηµα και ότι θα µϖορούσε να αϖοδειχθεί µε βάση τα ϖροηγούµενα τέσσερα και εϖοµένως η Ευκλείδεια Γεωµετρία θα µϖορούσε να θεµελιωθεί και χωρίς αυτό. Ωστόσο, ϖολλοί ϖροσϖάθησαν να το αϖοδείξουν χωρίς εϖιτυχία, µεταξύ αυτών και ϖολύ σϖουδαίοι µαθηµατικοί. Κάϖοιοι στην ϖροσϖάθειά τους να αϖοδείξουν το ϖέµϖτο αίτηµα οδηγήθηκαν στη δηµιουργία µη Ευκλείδειων Γεωµετριών. Μοντέλα όϖου δεν ισχύει το 5 ο Αίτηµα 15

16 Οι ϖροτάσεις ϖου διαµόρφωσε ο Ευκλείδης, οι οϖοίες ϖηγάζουν αϖό τα 5 αιτήµατα, 115 στον σε αριθµό, είναι κατανεµηµένες ανάλογα µε το ϖεριεχόµενό τους. Η κάθε ϖρόταση στο έργο διαµορφώνεται ως εξής: ιατυϖώνεται Εκτίθεται αναλύονται τα δεδοµένα της αναϖαρίσταται Εϖιδέχεται τους αϖαραίτητους ϖροσδιορισµούς Ακολουθείται αϖό µία κατασκευή όϖου είναι αϖαραίτητο Αϖοδεικνύεται Εξάγεται το συµϖέρασµα Σε κάϖοιες ϖροτάσεις δεν ϖεριλαµβάνονται όλα τα ϖαραϖάνω βήµατα εϖειδή δεν είναι αϖαραίτητο. οµή των «Στοιχείων» : Το έργο του Ευκλείδη χωρίζεται σε δεκατρία βιβλία. Το ϖεριεχόµενο του κάθε βιβλίου είναι σαφώς διαχωρισµένο αϖό αυτό των υϖολοίϖων, χωρίς αυτό να σηµαίνει ότι τα αϖοδειχθέντα θεωρήµατα και ϖροτάσεις σε ένα βιβλίο δε θεωρούνται δεδοµένα στα εϖόµενα. Βιβλίο 1 ο : το ϖρώτο βιβλίο είναι το µόνο ϖου ϖεριέχει αιτήµατα και κοινές έννοιες. Πάνω σε αυτά τα δεδοµένα βασίζεται η αξιωµατική θεµελίωση της Ευκλείδειας Γεωµετρίας. Βιβλίο 2 ο : το δεύτερο βιβλίο είναι το µικρότερο των «Στοιχείων», αλλά είναι ϖολύ σηµαντικό µια και εισάγει τη γεωµετρική άλγεβρα των Ελλήνων και ορίζει ένα νέο γεωµετρικό σχήµα, το γνώµονα, ϖου έχει µεγάλη εφαρµογή για τη λύση γεωµετρικών ϖροτάσεων στην αρχαιότητα. Βιβλίο 3 ο : το τρίτο βιβλίο αναφέρεται στον κύκλο και τα στοιχεία του, στις σχέσεις ευθείας και κύκλου και στις σχέσεις κύκλων µεταξύ τους. 16

17 Βιβλίο 4 ο : το τέταρτο βιβλίο ϖραγµατεύεται την εγγραφή και ϖεριγραφή σε κύκλο ευθυγράµµων οχηµάτων, καθώς και την κατασκευή κανονικών ϖολυγώνων µε ϖλευρές 3, 6 και 15. Βιβλίο 5 ο : ϖρόκειται για το σηµαντικότερο και ϖιο χρησιµοϖοιηµένο βιβλίο αϖό όλα τα βιβλία των «Στοιχείων». Η οµορφιά και η αξία του έγκειται στους ορισµούς ϖου ϖεριέχει, οι οϖοίοι είναι ευφυείς και καλοδιατυϖωµένοι. Βιβλίο 6 ο : το έκτο βιβλίο ϖεριέχει ϖροτάσεις αναγκαίες για τη µελέτη των ασύµµετρων αριθµών ϖου εξετάζονται στο 10 ο βιβλίο. Βιβλίο 7 ο : στο έβδοµο βιβλίο αναϖτύσσεται η θεωρία των αναλογιών µε αριθµούς, η οϖοία συνεχίζεται και ολοκληρώνεται στο ένατο βιβλίο. Βιβλίο 8 ο : το βιβλίο αυτό αναφέρεται σε σειρές αριθµών, συνεχείς αναλογίες και στη Γεωµετρία των αριθµών. Βιβλίο 9 ο : το ένατο βιβλίο ϖραγµατεύεται τις συνεχείς αναλογίες και δίδεται ο ορισµός του τέλειου αριθµού. Βιβλίο 10 ο : το βιβλίο αυτό είναι το εκτενέστερο των «Στοιχείων» και ϖεριέχει ϖληθώρα ϖροτάσεων ϖου αναφέρονται στα ασύµετρα µεγέθη. Βιβλίο 11 ο : το εντέκατο βιβλίο είναι το ϖρώτο αϖό τα τρία ϖου αϖοτελούν τη στερεοµετρία των «Στοιχείων». Αϖοτελείται αϖό ϖροτάσεις ϖου αναφέρονται στη Γεωµετρία του χώρου µε λίγες αναφορές στην εϖιϖεδοµετρία. Το βιβλίο αυτό είναι το µόνο αϖό τα τρία ϖου ϖεριέχει ορισµούς. Βιβλίο 12 ο : σε αυτό το βιβλίο ϖεριλαµβάνονται ϖροτάσεις οι οϖοίες αναφέρονται στις σχέσεις των στερεών γεωµετρικών σχηµάτων σε εϖίϖεδο και κυρίως σε χώρο. 17

18 Βιβλίο 13 ο : το δέκατο τρίτο βιβλίο ϖεριέχει ϖροτάσεις για την εγγραφή σε κύκλο κανονικών ϖολυγώνων αϖοτελεί συµϖλήρωση του τέταρτου βιβλίου και για την εγγραφή κανονικών ϖολυέδρων σε σφαίρα. Εϖίλογος: Θεωρούµε ότι τα «Στοιχεία», όϖως ϖαρουσιάζονται αϖό τον Ευκλείδη, αϖοτελούν ϖνευµατική και ϖολιτισµική κληρονοµιά όχι µόνο των Ελλήνων, αλλά ολόκληρου του ευρωϖαϊκού και διεθνούς εϖιστηµονικού χώρου. Εϖοµένως είναι υϖοχρέωση αλλά και ανάγκη να την αξιοϖοιήσουµε, να την διαφυλάξουµε και να την αναδείξουµε. Βιβλιογραφία: Κέντρο Έρευνας Εϖιστήµης και Εκϖαίδευσης Ευκλείδη «Στοιχεία» Τόµος 1 ος : Η γεωµετρία του εϖιϖέδου Αθήνα 2001 Σελίδα των Στοιχείων µε σηµειώσεις του Νεύτωνα Λευτέρης Γοργοράϖτης 18

