Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων"

Transcript

1 Αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστημάτων Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών και Χημικών ιεργασιών Τμήμα Μηχανολόγων Μηχανικών Πανεπιστήμιο Θεσσαλίας, Βόλος Νοέμβριος 0

2 . Εισαγωγή Η μοντελοποίηση πολλών φυσικών φαινομένων και συστημάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται με την χρήση συνήθων διαφορικών εξισώσεων. Αρκετές κατηγορίες συνήθων διαφορικών εξισώσεων επιλύονται αναλυτικά αλλά ακόμη περισσότερες είναι αυτές που δεν επιλύονται αναλυτικά, δηλαδή δεν έχουν αναλυτικές λύσεις κλειστής μορφής και η επίλυσή τους επιτυγχάνεται μόνο αριθμητικά. Στο κεφάλαιο αυτό θα ασχοληθούμε με αριθμητικές τεχνικές επίλυσης συνήθων διαφορικών εξισώσεων. Έστω μια συνήθης διαφορική εξίσωση της μορφής n dy d y d y F,y,,,, 0, n d d d (..) όπου και y η ανεξάρτητη και εξαρτημένη μεταβλητή αντίστοιχα. Η (..) έχει μοναδική λύση μόνο όταν συνοδεύεται από n συνθήκες. Εάν οι συνθήκες αυτές ορίζονται σε ένα σημείο, έστω στο σημείο 0, τότε το πρόβλημα ονομάζεται πρόβλημα αρχικών τιμών, ενώ εάν ορίζονται σε περισσότερα από ένα σημείο τότε το πρόβλημα ονομάζεται πρόβλημα οριακών τιμών. Στο παρόν κεφάλαιο θα ασχοληθούμε αποκλειστικά με προβλήματα αρχικών τιμών. Όταν έχουμε να λύσουμε ένα πρόβλημα αρχικών τιμών n τάξης, συνήθως αντικαθιστούμε την συνήθη διαφορική εξίσωση με n εξισώσεις ης τάξης. Αυτό επιτυγχάνεται προσδιορίζοντας n- νέες εξαρτημένες μεταβλητές. Αντίστοιχα οι n- αρχικές συνθήκες για τις παραγώγους της άγνωστης εξαρτημένης μεταβλητής αντικαθίστανται με αρχικές συνθήκες για τις n- νέες εξαρτημένες μεταβλητές του συστήματος. Θέτοντας

3 y y y dy d n d y d n d y d προκύπτει το σύστημα y' y y' y' y y n n F,y,y y, y,y', n n 0 (..) (..3) Παράδειγμα: Έστω η εξίσωση Bessel ης τάξης d y dy p 0 (..4) d d όπου p μια σταθερά. Θέτοντας εξισώσεων ης τάξης dy g d dg d 0 g p y g dy d προκύπτει το σύστημα δύο (..5) Επομένως αφού στην περίπτωση προβλημάτων αρχικών τιμών, μια εξίσωση n τάξης μπορεί να αντικατασταθεί από σύστημα n εξισώσεων ης τάξης θα ασχοληθούμε αρχικά με την επίλυση εξισώσεων και στη συνέχεια συστημάτων ης τάξης. Οι βασικές κατηγορίες μεθόδων επίλυσης συνήθων διαφορικών εξισώσεων ης τάξης ταξινομούνται ως εξής: 3

4 Α. Πρόβλημα αρχικών τιμών. Μέθοδοι ενός βήματος (Euler, Runge Kutta). Μέθοδοι πολλών βημάτων Β. Προβλήματα οριακών τιμών. Μέθοδος πεπερασμένων διαφορών. Μέθοδος πεπερασμένων όγκων Στο κεφάλαιο αυτό όπως προαναφέραμε θα ασχοληθούμε με την επίλυση προβλημάτων αρχικών τιμών, εφαρμόζοντας μεθόδους ενός βήματος. Προβλήματα οριακών τιμών θα εξετασθούν στο Κεφάλαιο 3 παράλληλα με την εισαγωγή της μεθόδου των πεπερασμένων διαφορών. Σημειώνεται ότι στη περίπτωση των προβλημάτων οριακών τιμών η αντικατάσταση της διαφορικής εξίσωσης με σύστημα δεν είναι εφικτή, επειδή η φυσική σημασία και η μαθηματική διατύπωση των δύο προβλημάτων δεν είναι ισοδύναμη.. Μέθοδος Euler Έστω το πρόβλημα αρχικών τιμών dy f,y d (..) y y (..) 0 0 Από την εξ. (..) είναι προφανές ότι για κάθε ζεύγος σημείων * * * *,y η συνάρτηση άγνωστης συνάρτησης 0 f,y ταυτίζεται με τη κλίση της y στο σημείο *. Για παράδειγμα dy f,y 0 0 f,y 0 0 (..3) d Η μέθοδος Εuler βασίζεται στην υπόθεση ότι για μια μικρή απόσταση κατά μήκος του άξονα η κλίση της συνάρτησης y είναι σταθερή με τιμή ίση με τη τιμή της κλίσης στην αρχή του 4

5 διαστήματος. Αναπτύσσοντας την y σε σειρά Taylor γύρω από το σημείο 0 έχουμε dy dy y y (..4) d d Εφαρμόζοντας την βασική υπόθεση της μεθόδου Euler στην πρώτη παράγωγο της (..4) και αποκόβοντας τους όρους από ης επάνω προκύπτει η σχέση y 0 y 0 f 0, y0 Έχοντας υπολογίσει την τιμή y y 0 τάξης και (..5) επαναλαμβάνεται και έχουμε y y f,y η διαδικασία 0 (..6) Θεωρώντας ότι κάθε φορά προχωρούμε στον άξονα κατά ένα βήμα η μέθοδος Euler γράφεται στη γενική μορφή y y y f,y, 0,,, (..7) ή στην απλούστερη μορφή y y f, y O, 0,,, (..8) Η (..8) έχει ρητή μορφή, δηλαδή η άγνωστη ποσότητα βρίσκεται μόνο στην αριστερή πλευρά της αναγωγικής σχέσης. Η γεωμετρική αναπαράσταση της μεθόδου Euler είναι απλούστατη και φαίνεται στο Σχήμα. όπου y και y στο σημείο αποτελεσματική μόνο όταν η συνάρτηση στο διάστημα y είναι η αναλυτική και αριθμητική τιμή της. Είναι προφανές ότι η μέθοδος θα είναι y είναι ομαλή και η κλίση της παραμένει περίπου σταθερή και ίση με την κλίση της y στην αρχή του διαστήματος. 5

6 Σχήμα.: Γεωμετρική ερμηνεία της μεθόδου Euler Παράδειγμα: Έστω η διαφορική εξίσωση y' y, Η αναλυτική λύση είναι με αρχική συνθήκη 0 y 0 y 0. y e. Επιλέγοντας 0., εφαρμόζουμε την μέθοδο Euler και προκύπτει ο παρακάτω πίνακας αποτελεσμάτων: Αριθμός Αριθμητική Αναλυτική Απόλυτο βήματος λύση y f,y λύση y σφάλμα y y

7 Όπως προκύπτει από την τελευταία στήλη του πίνακα το απόλυτο σφάλμα αυξάνει σε κάθε βήμα της μεθόδου. Όπως θα δούμε παρακάτω το τοπικό σφάλμα της μεθόδου Euler είναι O αλλά το συνολικό σφάλμα είναι O. Στο σημείο αυτό είναι χρήσιμο να ξανά-διατυπώσουμε την μέθοδο Euler εφαρμόζοντας αριθμητική ολοκλήρωση αντί για αριθμητική παραγώγιση (σειρά Taylor). Έστω ότι επιλύουμε το ίδιο πρόβλημα αρχικών τιμών όπως περιγράφεται από την εξίσωση (..) και την συνθήκη (..), στο διάστημα,. 0 N Επιλέγουμε το μέγεθος από τη σχέση N N 0 (..9) όπου N είναι ο αριθμός των ίσων διαστημάτων που διαιρείται το διάστημα 0 N, και 0, 0,,,N. Στη συνέχεια ολοκληρώνουμε αναλυτικά την διαφορική εξίσωση κατά μήκος των N υπό-διαστημάτων και έχουμε 0 N y y f,y d 0 y y f,y d N y y f,y d y y f,y d. N N (..0) 7