19 Τα τρία άλυτα ϖροβλήµατα της Ελληνικής αρχαιότητας. Τα τρία άλυτα µαθηµατικά ϖροβλήµατα Τα γνωστά αυτά µαθηµατικά προβλήµατα είναι: 1. ήλιο πρόβληµα 2. Τριχοτόµηση της γωνίας 3. Τετραγωνισµός κύκλου εν είναι καθόλου συµπτωµατικό ότι και τα 3 παραπάνω αναφερόµενα προβλήµατα ανήκουν στο χώρο της γεωµετρίας, καθώς η ειδική αυτή επιστήµη των µαθηµατικών, είναι η κυρίως αποµακρυσµένη από τη φυσική πραγµατικότητα. Ένα γεγονός που σχετίζεται µε την όλη ιστορία είναι ότι το Πυθαγόρειο θεώρηµα έχει διατυπωθεί πριν από τα στοιχεία του Ευκλείδη και έτσι δεν µπορούµε σήµερα όταν αναδροµικά (έστω το διερευνούµε) να κάνουµε επίκληση των όρων και των αξιωµάτων του Ευκλείδη, πολύ δε περισσότερο του Hilbert. Ένα από τα περίφηµα άλυτα προβλήµατα των µαθηµατικών της Αρχαίας Ελλάδας, αφορά την κατασκευή ενός κύβου µε όγκο διπλάσιο από τον όγκο ενός δοσµένου κύβου. Αν και το πρόβληµα είναι πολύ παλαιότερο, οφείλει την ονοµασία του σε µια επιδηµία λοιµού στη ήλο περίπου το 430 π.χ. Το µαντείο έδωσε χρησµό στους ήλιους ότι η επιδηµία θα σταµατούσε µόνο αν κατασκεύαζαν ένα κυβικό βωµό, διπλάσιο σε µέγεθος από αυτόν που υπήρχε. Οι ήλιοι ζήτησαν την βοήθεια ακόµη και του Πλάτωνος για να λύσουν το πρόβληµα. Η αδυναµία των αρχαίων να το λύσουν οφείλεται στο ότι το πρόβληµα δεν λύνεται µε κανόνα και διαβήτη, γεγονός που έγινε πλήρως κατανοητό τον 19 ο αιώνα. Ο Ιπποκράτης ο Χίος απέδειξε, περίπου το έτος 460 π.χ. ότι το πρόβληµα ανάγεται στο να βρεθούν δύο µέσοι ανάλογοι µεταξύ ενός ευθύγραµµου τµήµατος και του διπλασίου του, δηλαδή να βρεθούν χ, ψ τέτοιοι, ώστε: α = χ = ψ χ ψ 2α 3 από την οποία προκύπτει x =2 3 ενός δοσµένου κύβου. a, δηλαδή ένας κύβος διπλάσιος 19

20 Γεωµετρική ερµηνεία των αναλογιών Αφού η λύση µε κανόνα και διαβήτη είναι αδύνατη, όλες οι λύσεις που προτάθηκαν από τους Αρχαίους Έλληνες, οδηγούσαν σε καµπύλες και επιφάνειες βαθµού µεγαλύτερου από 2. Μερικοί από αυτούς που ασχολήθηκαν µε το πρόβληµα ήταν ο Αρχύτας (5 ος -4 ος π.χ. αιώνας), ο Εύδοξος ο Κνίδειος (4 ος π.χ. αιώνας), ο Μέναιχµος (4 ος π.χ. αιώνας), ο Νικοµήδης (3 ος π.χ. αιώνας), ο Ερατοσθένης (3 ος -2 ος π.χ. αιώνας), ο ιοκλής (2 ος π.χ. αιώνας), ο Ήρων ο Αλεξανδρεύς (1 ος µ.χ. αιώνας) και ο Πάππος (4 ος µ.χ. αιώνας) Γιώργος Καστρινάκης Τριχοτόµηση γωνίας Η διαίρεση µιας γωνίας σε άλλες ίσες γωνίες. Από πρακτική πλευρά, µπορεί να θεωρηθεί ότι το πρόβληµα λύνεται εύκολα µε µια ανεκτή προσέγγιση, αν χρησιµοποιηθούν τα κατάλληλα όργανα (γωνιόµετρο, διαβήτης, κανόνας κλπ.). Όταν όµως αναζητήθηκε µια µαθηµατική λύση µε απόλυτη ακρίβεια, το πρόβληµα έγινε δυσχερέστατο και παραµένει ακόµα άλυτο, περισσότερες από 2 χιλιετίες, όπως συµβαίνει και µε τα άλλα δύο προβλήµατα που έθεσαν οι αρχαίοι Έλληνες, δηλαδή τον διπλασιασµό του κύβου και τον τετραγωνισµό του κύκλου. Οι αρχαίοι Έλληνες µαθηµατικοί έλυσαν το πρόβληµα, αλλά όχι µε τον τρόπο που επιθυµούσαν. Στη γεωµετρία, ήταν πολύ απαιτητικοί και δεν δέχονταν τη χρήση άλλων οργάνων, εκτός από τον κανόνα και τον διαβήτη. Οι αρχαίοι Έλληνες και αργότερα οι γεωµετρίες του 17 ου αι. κατόρθωσαν να προσδιορίσουν µε ακρίβεια το 1/3 µιας 20

21 γωνίας µε τη βοήθεια όµως αλγεβρικών και φανταστικών αριθµών. Από τις λύσεις αυτές αξίζει να σηµειωθούν η περίφηµη τετραγωνίζουσα καµπύλη του εινόστρατου, το κογχοειδές του Νικόδηµου, η έλικα του Ετιέν Πασκάλ. Ακριβής λύση επιτυγχάνεται επίσης µε τη χάραξη διαφόρων κωνικών γραµµών από την περιφέρεια. Το ακατόρθωτο µιας ακριβούς λύσης αποδείχτηκε µε την εφαρµογή της µεγαλοφυούς θεωρίας του Εβαρίστ Γκαλουά: πράγµατι, το πρόβληµα καταλήγει σε µια εξίσωση 3ου βαθµού, οι λύσεις της οποίας δεν είναι δυνατόν να υπολογιστούν µε τη χρησιµοποίηση µόνο τετραγωνικών ριζών (γιατί πρέπει να εξαχθούν κυβικές ρίζες), και αυτό σηµαίνει ότι είναι αδύνατη η καθαρή γεωµετρική λύση, µόνο µε Τριχοτόµηση τον κανόνα και τον διαβήτη. Νικόλας Μϖαρελιέρ Κογχοειδής του Νικοµήδη Το αδύνατο της εϖιλυσεως των τριών κλασικών ϖροβληµάτων της αρχαιότητας Από την εποχή των αρχαίων Ελλήνων ένας αριθµός προβληµάτων απασχόλησαν εντονότατα τους γεωµέτρες: 1.Ο τετραγωνισµός του κύκλου 2. Ο διπλασιασµός του κύβου 3. Η τριχοτόµηση της γωνίας Η επίλυση των προβληµάτων αυτών δεν είχε επιτευχθεί για τον απλούστατο λόγο ότι αυτά τα προβλήµατα είναι αδύνατο να 21

22 επιλυθούν µε τη χρήση µόνο του κανόνα και του διαβήτη. Βεβαίως άτοµα που προσπαθούν να τα επιλύσουν δεν έχουν παύσει να υπάρχουν ακόµα και στις µέρες µας, αν και στην συντριπτική τους πλειονότητα τα άτοµα αυτά δεν είναι επαγγελµατίες µαθηµατικοί. Είναι ουσιαστικό να τονίσουµε, ότι το πρόβληµα συνίσταται στο να γίνουν οι παραπάνω κατασκευές µε τη χρήση µόνο του κανόνα και του διαβήτη. Ο περιορισµός αυτός είναι θέµα παραδόσεως. ιάφορες λύσεις των προβληµάτων αυτών είχαν προταθεί κατά καιρούς, λύσεις όµως οι οποίες δεν περιορίζονταν µόνο στη χρήση του κανόνα και του διαβήτη, δηλαδή δεν συµµορφώνονταν µε τους όρους της ακαδηµίας του Πλάτωνα: Οι µόνες παραδεκτές κατασκευές είναι εκείνες που γίνονται µόνο µε τον κανόνα και τον διαβήτη. Το ερώτηµα τελικά στο οποίο θέλουµε να απαντήσουµε είναι: Ποια είναι τα γεωµετρικά προβλήµατα τα οποία µπορούν να λυθούν µε την βοήθεια µόνο του κανόνα και του διαβήτη; Με τη χρήση της αναλυτικής γεωµετρίας, µπορεί να αποδειχθεί ότι δεν είναι δυνατόν να εκτελέσουµε άλλες εκτός των ευθειών ή καµπυλών που έχουν αντιστοίχως εξισώσεις πρώτου και δευτέρου βαθµού. Έτσι, αν π.χ. δίδεται ένα ευθύγραµµο τµήµα µήκους α και ένα ευθύγραµµο τµήµα µήκους 1, είναι αδύνατο να κατασκευάσουµε µε τη χρήση µόνο του κανόνα και του διαβήτη, τµήµατα µήκους ίσου µε sina, loga... Από το βιβλίο << Ιστορία των µαθηµατικών>>, Αθήνα 2000 Του Νικόλαου Κ. Αρτεµιάδη Θοδωρής Καρακώστας Τετραγωνίζουσα του Ιϖϖία 22