8 Βεβαίως ο αναλυτικός υπολογισμός των εκφράσεων (..0) δεν είναι εφικτός, αφού οι συναρτήσεις f,y δεν είναι γνωστές στα υπόδιαστήματα ολοκλήρωσης. Εδώ ακριβώς, εισάγεται η βασική υπόθεση της μεθόδου Euler όπου υποθέτουμε ότι η τιμή της συνάρτησης f,y σε κάθε υπό-διάστημα παραμένει σταθερή και ίση με την τιμή της f,y στην αρχή του υπό-διαστήματος. Η προσέγγιση αυτή είναι αντίστοιχη με την μεθοδολογία αριθμητικής ολοκλήρωσης I, ακρίβειας O. Επομένως τώρα τα ολοκληρώματα στην ακολουθία (..0) υπολογίζονται προσεγγιστικά και προκύπτει η αναγωγική έκφραση (..8) της μεθόδου Euler. Είναι προφανές ότι η ακρίβεια της μεθόδου Euler βελτιώνεται εάν βελτιωθεί η ακρίβεια της αριθμητικής ολοκλήρωσης σε κάθε υπό-διάστημα. Για παράδειγμα εάν η αριθμητική ολοκλήρωση I αντικατασταθεί με αριθμητική ολοκλήρωση I, δηλαδή κανόνα του τραπεζίου, βρίσκουμε την αναγωγική έκφραση 3 y y f,y f,yo. (..) Η (..) έχει πεπλεγμένη μορφή, δηλαδή η άγνωστη ποσότητα βρίσκεται και στις δύο πλευρές της αναγωγικής σχέσης. Στις περιπτώσεις αυτές η άγνωστη ποσότητα προκύπτει μετά από επαναληπτική διαδικασία που σταματά όταν ικανοποιηθεί το κριτήριο σύγκλισης. Επομένως η (..) γράφεται στη μορφή y y f,y f,y (n ) (n) (..) όπου ο δείκτης n σε παρένθεση είναι ο δείκτης επανάληψης. Είναι προφανές ότι η αριθμητική προσπάθεια αυξάνει σημαντικά, αφού κάθε βήμα συνοδεύεται από ένα αναγκαίο αριθμό επαναλήψεων ώστε να βελτιωθεί η τιμή y που προκύπτει μετά την πρώτη επανάληψη. Ο αλγόριθμος (..) είναι γνωστός σαν πεπλεγμένη Euler ή μέθοδος Heun. 8

9 Επιλέγοντας άλλα σχήματα αριθμητικής ολοκλήρωσης οδηγούμεθα σε αντίστοιχα σχήματα αριθμητικής επίλυσης συνήθων διαφορικών εξισώσεων. Για το λόγο αυτό πολλές φορές όταν αναφερόμεθα σε μεθόδους επίλυσης συνήθων διαφορικών εξισώσεων έχει επικρατήσει ο όρος αριθμητική ολοκλήρωση συνήθων διαφορικών εξισώσεων. 3. Μέθοδοι Runge-Kutta Πρόκειται για οικογένεια μεθόδων ενός βήματος με την έννοια ότι η τιμή της εξαρτημένης τιμής στο τέλος του βήματος, όπως και στη μέθοδο Euler, εξαρτάται μόνο από την πληροφορία που αντλείται μέσα από το συγκεκριμένο βήμα. ηλαδή η τιμή y εξαρτάται μόνο από την τιμή και άλλες τιμές της y στο διάστημα,. y Η απλούστερη όλων είναι η Runge-Kutta ης τάξης που δίδεται από τη σχέση y y f,y f,y f,y. (.3.) Η (..3) προκύπτει εφαρμόζοντας την μέθοδο Euler δύο φορές ή την πεπλεγμένη Euler για μία μόνο επανάληψη. Πρώτα υπολογίζουμε την ενδιάμεση τιμή ŷ y f,y (.3.) και στη συνέχεια την τελική τιμή y ˆ y f,y f,y. (.3.3) Η Runge-Kutta ης τάξης συνοψίζεται στον αλγόριθμο k f,y k f,y k y y k k (.3.4) με 0,,. Ο αλγόριθμος γίνεται εύκολα κατανοητός από την γεωμετρική του αναπαράσταση που φαίνεται στο Σχήμα.. 9

10 Σχήμα.: Γεωμετρική ερμηνεία της μεθόδου Runge-Kutta ης τάξης Οι Runge-Kutta μεγαλύτερης τάξης προκύπτουν με παρόμοιο τρόπο εφαρμόζοντας μεθόδους αριθμητικής ολοκλήρωσης μεγαλύτερης τάξης. Ο αλγόριθμος της Runge-Kutta 3 ης τάξης, εφαρμόζοντας τον ο κανόνα του Smpson, δίδεται από τις σχέσεις k f,y k f,y k k f,y k 3 y y k 4k k 6 3 (.3.5) με 0,,. Οι ποσότητες k,k,k 3 προσεγγίζουν τις παραγώγους της εξαρτημένης μεταβλητής στα σημεία,, αντίστοιχα του υπό- διαστήματος,. 0

11 Η γενική μορφή των μεθόδων Runge-Kutta 4 ης τάξης είναι y y ak bk ck dk 3 4 (.3.6) όπου οι ποσότητες k,k,k,k dy 3 4 είναι προσεγγιστικές τιμές της d διαφορετικά σημεία του υπό-διαστήματος Runge-Kutta 4 ης τάξης είναι οι αλγόριθμοι k f,y k f,y k k3 f,y k k4 f,y k3 y y k k k k και k f,y k f,y k 3 3 k3 f,y k 3 3 k4 f,y k3 y y k 3k 3k k 8 3 4,. σε Οι πλέον δημοφιλείς (.3.7) (.3.8) Όλοι οι αλγόριθμοι Runge-Kutta έχουν ρητό χαρακτήρα. Το συσσωρευμένο σφάλμα της κάθε μεθόδου Runge-Kutta είναι αντίστοιχο με την τάξη της μεθόδου.

12 4. Συστήματα διαφορικών εξισώσεων Έστω ότι έχουμε ένα σύστημα n εξισώσεων ης τάξης dy f,y,,yn d dy f,y,,y d dyn fn,y,,y d με αρχικές συνθήκες στο σημείο 0 y y 0 0, y y 0, 0 y y n 0 n, 0 n n (.4.) (.4.) Η επίλυση ενός συστήματος εξισώσεων με βάση τις μεθόδους που έχουν αναπτυχθεί δεν έχει επιπλέον θεωρητικές δυσκολίες από ότι στη περίπτωση των απλών εξισώσεων. Βεβαίως οι αναγκαίοι υπολογισμοί είναι περισσότεροι και ο προγραμματισμός γίνεται πιο σύνθετος. Παράδειγμα: d y z y e d, ' y 0, d y d z y e, z 0 0, ' Εισάγουμε τις εξαρτημένες μεταβλητές y y 0 (.4.3α) z 0 0 (.4.3β) y, y ' y, y3 ' z και y4 z και το αρχικό σύστημα μετατρέπεται σε ένα σύστημα ης εξισώσεων με τέσσερις αρχικές συνθήκες: y y y 0 ' y y y e ' 3 y 0 τάξης τεσσάρων