23 ΤΑ ΤΡΙΑ ΑΛΥΤΑ ΠΡΟΒΛΗΜΑΤΑ ΤΗΣ ΕΛΛΗΝΙΚΗΣ ΑΡΧΑΙΟΤΗΤΑΣ Τα τρία προβλήµατα που απασχόλησαν τους αρχαίους Έλληνες µαθηµατικούς είναι γνωστά σε όλους: α) ο τετραγωνισµός του κύκλου, β) η τριχοτόµηση της γωνίας και γ) ο διπλασιασµός του κύβου. Τα προβλήµατα αυτά θεωρούνταν άλυτα όχι γιατί δεν είχαν βρεθεί τρόποι λύσης τους (ακόµη και από τους ίδιους τους Έλληνες), αλλά διότι δεν είχε επιτευχθεί η λύση τους µόνο µε τη χρήση κανόνα (µη αριθµηµένου ) και διαβήτη, και οι Έλληνες φιλόσοφοι δεν αποδέχονταν ως λύσεις κατασκευές που χρησιµοποιούσαν άλλες γραµµές εκτός από τις δύο τέλειες (την ευθεία και τον κύκλο). Ωστόσο, το 19 ο αιώνα αποδείχτηκε ότι οι τρεις αυτές κατασκευές είναι αδύνατο να πραγµατοποιηθούν µόνο µε τα επιτρεπτά για τους Έλληνες όργανα. Ο Ιπποκράτης ο Χίος ( π.χ.) ήταν ο πρώτος που πέτυχε τον τετραγωνισµό των µηνίσκων (σχήµατα του εϖιϖέδου ϖου τα όρια τους αϖοτελούνται αϖό δύο τόξα διαφορετικών κύκλων), θεωρώντας ότι έτσι θα έφτανε στον τετραγωνισµό ολόκληρου του κύκλου. Αυτό το κατάφερε, αρχικά, βρίσκοντας τρίγωνα ισεµβαδικά µε συγκεκριµένους µηνίσκους, και καθώς κάθε τρίγωνο τετραγωνίζεται, το ίδιο θα ίσχυε και για τους µηνίσκους αυτούς. Στη συνέχεια, χρησιµοποίησε πιο πολύπλοκα σχήµατα ( µε τραπέζια) και άλλα είδη µηνίσκων, αλλά παρόλο που έφτασε πολύ κοντά, δεν ήταν δυνατό να τετραγωνίσει τον κύκλο. Έτσι, περιορίστηκε στους µηνίσκους, χρησιµοποιώντας πλέον ιδιότητες των κυκλικών τµηµάτων (σχήµατα του εϖιϖέδου, ϖου δηµιουργούνται αϖό ένα τόξο ενός κύκλου και τη χορδή του). Ο διϖλασιασµός του κύβου Σύµφωνα µε ένα µύθο, το πρόβληµα αυτό προέκυψε ύστερα από απαίτηση του Απόλλωνα να διπλασιαστεί σε όγκο ο κυβικός βωµός του ιερού του στη ήλο, χωρίς να αλλάξει το σχήµα του. Φυσικά, οι ήλιοι απέτυχαν να εκπληρώσουν την επιθυµία του θεού τους και έτσι έµεινε η ονοµασία ήλιο Πρόβληµα. 23

24 Ενώ ο διπλασιασµός του τετραγώνου δεν έχει καµία δυσκολία στην κατασκευή (το νέο τετράγωνο έχει πλευρά τη διαγώνιο του αρχικού τετραγώνου), ο διπλασιασµός του κύβου είναι αρκετά πιο πολύπλοκος. Και πάλι το όνοµα του Ιπποκράτη βρίσκεται ανάµεσα σε εκείνους που προσπάθησαν να κατασκευάσουν την ακµή του νέου κύβου. Ο Ιπποκράτης έψαξε για εκείνη την αναλογία µεταξύ των ακµών του αρχικού και του ζητούµενου κύβου που θα έδινε την απάντηση, αντίστοιχα µε τον τρόπο λύσης που εφαρµόζεται στο τετράγωνο. Τελικά, απέτυχε να λύσει το αρχικό πρόβληµα. Γενικότερα, όσοι Έλληνες δοκίµασαν να πραγµατοποιήσουν την κατασκευή, αναγκάστηκαν να χρησιµοποιήσουν άλλες καµπύλες (εκτός του κύκλου και της ευθείας) και άλλα όργανα (εκτός του κανόνα και του διαβήτη) για να τα καταφέρουν. Ενδεικτικά αναφέρουµε δύο φιλοσόφους που έδωσαν λύσεις του προβλήµατος: α)ο Μέναιχµος (350 π.χ. περίπου), ο παιδαγωγός του Μ. Αλεξάνδρου, βρήκε την ακµή του ζητούµενου κύβου, αλλά στη λύση του χρησιµοποίησε απαγορευµένες καµπύλες, την υπερβολή και την παραβολή. β)ο Πλάτωνας ( π.χ.) χρησιµοποίησε συστήµατα ράβδων που µπορούσαν να ολισθαίνουν ή να στρέφονται η µία ως προς την άλλη, όργανα που δεν υπάκουαν στον περιορισµό για αποκλειστική χρήση κανόνα και διαβήτη. (Η λύση αυτή ανήκει στην κατηγορία των µηχανο-τεχνικών λύσεων.) Η λύση του Πλάτωνα 24

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 13.03.14 Χ. Χαραλάμπους Εντονες πυθαγόρειες επιδράσεις. Η Γεωμετρία και τα Μαθηματικά έχουν μια ξεχωριστή ξχ θέση. Ουδείς αγεωμέτρητος εισί Στον κόσμο των ιδεών τα μαθηματικά αντικείμενα

Διαβάστε περισσότερα

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2

βοήθεια ευθείας και κύκλου. Δεν ισχύει όμως το ίδιο για την παρεμβολή δύο μέσων αναλόγων η οποία απαιτεί τη χρησιμοποίηση διαφορετικών 2 3 ΚΩΝΙΚΕΣ ΤΟΜΕΣ Εισαγωγή Η μελέτη της έλλειψης, της παραβολής και της υπερβολής από τους Αρχαίους Έλληνες μαθηματικούς φαίνεται ότι είχε αφετηρία τη σχέση αυτών των καμπύλων με ορισμένα προβλήματα γεωμετρικών

Διαβάστε περισσότερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα

Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα [ 1 ] Πανεπιστήµιο Κύπρου Η Κατάκτηση του Απείρου από την Αρχαιότητα ως Σήµερα Νικόλαος Στυλιανόπουλος Ηµερίδα Ιστορία των Μαθηµατικών Πανεπιστήµιο Κύπρου Νοέµβριος 2016 [ 2 ] Πανεπιστήµιο Κύπρου υσκολίες

Διαβάστε περισσότερα

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8

ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ. Μια παράσταση που περιέχει πράξεις με μεταβλητές (γράμματα) και αριθμούς καλείται αλγεβρική, όπως για παράδειγμα η : 2x+3y-8 ΘΕΩΡΙΑ Β ΓΥΜΝΑΣΙΟΥ Άλγεβρα 1 ο Κεφάλαιο 1. Τι ονομάζουμε αριθμητική και τι αλγεβρική παράσταση; Να δώσετε από ένα παράδειγμα. Μια παράσταση που περιέχει πράξεις με αριθμούς, καλείται αριθμητική παράσταση,

Διαβάστε περισσότερα

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία

1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ. Η δική µας Εικασία 1 ο Γυµνάσιο Μελισσίων Λέσχη Ανάγνωσης ΤΡΙΧΟΤΟΜΗΣΗ ΓΩΝΙΑΣ Η δική µας Εικασία Οι αρχαίοι Έλληνες γνώριζαν να διχοτοµούν µια τυχαία γωνία µε χρήση κανόνα και διαβήτη, και, κατά συνέπεια, µπορούσαν να διαιρέσουν

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ

2.3 ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ ΕΠΙΜΕΛΕΙΑ : ΠΑΛΑΙΟΛΟΓΟΥ ΠΑΥΛΟΣ.ptetragono.gr Σελίδα. ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ ΑΡΙΘΜΟΥ Να βρεθεί το μέτρο των μιγαδικών :..... 0 0. 5 5 6.. 0 0. 5. 5 5 0 0 0 0 0 0 0 0 ΜΕΘΟΔΟΛΟΓΙΑ : ΜΕΤΡΟ ΜΙΓΑΔΙΚΟΥ Αν τότε. Αν χρειαστεί