13 y y y ' 3 4 y y y e ' 4 3 y (.4.4) Αρχικά εφαρμόζουμε τον αλγόριθμο Euler για 0.. Επομένως y 0. y 0 y y 0. y 0 y3 0 y 0 e y 0. y 0 y y 4 0. y4 0 y3 0 y 0 e 0. (.4.5) Η διαδικασία συνεχίζεται βήμα - βήμα για όσα βήματα κρίνεται αναγκαίο. Σημειώνεται ότι οι συναρτήσεις y και y 3 αντιστοιχούν στις αρχικές άγνωστες εξαρτημένες μεταβλητές y και z, ενώ οι συναρτήσεις y 3 και y 4 στις παραγώγους τους. Επαναλαμβάνουμε τη επίλυση του παραδείγματος εφαρμόζοντας τώρα την μέθοδο Runge-Kutta ης τάξης για 0.. Τώρα οι ποσότητες k και k είναι διανύσματα τεσσάρων στοιχείων, όπου το κάθε στοιχείο συνδέεται με την αντίστοιχη άγνωστη εξαρτημένη μεταβλητή: k y 0 3 y 00 k y 0 y 0 e 0 k k 4 y 0 y 0 e 0 3 και k y 0. y 0 k 0. * 0 k y. y. e 3 0. y3 k y k e k 3 y 0. y 0 k * k y. y. e 3 y k y k e (.4.6) (.4.7) 3

14 Τελικά μετά από ένα βήμα οι τιμές των εξαρτημένων μεταβλητών είναι: 3 4 y y y y (.4.8) Έχοντας σαν βάση την παραπάνω επεξεργασία ο αναγνώστης, για να εξοικειωθεί με τη διαδικασία, μπορεί να επιλύσει το σύστημα των τεσσάρων διαφορικών εξισώσεων με Runge-Kutta 3 ης και 4 ης τάξης. Σημειώνεται ότι η f,y,y,y,y, κάθε εξαρτημένη μεταβλητή της συνάρτησης j 3 4 j 34,,, στη δεξιά πλευρά του συστήματος βελτιώνεται με τις «δικά της» k. Στη γενική περίπτωση ενός συστήματος με j,,,j εξισώσεις ο πρώτος από τους δύο αλγορίθμους Runge-Kutta 4 ης τάξης, στους οποίους αναφερθήκαμε, γράφεται ως εξής: y j, y j, kj, kj, kj, 3 k j, 4, 6 0,,, (.4.9) όπου k f,y,y,,y j, j J ŷj yj kj, k f,y ˆ,y ˆ,,y ˆ yj yj kj, k f,y,y,,y y y k j, j J j, 3 j J j j j, 3 k f,y,y,,y j, 4 j J (.4.0) 4

15 5. Σφάλματα, διάδοση σφαλμάτων, ευστάθεια και σύγκλιση Το σφάλμα συνάρτησης ανάμεσα στην αριθμητική και αναλυτική τιμή της y στον κόμβο ορίζεται από το μέτρο της διαφοράς y y (.5.) όπου y και y η αριθμητική και αναλυτική τιμή της αντίστοιχα. y στο σημείο Για να μελετήσουμε το σφάλμα της μεθόδου Euler, επιλύουμε την (.5.) για την αριθμητική τιμή και την αντικαθιστούμε στην σχέση (..8). Η επεξεργασία αυτή μας οδηγεί στη σχέση y y f,y O (.5.) Στη συνέχεια αναπτύσσουμε σε σειρά Taylor τον όρο f f,y f,y y y y (.5.3) και αντικαθιστώντας την (.5.3) στην (.5.) προκύπτει ότι το σφάλμα στο βήμα συνδέεται με το σφάλμα στο βήμα με τη σχέση f O y y y (.5.4) Ο πρώτος όρος στο δεξί τμήμα της (.5.4) υποδηλώνει την συνεισφορά του σφάλματος του βήματος στο σφάλμα του βήματος, ενώ ο δεύτερος όρος υποδηλώνει το τοπικό σφάλμα αποκοπής. Επομένως, ενώ το τοπικό σφάλμα είναι ης μετά από βήματα, είναι ης τάξης. τάξης το συνολικό σφάλμα της μεθόδου Euler, Επίσης από την (.5.4) προκύπτει ότι εάν σε κάθε βήμα ισχύει η ανισότητα f y y y (.5.5) 5