Διαβάστε περισσότερα

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και

αντισταθµίζονται µε τα πλεονεκτήµατα του άλλου, τρόπου βαθµολόγησης των γραπτών και της ερµηνείας των σχετικών αποτελεσµάτων, και 1. ΕΙΣΑΓΩΓΗ Όλα τα είδη ερωτήσεων που αναφέρονται στο «Γενικό Οδηγό για την Αξιολόγηση των µαθητών στην Α Λυκείου» µπορούν να χρησιµοποιηθούν στα Μαθηµατικά, τόσο στην προφορική διδασκαλία/εξέταση, όσο

Διαβάστε περισσότερα

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ

4.6 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ 174 46 Η ΓΡΑΜΜΙΚΗ ΔΙΟΦΑΝΤΙΚΗ ΕΞΙΣΩΣΗ Εισαγωγή Ένα από τα αρχαιότερα προβλήματα της Θεωρίας Αριθμών είναι η αναζήτηση των ακέραιων αριθμών που ικανοποιούν κάποιες δεδομένες σχέσεις Με σύγχρονη ορολογία

Διαβάστε περισσότερα

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ

ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΕΠΙΜΕΛΕΙΑ : ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΕΥΡΙΠΙΔΟΥ 80 ΝΙΚΑΙΑ ΝΕΑΠΟΛΗ ΤΗΛΕΦΩΝΟ 0965897 ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ ΒΡΟΥΤΣΗ ΕΥΑΓΓΕΛΙΑ ΜΠΟΥΡΝΟΥΤΣΟΥ ΚΩΝ/ΝΑ ΑΥΓΕΡΙΝΟΣ ΒΑΣΙΛΗΣ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ Η έννοια του μιγαδικού

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ

ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ Επιμέλεια: Καραγιάννης Β. Ιωάννης Σχολικός Σύμβουλος Μαθηματικών ΔΙΔΑΚΤΕΑ ΥΛΗ ΚΑΙ ΣΥΝΟΠΤΙΚΕΣ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΤΗΣ ΥΛΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Σχολικό Έτος: 016-017 Μαθηματικός Περιηγητής:

Διαβάστε περισσότερα

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης

Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής μάθησης Επιμορφωτικό Εργαστήριο Διδακτικής των Μαθηματικών Του Δημήτρη Ντρίζου Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας Αξιοποίηση της επαγωγικής συλλογιστικής στο πλαίσιο της διερευνητικής και ανακαλυπτικής

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους

Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ. Α. Οι πραγματικοί αριθμοί και οι πράξεις τους Α ΜΕΡΟΣ - ΑΛΓΕΒΡΑ Κεφάλαιο 1 ο ΑΛΓΕΒΡΙΚΕΣ ΠΑΡΑΣΤΑΣΕΙΣ 1.1 Πράξεις με πραγματικούς αριθμούς Α. Οι πραγματικοί αριθμοί και οι πράξεις τους 1. Ποιοι αριθμοί ονομάζονται: α) ρητοί β) άρρητοι γ) πραγματικοί;

Διαβάστε περισσότερα

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί.

ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ. χρησιμοποιήσουμε καθημερινά φαινόμενα όπως το θερμόμετρο, Θετικοί-Αρνητικοί αριθμοί. ΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ B ΤΑΞΗΣ ΑΛΓΕΒΡΑ (50 Δ. ώρες) Περιεχόμενα Στόχοι Οδηγίες - ενδεικτικές δραστηριότητες Οι μαθητές να είναι ικανοί: Μπορούμε να ΟΙ ΑΚΕΡΑΙΟΙ ΑΡΙΘΜΟΙ χρησιμοποιήσουμε καθημερινά φαινόμενα

Διαβάστε περισσότερα

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ

Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ Η ΓΕΝΙΚΕΥΜΕΝΗ ΓΕΩΜΕΤΡΙΑ ΕΙΣΑΓΩΓΗ Η Γενικευμένη Γεωμετρία, που θα αναπτύξουμε στα παρακάτω κεφάλαια, είναι μία «Νέα Γεωμετρία», η οποία προέκυψε από την ανάγκη να γενικεύσει ορισμένα σημεία της Ευκλείδειας

Διαβάστε περισσότερα

Ιστορία των Μαθηματικών

Ιστορία των Μαθηματικών ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Τα Μαθηματικά στην αρχαία Ελλάδα. Χαρά Χαραλάμπους ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα

Διαβάστε περισσότερα

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου.

ΘΕΜΑ: Οδηγίες για τη διδασκαλία των Μαθηµατικών Γ/σίου και Γεν. Λυκείου. Να διατηρηθεί µέχρι... ΕΛΛΗΝΙΚΗ ΗΜΟΚΡΑΤΙΑ ENIAIOΣ ΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ /ΝΣΗ ΣΠΟΥ ΩΝ /ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α' Αν. Παπανδρέου 37, 15180 Μαρούσι Πληροφορίες : Αν. Πασχαλίδου Τηλέφωνο

Διαβάστε περισσότερα

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου

Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Ενδεικτική θεματολογία δημιουργικών εργασιών στην Α και Β τάξη του Γενικού Λυκείου Α. Προτεινόμενες θεματικές ενότητες Τίτλοι από το Ι.Ε.Π. ΑΛΓΕΒΡΑ 5ο 5.1: Ακολουθίες Η ακολουθία Fibonacci στην Φύση και

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ Τμήμα Φυσικής Σημειώσεις Ανάλυσης Ι (ανανεωμένο στις 5 Δεκεμβρίου 2012) Τμήμα Θ. Αποστολάτου & Π. Ιωάννου 1 Σειρές O Ζήνων ο Ελεάτης (490-430 π.χ.) στη προσπάθειά του να υποστηρίξει

Διαβάστε περισσότερα

Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ. Απόστολος Δοξιάδης

Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ. Απόστολος Δοξιάδης Ο θείος Πέτρος και η Εικασία του Γκόλντμπαχ Απόστολος Δοξιάδης Περίληψη του βιβλίου Τι είναι τα Μαθηματικά; Ποια είναι η σχέση της «εικασίας» και του «θεωρήματος»; Ποιοι είναι οι πρώτοι αριθμοί; Christian

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 2013 2014 ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ τάξης Ημερήσιου και Δ τάξης Εσπερινού Γενικού Λυκείου για το σχολικό έτος 3 4 ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:.

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 11 ο, Τμήμα Α. Γεωμετρία Μαθηματικά: ριθμητική και Άλγεβρα Μάθημα 11 ο, Τμήμα Γεωμετρία Η γεωμετρία σε σχέση με την άλγεβρα ή την αριθμητική έχει την εξής ιδιαιτερότητα: πρέπει να είμαστε πολύ ακριβείς στην περιγραφή μας (σκέψη

Διαβάστε περισσότερα

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς

Σημειώσεις Ανάλυσης Ι. Θεωρούμε γνωστούς τους φυσικούς αριθμούς Σημειώσεις Ανάλυσης Ι 1. Οι ρητοί αριθμοί Θεωρούμε γνωστούς τους φυσικούς αριθμούς 1, 2, 3, και τις πράξεις (πρόσθεση - πολλαπλασιασμό)μεταξύ αυτών. Οι φυσικοί αριθμοί είναι επίσης διατεταγμένοι με κάποια

Διαβάστε περισσότερα

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο

Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας. Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Λέσχη Ανάγνωσης Μαθηματικής Λογοτεχνίας Εκπαιδευτήριο Το Παγκρήτιον Λύκειο, Αγ.Ιωάννης, Ηράκλειο Πρώτη νύχτα Μονάδα Όνειρα ( εργασία ) Η έννοια του απείρου Φρόυντ Κλάσματα Αριθμητικό σύστημα ( εργασία

Διαβάστε περισσότερα

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος

Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Τρεις ενδιαφέρουσες αποδείξεις του Πυθαγορείου Θεωρήματος Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Είναι γνωστό ότι για το Πυθαγόρειο θεώρημα έχουν

Διαβάστε περισσότερα

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής

Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η γεωµετρική εποπτεία στην παρουσίαση της απόλυτης τιµής Η µέθοδος άξονα-κύκλου: µια διδακτική πρόταση για την επίλυση εξισώσεων και ανισώσεων µε απόλυτες τιµές στην Άλγεβρα της Α Λυκείου ηµήτριος Ντρίζος

Διαβάστε περισσότερα

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους

Περιεχόμενα ΑΡΙΘΜΟΙ ΠΡΟΛΕΓΟΜΕΝΑ ΜΕΡΟΣ ΠΡΩΤΟ. Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Περιεχόμενα ΠΡΟΛΕΓΟΜΕΝΑ 15 ΜΕΡΟΣ ΠΡΩΤΟ ΑΡΙΘΜΟΙ Κεφάλαιο Πρώτο Οι φυσικοί αριθμοί και η αναπαράστασή τους Οι φυσικοί αριθμοί Η σχέση της ισότητας και της ανισότητας των φυσικών αριθμών Η αναπαράσταση των

Διαβάστε περισσότερα

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ A. ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΓΕΩΜΕΤΡΙΑ Β ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ Διδακτέα- Εξεταστέα ύλη Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η, Βλάμου Π., Κατσούλη Γ., Μαρκάκη

Διαβάστε περισσότερα

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2

ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2 ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ: 1. ΑΛΓΕΒΡΑΣ ΚΑΙ ΓΕΩΜΕΤΡΙΑΣ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ Γ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2. ΜΑΘΗΜΑΤΙΚΩΝ ΟΜΑΔΑΣ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ

Διαβάστε περισσότερα

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ

Εαρινό εξάμηνο Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 8.03.12 Χ. Χαραλάμπους Θαλής ο Μιλήσιος ( 630-550π.Χ.) Πυθαγόρας o Σάμιος (570-490) Ζήνωνας ο Ελεάτης ( 490-430) Δημόκριτος o Αβδηρίτης (c. 460-370) Πλάτων (427-347 π.χ.) Ιστορικές

Διαβάστε περισσότερα

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του

ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του Ανδρέας Ιωάννου Κασσέτας ο χρυσός φ Στην άκρη του νήµατος βρίσκονται πέντε ερωτήµατα καθένα από τα οποία περιµένει την απάντησή του 1. Υπάρχει αριθµός τέτοιος ώστε εάν τον υψώσεις στο τετράγωνο να αυξηθεί

Διαβάστε περισσότερα

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ

Διδακτέα-εξεταστέα ύλη μαθηματικών Ημερησίου και Εσπερινού ΓΕ.Λ. Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Ο Δ Η Γ Ο Σ ΔΙΔΑΚΤΕΑΣ-ΕΞΕΤΑΣΤΕΑΣ ΥΛΗΣ ΜΑΘΗΜΑΤΙΚΩΝ ΗΜΕΡΗΣΙΩΝ ΚΑΙ ΕΣΠΕΡΙΝΩΝ ΓΕΝΙΚΩΝ ΛΥΚΕΙΩΝ Γενική Επιμέλεια: Καραγιάννης Ιωάννης Σχολικός Σύμβουλος Μαθηματικός Περιηγητής 1 ΠΕΡΙΕΧΟΜΕΝΑ 1. Διδακτέα-εξεταστέα

Διαβάστε περισσότερα

Ερωτήσεις επί των ρητών αριθµών

Ερωτήσεις επί των ρητών αριθµών Σελ. 1 Ερωτήσεις επί των ρητών αριθµών 1. Ποια είναι τα πρόσηµα των ακεραίων αριθµών; Ζ={... -3,-2,-1,0,+1,+2,+3,... } 2. Ποιοι αριθµοί λέγονται θετικοί και ποιοι αρνητικοί; Γράψε από έναν. 3. Στον άξονα

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ

ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ ΓΥΜΝΑΣΙΟ ΠΟΛΕΜΙΔΙΩΝ ΣΧ. ΧΡΟΝΙΑ 2015-16 ΕΞΕΤΑΣΤΕΑ ΥΛΗ Α ΤΑΞΗΣ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΤΕΥΧΟΣ Α ΕΝΟΤΗΤΑ 1: ΣΥΝΟΛΑ (Σελ. 25 42) Η Έννοια του Συνόλου Σχέσεις Συνόλων Πράξεις Συνόλων ΕΝΟΤΗΤΑ 2: ΑΡΙΘΜΟΙ (Σελ. 46 83)

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ

ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ 2 ΓΥΜΝΑΣΙΟ ΥΜΗΤΤΟΥ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ ΜΙΑ ΠΡΟΕΤΟΙΜΑΣΙΑ ΓΙΑ ΤΙΣ ΕΞΕΤΑΣΕΙΣ - Σελίδα 1 από 6 - 1. Η ΔΟΜΗ ΤΩΝ ΘΕΜΑΤΩΝ ΤΩΝ ΕΞΕΤΑΣΕΩΝ Στις εξετάσεις του Μαίου-Ιουνίου µας δίνονται δύο θέµατα θεωρίας και

Διαβάστε περισσότερα

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ

ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ ΧΡΥΣΗ ΤΟΜΗ ΣΤΑ ΜΑΘΗΜΑΤΙΚΑ Χρησιμοποιήθηκε στην αρχαία Αίγυπτο και στην Πυθαγόρεια παράδοση,ο πρώτος ορισμός που έχουμε για αυτήν ανήκει στον Ευκλείδη που την ορίζει ως διαίρεση ενός ευθύγραμμου τμήματος

Διαβάστε περισσότερα

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού

Σύµφωνα µε την Υ.Α /Γ2/ Εξισώσεις 2 ου Βαθµού. 3.2 Η Εξίσωση x = α. Κεφ.4 ο : Ανισώσεις 4.2 Ανισώσεις 2 ου Βαθµού Σύµφωνα µε την Υ.Α. 139606/Γ2/01-10-2013 Άλγεβρα Α ΤΑΞΗ ΕΣΠΕΡΙΝΟΥ ΓΕΛ Ι. ιδακτέα ύλη Από το βιβλίο «Άλγεβρα και Στοιχεία Πιθανοτήτων Α Γενικού Λυκείου» (έκδοση 2013) Εισαγωγικό κεφάλαιο E.2. Σύνολα Κεφ.1

Διαβάστε περισσότερα

Περί της Ταξινόμησης των Ειδών

Περί της Ταξινόμησης των Ειδών Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης Σχολή Θετικών Επιστημών Τμήμα Φυσικής 541 24 Θεσσαλονίκη Καθηγητής Γεώργιος Θεοδώρου Tel.: +30 2310998051, Ιστοσελίδα: http://users.auth.gr/theodoru Περί της Ταξινόμησης

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1).

. Ερωτήσεις διάταξης. να διαταχθούν από τη µικρότερη προς τη µεγαλύτερη οι τιµές: f (3), f (0), f (-1), f (5), f (-2), f ( ), f (1). . Ερωτήσεις διάταξης. Οι συναρτήσεις f (x) = x, g (x) = x, h (x) = x, φ (x) = 3x, ρ (x) = 5x, t (x) = 7x έχουν κοινό πεδίο ορισµού το Α = [- 3, 3]. Να γράψετε τις συναρτήσεις σε µια σειρά έτσι ώστε η γραφική

Διαβάστε περισσότερα

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη

Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς. Άλγεβρα Γενικής Παιδείας. I. ιδακτέα ύλη ΘΕΜΑ : Καθορισµός και διαχείριση διδακτέας ύλης Θετικών Μαθηµάτων των Β και Γ τάξεων Ηµερήσιου και Εσπερινού Γενικού Λυκείου, για το σχολικό έτος 2011 12. Μετά από σχετική εισήγηση του Τµήµατος ευτεροβάθµιας

Διαβάστε περισσότερα

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ

ΓΥΜΝΑΣΙΟ ΚΑΣΤΕΛΛΑΝΩΝ ΜΕΣΗΣ ΑΛΓΕΒΡΑ ΑΛΓΕΒΡΑ ΠΡΟΑΠΑΙΤΟΥΜΕΝΑ ΑΠΟ Α ΓΥΜΝΑΣΙΟΥ Ομόσημοι Ετερόσημοι αριθμοί Αντίθετοι Αντίστροφοι αριθμοί Πρόσθεση ομόσημων και ετερόσημων ρητών αριθμών Απαλοιφή παρενθέσεων Πολλαπλασιασμός και Διαίρεση ρητών αριθμών

Διαβάστε περισσότερα

Αρσάκεια Τοσίτσεια Σχολεία 1. (J. Steiner 1796 1863)