16 τότε το σφάλμα παραμένει πεπερασμένο και μάλιστα μειώνεται καθώς αυξάνει ο αριθμός των βημάτων. Στη περίπτωση αυτή λέμε ότι η μέθοδος f y είναι ευσταθής. Εάν η παράγωγος 0 τότε μπορούμε να ορίσουμε το f εύρος τιμών για το βήμα ώστε να ισχύει η (.5.5). Αντίθετα εάν 0 y τότε η ανισότητα (.5.5) δεν ισχύει για οποιαδήποτε τιμή του βήματος. Στη περίπτωση αυτή f y y y (.5.6) και το σφάλμα αυξάνει συνεχώς και λέμε ότι η μέθοδος είναι ασταθής. Το ερώτημα που πρέπει να απαντηθεί είναι εάν η συνεχής αύξηση του σφάλματος συνεπάγεται και αστοχία της αριθμητικής μεθόδου. Η απάντηση είναι: Όχι απαραίτητα. Πρέπει να ελεγχθεί η συμπεριφορά της αναλυτικής λύσης καθώς αυξάνουν οι τιμές της ανεξάρτητης μεταβλητής. Εάν η λύση του προβλήματος είναι φθίνουσα συνάρτηση ως προς, τότε βεβαίως τα αριθμητικά αποτελέσματα είναι εσφαλμένα. Αντίθετα εάν η λύση του προβλήματος είναι αύξουσα συνάρτηση ως προς, τότε ο πιο σημαντικός παράγοντας δεν είναι οι πεπερασμένες τιμές του απολύτου σφάλματος αλλά οι τιμές του σχετικού σφάλματος σημαντικά. y να μην μεγαλώνουν Στην έννοια της σύγκλισης θα αναφερθούμε με λεπτομέρεια σε επόμενα κεφάλαια. Όμως στο σημείο αυτό είναι χρήσιμο να δώσουμε το σχετικό ορισμό. Λέμε ότι μία αριθμητική μέθοδος συγκλίνει όταν το σφάλμα, 0,,, τείνει στο μηδέν, καθώς το διάστημα τείνει επίσης στο μηδέν: lm 0 (.5.7) 0 ηλαδή η αριθμητική λύση ανάγεται στην συνεχή λύση καθώς το διακριτοποιημένο πρόβλημα ανάγεται στο συνεχές πρόβλημα. 6

17 Για τη μελέτη ευστάθειας των άλλων μεθόδων αριθμητικής ολοκλήρωσης συνήθων διαφορικών εξισώσεων, απλουστεύουμε την μαθηματική επεξεργασία και εξετάζουμε την ευστάθειά τους με βάση την γραμμικοποιημένη εξίσωση dy d. (.5.8) y Στη περίπτωση αυτή εύκολα προκύπτει από την (.5.5) ότι το κριτήριο ευστάθειας της μεθόδου Euler είναι. (.5.9) Η ανισότητα (.5.9), για ισχύει όταν R ισχύει όταν 0, ενώ για C R I. Άρα η μέθοδος είναι ευσταθής εφόσον η ποσότητα βρίσκεται εντός του κύκλου με κέντρο 0, και ακτίνα του μιγαδικού επιπέδου. Τo κριτήριο ευστάθειας της μεθόδου Runge-Kutta ης τάξης, όταν αυτή εφαρμοσθεί στην (.5.8), προκύπτει ως εξής: (.5.0) Από τη σχέση (.5.0) συνεπάγεται ότι το σφάλμα παραμένει μικρό όταν (.5.) Με τον ίδιο τρόπο προκύπτει ότι τα κριτήρια ευστάθειας των Runge- Kutta 3 ης και 4 ης τάξης είναι 3 3 (.5.) 6 και (.5.3) 6 4 7