Αρσάκεια Τοσίτσεια Σχολεία 1. (J. Steiner 1796 1863) Αρσάκεια Τοσίτσεια Σχολεία 1 B ΤΟΣΙΤΣΕΙΟ ΑΡΣΑΚΕΙΟ ΛΥΚΕΙΟ ΕΚΑΛΗΣ Μαθηµατικά Κατεύθυνσης Β Λυκείου Κωνικές Τοµές «οι υπολογισµοί υποκαθιστούν την σκέψη, ενώ η γεωµετρία την διεγείρει». (J. Steiner 1796 1863)

Διαβάστε περισσότερα

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3()

ΘΕΜΑ 2 Αν Α, Β είναι ενδεχόμενα ενός δειγματικού χώρου Ω με Ρ(Α ) = 3Ρ(Α), Ρ(Β ) = 1/3 και () 3() ΘΕΜΑ 1 Ένα Λύκειο έχει 400 μαθητές από τους οποίους οι 00 είναι μαθητές της Α τάξης Αν επιλέξουμε τυχαία ένα μαθητή, η πιθανότητα να είναι μαθητής της Γ τάξης είναι 0% Να βρείτε: i Το πλήθος των μαθητών

Διαβάστε περισσότερα

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος.

Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Ενότητα 2 Γραμμικά Συστήματα Στην ενότητα αυτή θα μάθουμε: Να επιλύουμε και να διερευνούμε γραμμικά συστήματα. Να ορίζουμε την έννοια του συμβιβαστού και ομογενούς συστήματος. Να ερμηνεύουμε γραφικά τη

Διαβάστε περισσότερα

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738)

Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΠΛΗΡΟΦΟΡΙΚΗΣ ΤΕ Το μαθηματικό λογισμικό GeoGebra ως αρωγός για τη λύση προβλημάτων γεωμετρικών κατασκευών Χαριτωμένη Καβουρτζικλή (ΑΕΜ: 2738) Επιβλέπων Καθηγητής

Διαβάστε περισσότερα

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010.

B) Από το βιβλίο «Άλγεβρα Β Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ. Παπασταυρίδη, Γ. Πολύζου και Α. Σβέρκου, έκδοση Ο.Ε..Β. 2010. Β Τάξη Ηµερήσιου Γενικού Λυκείου Μ α θ ή µ α τ α Γ ε ν ι κ ή ς Π α ι δ ε ί α ς Άλγεβρα Γενικής Παιδείας I. ιδακτέα ύλη A) Από το βιβλίο «Άλγεβρα Α Γενικού Λυκείου» των Σ. Ανδρεαδάκη, Β. Κατσαργύρη, Σ.

Διαβάστε περισσότερα

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα: Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο:

----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη: Μαρούσι Ιστοσελίδα:  Πληροφορίες: Αν. Πασχαλίδου Τηλέφωνο: ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ, ΕΡΕΥΝΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΓΕΝΙΚΗ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ Π/ΘΜΙΑΣ ΚΑΙ Δ/ΘΜΙΑΣ ΕΚΠΑΙΔΕΥΣΗΣ ΔΙΕΥΘΥΝΣΗ ΣΠΟΥΔΩΝ, ΠΡΟΓΡΑΜΜΑΤΩΝ ΚΑΙ ΟΡΓΑΝΩΣΗΣ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α -----

Διαβάστε περισσότερα

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012.

ημερήσιων και εσπερινών ΕΠΑ.Λ. για το σχολικό έτος 2011-2012. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΔΙΑ ΒΙΟΥ ΜΑΘΗΣΗΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ B ----- Να διατηρηθεί μέχρι... Βαθμός

Διαβάστε περισσότερα

1.1.3 t. t = t2 - t1 1.1.4 x2 - x1. x = x2 x1 . . 1

1.1.3 t. t = t2 - t1 1.1.4  x2 - x1. x = x2 x1 . . 1 1 1 o Κεφάλαιο: Ευθύγραµµη Κίνηση Πώς θα µπορούσε να περιγραφεί η κίνηση ενός αγωνιστικού αυτοκινήτου; Πόσο γρήγορα κινείται η µπάλα που κλώτσησε ένας ποδοσφαιριστής; Απαντήσεις σε τέτοια ερωτήµατα δίνει

Διαβάστε περισσότερα

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα.

εύτερη διάλεξη. Η Γεωµετρία στα αναλυτικά προγράµµατα. εύτερη διάλεξη. Η στα αναλυτικά προγράµµατα. Η Ευκλείδεια αποτελούσε για χιλιάδες χρόνια µέρος της πνευµατικής καλλιέργειας των µορφωµένων ατόµων στο δυτικό κόσµο. Από τις αρχές του 20 ου αιώνα, καθώς

Διαβάστε περισσότερα

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης

Μαθηματικά: Αριθμητική και Άλγεβρα. Μάθημα 3 ο, Τμήμα Α. Τρόποι απόδειξης Μαθηματικά: Αριθμητική και Άλγεβρα Μάθημα 3 ο, Τμήμα Α Ο πυρήνας των μαθηματικών είναι οι τρόποι με τους οποίους μπορούμε να συλλογιζόμαστε στα μαθηματικά. Τρόποι απόδειξης Επαγωγικός συλλογισμός (inductive)

Διαβάστε περισσότερα

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x )

ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ. i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( x ) () Μονοτονία ΜΟΝΟΤΟΝΙΑ ΑΚΡΟΤΑΤΑ- ΣΥΝΟΛΟ ΤΙΜΩΝ ΚΟΙΛΟΤΗΤΑ ΣΗΜΕΙΑ ΚΑΜΠΗΣ i) Για την εύρεση µονοτονίας µιας συνάρτησης υπολογίζω την f ( ) και βρίσκω το πρόσηµό της ii) Αν προκύψει να είναι αύξουσα ή φθίνουσα,

Διαβάστε περισσότερα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα

5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα 5.1 Δραστηριότητα: Εισαγωγή στο ορισμένο ολοκλήρωμα Θέμα της δραστηριότητας Η δραστηριότητα εισάγει τους μαθητές στο ολοκλήρωμα Riemann μέσω του υπολογισμού του εμβαδού ενός παραβολικού χωρίου. Στόχοι

Διαβάστε περισσότερα

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ

ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ ΥΛΗ ΚΑΙ ΟΔΗΓΙΕΣ ΔΙΔΑΣΚΑΛΙΑΣ ΣΧΟΛ. ΕΤΟΣ 2014-15 ΓΕΩΜΕΤΡΙΑ Α ΤΑΞΗ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΔΑΚΤΕΑ ΕΞΕΤΑΣΤΕΑ ΥΛΗ Από το βιβλίο «Ευκλείδεια Γεωμετρία Α και Β Ενιαίου Λυκείου» των Αργυρόπουλου Η., Βλάμου

Διαβάστε περισσότερα

Κεφάλαιο 10 Γεωμετρικές κατασκευές Στα αιτήματα του Ευκλείδη περιλαμβάνονται μόνο τρία που αναφέρονται στη δυνατότητα κατασκευής ενός σχήματος. Ηιτήσθω από παντός σημείου επί παν σημείον ευθείαν γραμμήν

Διαβάστε περισσότερα

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ

ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Αναστασία Πέτρου Κωνσταντίνος Χρήστου Β 3 ΠΥΘΑΓΟΡΑΣ - ΑΣΥΜΜΕΤΡΑ ΜΕΓΕΘΗ Ο Πυθαγόρας ο Σάμιος, υπήρξε σημαντικός Έλληνας φιλόσοφος, μαθηματικός, γεω μέτρης και θεωρητικός της μουσικής. Είναι ο κατεξοχήν

Διαβάστε περισσότερα

1ο Κεφάλαιο: Συστήματα

1ο Κεφάλαιο: Συστήματα ο Κεφάλαιο: Συστήματα Γραμμικά συστήματα i. Ποια εξίσωση λέγεται γραμμική; ii. Πως μεταβάλλεται η ευθεία y, 0 ή 0 για τις διάφορες τιμές των α,β,γ; iii. Τι ονομάζεται λύση μιας γραμμικής εξίσωσης; iv.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ

ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ ΜΑΘΗΜΑΤΙΚΑ Γ ΓΥΜΝΑΣΙΟΥ Οι πραγματικοί αριθμοί αποτελούνται από τους ρητούς και τους άρρητους αριθμούς, τους φυσικούς και τους ακέραιους αριθμούς. Δηλαδή είναι το μεγαλύτερο σύνολο αριθμών που μπορούμε

Διαβάστε περισσότερα

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου.

Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Τυπολόγιο Μαθηματικών Πρόλογος Το εγχειρίδιο αυτό, δεν είναι απλό τυπολόγιο αλλά μία εγκυκλοπαίδεια όλων των μαθηματικών του ενιαίου λυκείου. Π ε ρ ι ε χ ό μ ε ν α Λυκείου Άλγεβρα 001 018 Γεωμετρία 019

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος Η έννοια πρόβληµα Ανάλυση προβλήµατος Με τον όρο πρόβληµα εννοούµε µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή ούτε προφανής. Μερικά προβλήµατα είναι τα εξής:

Διαβάστε περισσότερα

1 Dodecaeder 3 7 5 11 9. 2 12 4 10 6. 8 Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Copyright 1998-2005 Gijs Korthals Altes www.korthalsaltes.com Dodecaeder Copyright 1998-2005 Gijs Korthals

Διαβάστε περισσότερα

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα...

Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου. Άλγεβρα... Ερωτήσεις θεωρίας για τα Μαθηματικά Γ γυμνασίου Άλγεβρα 1.1 Β: Δυνάμεις πραγματικών αριθμών. 1. Πως ορίζεται η δύναμη ενός πραγματικού αριθμού ; Η δύναμη με βάση έναν πραγματικό αριθμό α και εκθέτη ένα

Διαβάστε περισσότερα

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά.

Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. Γ. Οι μαθητές και τα Μαθηματικά. Είδαμε τη βαθμολογία των μαθητών στα Μαθηματικά της προηγούμενης σχολικής χρονιάς. Ας δούμε τώρα πώς οι ίδιοι οι μαθητές αντιμετωπίζουν τα Μαθηματικά. ΠΙΝΑΚΑΣ 55 Στάση

Διαβάστε περισσότερα

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας;

Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Πώς εξελίχθηκαν τα μαθηματικά διαμέσου των αιώνων; Πώς συνδέονται με τις κατακτήσεις και τις αλλαγές στον τρόπο ζωής μας; Τα μαθηματικά διαπερνούν κάθε ανθρώπινη δραστηριότητα. Σ αυτή την παρουσίαση θα

Διαβάστε περισσότερα

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008

2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 2 o Καλοκαιρινό σχολείο Μαθηµατικών Νάουσα 2008 Μικρό Θεώρηµα του Fermat, η συνάρτηση του Euler και Μαθηµατικοί ιαγωνισµοί Αλέξανδρος Γ. Συγκελάκης ags@math.uoc.gr Αύγουστος 2008 Αλεξανδρος Γ. Συγκελακης

Διαβάστε περισσότερα

Μαθηματική Λογική και Απόδειξη

Μαθηματική Λογική και Απόδειξη Μαθηματική Λογική και Απόδειξη Σύντομο ιστορικό σημείωμα: Η πρώτη απόδειξη στην ιστορία των μαθηματικών, αποδίδεται στο Θαλή το Μιλήσιο (~600 π.χ.). Ο Θαλής απέδειξε, ότι η διάμετρος διαιρεί τον κύκλο

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή.

Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα. συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη τιµή. Σενάριο 6. Συµµεταβολές στο ισοσκελές τρίγωνο Γνωστική περιοχή: Γεωµετρία Β' Λυκείου. Συµµεταβολή µεγεθών. Εµβαδόν ισοσκελούς τριγώνου. Σύστηµα συντεταγµένων. Γραφική παράσταση συνάρτησης. Μέγιστη - ελάχιστη

Διαβάστε περισσότερα

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή

ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ ΠΕΡΙΛΗΨΗ. Εισαγωγή ΚΑΤΑΝΟΗΣΗ ΤΗΣ ΙΑΤΑΞΗΣ ΤΩΝ ΑΡΙΘΜΩΝ ΚΑΙ ΧΡΗΣΗ ΤΗΣ ΑΠΟΛΥΤΗΣ ΤΙΜΗΣ ΣΤΟΝ ΑΞΟΝΑ ΤΩΝ ΠΡΑΓΜΑΤΙΚΩΝ ΑΡΙΘΜΩΝ Αθανάσιος Γαγάτσης Τµήµα Επιστηµών της Αγωγής Πανεπιστήµιο Κύπρου Χρήστος Παντσίδης Παναγιώτης Σπύρου Πανεπιστήµιο

Διαβάστε περισσότερα

ραστηριότητες στο Επίπεδο 1.

ραστηριότητες στο Επίπεδο 1. ραστηριότητες στο Επίπεδο 1. Στο επίπεδο 0, στις πρώτες τάξεις του δηµοτικού σχολείου, όπου στόχος είναι η οµαδοποίηση των γεωµετρικών σχηµάτων σε οµάδες µε κοινά χαρακτηριστικά στη µορφή τους, είδαµε

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ

ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ ΜΑΘΗΜΑΤΙΚΗ ΛΟΓΙΚΗ ΚΑΙ ΑΠΟΔΕΙΞΗ Περιεχόμενα : Α) Προτάσεις-Σύνθεση προτάσεων Β)Απόδειξη μιας πρότασης Α 1 ) Τι είναι πρόταση Β 1 ) Βασικές έννοιες Α ) Συνεπαγωγή Β ) Βασικές μέθοδοι απόδειξης Α 3 ) Ισοδυναμία

Διαβάστε περισσότερα

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες

εξισώσεις-ανισώσεις Μαθηματικά α λυκείου Φροντιστήρια Μ.Ε. ΠΑΙΔΕΙΑ σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες Με τον διεθνή όρο φράκταλ (fractal, ελλ. μορφόκλασμα ή μορφοκλασματικό σύνολο) στα Μαθηματικά, τη Φυσική αλλά και σε πολλές επιστήμες ονομάζεται ένα γεωμετρικό σχήμα που επαναλαμβάνεται αυτούσιο σε άπειρο

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ. Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β. ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ Γ. Π. Β. ΦΡΟΝΤΙΣΤΗΡΙΑΚΕΣ ΣΗΜΕΙΩΣΕΙΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΛΥΜΕΝΕΣ & ΑΛΥΤΕΣ ΑΣΚΗΣΕΙΣ Επιμέλεια: Γ. Π. Βαξεβάνης (Γ. Π. Β.) (Μαθηματικός) ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ

Διαβάστε περισσότερα

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÔÑÉÐÔÕ Ï ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 3 Ε_3.Μλ3ΘΤ(ε) ΤΑΞΗ: ΚΑΤΕΥΘΥΝΣΗ: ΜΑΘΗΜΑ: ΘΕΜΑ Α Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΘΕΤΙΚΗ & ΤΕΧΝΟΛΟΓΙΚΗ ΜΑΘΗΜΑΤΙΚΑ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε.

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ. Δ/νσεις Δ/θμιας Εκπ/σης Γραφεία Σχολικών Συμβούλων Γενικά Λύκεια (μέσω των Δ/νσεων Δ.Ε. ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΥΠΟΥΡΓΕΙΟ ΠΑΙΔΕΙΑΣ ΚΑΙ ΘΡΗΣΚΕΥΜΑΤΩΝ ----- ΕΝΙΑΙΟΣ ΔΙΟΙΚΗΤΙΚΟΣ ΤΟΜΕΑΣ Π/ΘΜΙΑΣ & Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ Δ/ΝΣΗ ΣΠΟΥΔΩΝ Δ/ΘΜΙΑΣ ΕΚΠ/ΣΗΣ ΤΜΗΜΑ Α ----- Ταχ. Δ/νση: Ανδρέα Παπανδρέου 37 Τ.Κ. Πόλη:

Διαβάστε περισσότερα

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης

Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Η εφαπτομένη σε σημείο της γραφικής παράστασης συνάρτησης Του ΔΗΜΗΤΡΗ ΝΤΡΙΖΟΥ Σχολικού Συμβούλου Μαθηματικών Τρικάλων και Καρδίτσας ΜΕΡΟΣ ΠΡΩΤΟ Ένα από τα δύο κομβικά ερευνητικά προβλήματα που οι συστηματικές

Διαβάστε περισσότερα

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014

ΑΠΘ. Χαρά Χαραλάμπους Τμήμα Μαθηματικών ΑΠΘ. Ιστορία των Μαθηματικών Εαρινό Εξάμηνο 2014 Εαρινό εξάμηνο 2014 20.03.14 Χ. Χαραλάμπους Είναι το 5 ο αίτημα όντως αίτημα και όχι πρόταση? Η πρώτη φορά που το αίτημα χρησιμοποιείται στα Στοιχεία είναι στην απόδειξη της Πρότασης 29. ( Η Πρόταση 29

Διαβάστε περισσότερα

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό.

Ο Υπολογισμός του π από τον Αρχιμήδη. Οι πιο σημαντικές συνεισφορές του Αρχιμήδη στα Μαθηματικά ανήκουν στον Ολοκληρωτικό Λογισμό. Αρχιμήδης ο Συρακούσιος Ο μεγαλύτερος μαθηματικός της αρχαιότητας και από τους μεγαλύτερους όλων των εποχών. Λέγεται ότι υπήρξε μαθητής του Ευκλείδη, ότι ταξίδεψε στην Αίγυπτο, σπούδασε στην Αλεξάνδρεια

Διαβάστε περισσότερα

11 Το ολοκλήρωµα Riemann

11 Το ολοκλήρωµα Riemann Το ολοκλήρωµα Riem Το πρόβληµα υπολογισµού του εµβαδού οποιασδήποτε επιφάνειας ( όπως κυκλικοί τοµείς, δακτύλιοι και δίσκοι, ελλειπτικοί δίσκοι, παραβολικά και υπερβολικά χωρία κτλ) είναι γνωστό από την

Διαβάστε περισσότερα

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος

Θεωρία Υπολογισμού Άρτιοι ΑΜ. Διδάσκων: Σταύρος Κολλιόπουλος. eclass.di.uoa.gr. Περιγραφή μαθήματος Περιγραφή μαθήματος Θεωρία Υπολογισμού Άρτιοι ΑΜ Σκοπός του μαθήματος είναι η εισαγωγή στη Θεωρία Υπολογισμού και στη Θεωρία Υπολογιστικής Πολυπλοκότητας (Θεωρία Αλγορίθμων). Διδάσκων: Σταύρος Κολλιόπουλος

Διαβάστε περισσότερα

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας

Κύκλου μέτρησις. Δημιουργία: Τεύκρος Μιχαηλίδης. Ολοκληρωμένο διδακτικό σενάριο. Μαθηματικό Εργαστήρι Β Αθήνας Κύκλου μέτρησις Ολοκληρωμένο διδακτικό σενάριο Δημιουργία: Τεύκρος Μιχαηλίδης Μαθηματικό Εργαστήρι Β Αθήνας Η ιστορία του π 2 Κυ κλου με τρησις Η μέθοδος του Αρχιμήδη για την προσέγγιση του π και ο ρόλος

Διαβάστε περισσότερα

Μουσική και Μαθηματικά!!!

Μουσική και Μαθηματικά!!! Μουσική και Μαθηματικά!!! Η μουσική είναι ίσως από τις τέχνες η πιο δεμένη με τα μαθηματικά, με τη μαθηματική σκέψη, από την ίδια τη φύση της. Η διατακτική δομή μπορεί να κατατάξει τα στοιχεία ενός συνόλου,

Διαβάστε περισσότερα

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ

Παρουσίαση 1 ΙΑΝΥΣΜΑΤΑ Παρουσίαση ΙΑΝΥΣΜΑΤΑ Παρουσίαση η Κάθετες συνιστώσες διανύσµατος Παράδειγµα Θα αναλύσουµε το διάνυσµα v (, ) σε δύο κάθετες µεταξύ τους συνιστώσες από τις οποίες η µία να είναι παράλληλη στο α (3,) Πραγµατικά

Διαβάστε περισσότερα

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ

Εαρινό Εξάμηνο 2012. 15.03.12 Χ. Χαραλάμπους ΑΠΘ Εαρινό εξάμηνο 2012 15.03.12 Χ. Χαραλάμπους Έργα Στοιχεία Δεδομένα Φαινόμενα ή Σφαιρικά Οπτικά Κατοπτρικά Στοιχεία Μουσικής Βιβλίο περί διαιρέσεων Πορίσματα Κωνικά Τόποι προς επιφάνειες Ψευδάρια Μηχανική

Διαβάστε περισσότερα

Υποθετικές προτάσεις και λογική αλήθεια

Υποθετικές προτάσεις και λογική αλήθεια Υποθετικές προτάσεις και λογική αλήθεια Δρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύμβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Περίληψη Στην εργασία αυτή επιχειρείται μια ερμηνεία της λογικής αλήθειας

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Ευκλείδεια Γεωμετρία

Ευκλείδεια Γεωμετρία Ευκλείδεια Γεωμετρία Γεωμετρία Γεω + μετρία Γη + μετρώ Οι πρώτες γραπτές μαρτυρίες γεωμετρικών γνώσεων ανάγονται στην τρίτη με δεύτερη χιλιετία π.χ. και προέρχονται από τους λαούς της αρχαίας Αιγύπτου

Διαβάστε περισσότερα

Η παιδαγωγική διάσταση των πολλών τρόπων επίλυσης ενός προβλήµατος ρ. Παναγιώτης Λ. Θεοδωρόπουλος Σχολικός Σύµβουλος κλάδου ΠΕ03 www.p-theodoropoulos.gr Εισαγωγή Μία χαρακτηριστική ιδιότητα των Μαθηµατικών

Διαβάστε περισσότερα

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία»

Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» 3ο Γενικό Λύκειο Λάρισας Κύκλος Ερευνητικής Εργασίας: «Μαθηµατικά, Φυσικές Επιστήµες και Τεχνολογία» Θέµα Ερευνητικής Εργασίας: ιερεύνηση των εξισώσεων και ανισώσεων µέσα από την επίλυση καθηµερινών προβληµάτων.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ

ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΜΑΘΗΜΑΤΑ ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΟΥ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Β ΛΥΚΕΙΟΥ ΚΕΦΑΛΑΙΟ 1 ο : ΔΙΑΝΥΣΜΑΤΑ 1 ΜΑΘΗΜΑ 1 ο +2 ο ΕΝΝΟΙΑ ΔΙΑΝΥΣΜΑΤΟΣ Διάνυσμα ορίζεται ένα προσανατολισμένο ευθύγραμμο τμήμα, δηλαδή ένα ευθύγραμμο τμήμα

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΚΕΦΑΛΑΙΟ ο: ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ ΘΕΜΑ Α Άσκηση, μιγαδικοί αριθμοί να αποδείξετε ότι: Αν = Έχουμε: = ( ) ( ) ( ) ( ) = = =. Το τελευταίο ισχύει, άρα ισχύει και η ισοδύναμη αρχική σχέση.

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004

ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ. ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΜΗΧΑΝΙΚΗ Ι Σεπτέµβριος 2004 Τµήµα Π. Ιωάννου & Θ. Αποστολάτου Θέµα 1 (25 µονάδες) Ένα εκκρεµές µήκους l κρέµεται έτσι ώστε η σηµειακή µάζα να βρίσκεται ακριβώς

Διαβάστε περισσότερα

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου

Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Μαθηματικά Θετικής Τεχνολογικής Κατεύθυνσης Β Λυκείου Κεφάλαιο ο : Κωνικές Τομές Επιμέλεια : Παλαιολόγου Παύλος Μαθηματικός ΚΕΦΑΛΑΙΟ Ο : ΚΩΝΙΚΕΣ ΤΟΜΕΣ. Ο ΚΥΚΛΟΣ ΣΤΟΙΧΕΙΑ ΘΕΩΡΙΑΣ Ένας κύκλος ορίζεται αν

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ

ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ ΚΕΦΑΛΑΙΟ 4 ο : ΑΝΙΣΩΣΕΙΣ ΤΟ 2 Ο ΘΕΜΑ Άσκηση 1 Δίνονται οι ανισώσεις: 3x και 2 x α) Να βρείτε τις λύσεις τους (Μονάδες 10) β) Να βρείτε το σύνολο των κοινών τους λύσεων (Μονάδες 15) α) Έχουμε 3x 2x x 2

Διαβάστε περισσότερα