18 αντίστοιχα. Εάν το R οι σχέσεις ( ) οδηγούν στις παρακάτω ανισότητες που είναι ενδεικτικές για το εύρος τιμών που επιτρέπεται να πάρει το βήμα ώστε το αριθμητικό σχήμα να είναι ευσταθές: Runge-Kutta ης τάξης: 0 Runge-Kutta 3 ης τάξης: 5. 0 Runge-Kutta 4 ης τάξης: (.5.4) Επίσης εφαρμόζοντας την ίδια μεθοδολογία στον αλγόριθμο (..) προκύπτει ότι η πεπλεγμένη Euler, εφαρμοζόμενη στην γραμμική εξίσωση (.5.8) για R είναι ευσταθής όταν ισχύουν οι παρακάτω συνθήκες: 0 για 0 και 0 για 0 (.5.5) Τονίζεται ότι σε όλες τις περιπτώσεις οι μέθοδοι είναι ευσταθείς μόνο όταν 0. Εάν το C, οι αντίστοιχες περιοχές ευστάθειας θα πρέπει να αναζητηθούν στο μιγαδικό επίπεδο και απεικονίζονται στο Σχήμα.3. Υπενθυμίζουμε ότι τα αποτελέσματα αυτά προκύπτουν ικανοποιώντας τις ανισότητες ( ) και ότι ισχύουν μόνο για διαφορικές εξισώσεις της μορφής (.5.8). Γενικά καθώς αυξάνει η τάξη ακρίβειας της αριθμητικής μεθόδου ολοκλήρωσης συνήθων διαφορικών εξισώσεων αυξάνει και η ευστάθεια της μεθόδου, επιτρέποντας το βήμα ολοκλήρωσης να παίρνει μεγαλύτερες τιμές. Το ζητούμενο σε κάθε περίπτωση είναι η ανάπτυξη αριθμητικών μεθόδων υψηλής ακρίβειας και ευστάθειας. υστυχώς τις περισσότερες φορές κάτι τέτοιο είναι δύσκολο και ανάλογα με την εφαρμογή και τις υπολογιστικές δυνατότητες που έχουμε θυσιάζουμε την ακρίβεια προς όφελος της ευστάθειας ή το αντίθετο. 8

19 Σχήμα.3: Περιοχές ευστάθειας στο μιγαδικό επίπεδο των μεθόδων Euler και Runge-Kutta ης, 3 ης και 4 ης τάξης. 6. Προγράμματα σε Fortran και παραδείγματα program ntal_value_problems! Solve: y'=-y/, y[]=0 mplct none real:: real,allocatable,dmenson(:)::,y nteger::,metod,n=0! number of teratons allocate((n),y(n)) ()= y()=0 =0.!startng pont!ntal value metod=!=euler, =rk, 3=rk3, 4=rk4 select case (metod) case () call euler(,y,,n) 9

20 case () call rk(,y,,n) case (3) call rk3(,y,,n) case (4) call rk4(,y,,n) end select do =,n prnt*,,(),y(),f(()),abs(f(())-y()) contans subroutne euler(,y,,n) real::(:),y(:), nteger::,n do =,n- y(+)=y()+*f((),y()) (+)=()+ end subroutne euler subroutne rk(,y,,n) real::(:),y(:),,k,k nteger::,n do =,n- k=f((),y()) k=f(()+,y()+*k) y(+)=y()+(/)*(k+k) (+)=()+ end subroutne rk subroutne rk3(,y,,n) real::(:),y(:),,k,k,k3 nteger::,n do =,n- k=f((),y()) k=f(()+0.5*,y()+0.5**k) k3=f(()+,y()+*k) y(+)=y()+(/6)*(k+4*k+k3) (+)=()+ end subroutne rk3 subroutne rk4(,y,,n) real::(:),y(:),,k,k,k3,k4 nteger::,n 0

21 do =,n- k=f((),y()) k=f(()+0.5*,y()+0.5**k) k3=f(()+0.5*,y()+0.5**k) k4=f(()+,y()+*k3) y(+)=y()+(/6)*(k+*k+*k3+k4) (+)=()+ end subroutne rk4 real functon f(,y) result(z) real,ntent(n)::,y z=-(y/) end functon f real functon f() result(y)!analytc soluton real,ntent(n):: y=((**)/3)-(/(3*)) end functon f end program ntal_value_problems program ntal_value_problems_system! Solve: 5y''+y'+.5y=0, y[0]=5, y'[0]=0 As8ens aposbes mplct none real::, real,allocatable,dmenson(:)::z,z nteger::,metod,n=0! number of teratons allocate(z(n),z(n)) =0 z()=5 z()=0 =0.!startng pont!ntal value metod=!=euler, =rk, 3=rk3, 4=rk4 select case (metod) case () call euler(z,z,,n) case () call rk(z,z,,n) case (3) call rk3(z,z,,n) case (4) call rk4(z,z,,n) end select

22 do =,n prnt*,,,z(),f(),abs(f()-z()) =+ contans subroutne euler(z,z,,n) real::z(:),z(:), nteger::,n do =,n- z(+)=z()+*f(z(),z()) z(+)=z()+*g(z(),z()) end subroutne euler subroutne rk(z,z,,n) real::z(:),z(:),,k,k,k,k nteger::,n do =,n- k=f(z(),z()) k=g(z(),z()) k=f(z()+*k,z()+*k) k=g(z()+*k,z()+*k) z(+)=z()+(/)*(k+k) z(+)=z()+(/)*(k+k) end subroutne rk subroutne rk3(z,z,,n) real::z(:),z(:),,k,k,k3,k,k,k3 nteger::,n do =,n- k=f(z(),z()) k=g(z(),z()) k=f(z()+0.5**k,z()+0.5**k) k=g(z()+0.5**k,z()+0.5**k) k3=f(z()+*k,z()+*k) k3=g(z()+*k,z()+*k) z(+)=z()+(/6)*(k+4*k+k3) z(+)=z()+(/6)*(k+4*k+k3) end subroutne rk3 subroutne rk4(z,z,,n) real::z(:),z(:),,k,k,k3,k4,k,k,k3,k4 nteger::,n do =,n- k=f(z(),z())

23 k=g(z(),z()) k=f(z()+0.5**k,z()+0.5**k) k=g(z()+0.5**k,z()+0.5**k) k3=f(z()+0.5**k,z()+0.5**k) k3=g(z()+0.5**k,z()+0.5**k) k4=f(z()+*k3,z()+*k3) k4=g(z()+*k3,z()+*k3) z(+)=z()+(/6)*(k+*k+*k3+k4) z(+)=z()+(/6)*(k+*k+*k3+k4) end subroutne rk4 real functon f(,y) result(z) real,ntent(n)::,y z=y end functon f real functon g(,y) result(z) real,ntent(n)::,y z=-(*y+.5*)/5 end functon g real functon f(t) result(y)!analytc soluton real,ntent(n)::t y=(5.*cos( *t) *sn( *t))*Ep(-0.*t) end functon f end program ntal_value_problems_system program ntal_value_problems_system! y''-y'+y=ep(t)sn(t), y(0)=-0.4, y'[0]=-0.6 mplct none real:: real,allocatable,dmenson(:)::z,z, nteger::,metod,n=0! number of teratons allocate((n),z(n),z(n)) do metod=,4!=euler, =rk, 3=rk3, 4=rk4 ()=0!startng pont z()=-0.4!ntal value z()=-0.6!ntal value =0. select case (metod) case () call euler(,z,z,,n) case () 3

24 call rk(,z,z,,n) case (3) call rk3(,z,z,,n) case (4) call rk4(,z,z,,n) end select prnt*, ' ',metod,' ' do =,n end do contans prnt*,,(),z(),f(()),abs(f(())-z()) subroutne euler(,z,z,,n) real::(:),z(:),z(:), nteger::,n do =,n- z(+)=z()+*f((),z(),z()) z(+)=z()+*g((),z(),z()) (+)=()+ end subroutne euler subroutne rk(,z,z,,n) real::(:),z(:),z(:),,k,k,k,k nteger::,n do =,n- k=f((),z(),z()) k=g((),z(),z()) k=f(()+,z()+*k,z()+*k) k=g(()+,z()+*k,z()+*k) (+)=()+ z(+)=z()+(/)*(k+k) z(+)=z()+(/)*(k+k) end subroutne rk subroutne rk3(,z,z,,n) real::(:),z(:),z(:),,k,k,k3,k,k,k3 nteger::,n do =,n- k=f((),z(),z()) k=g((),z(),z()) k=f(()+0.5*,z()+0.5**k,z()+0.5**k) k=g(()+0.5*,z()+0.5**k,z()+0.5**k) k3=f(()+,z()+*k,z()+*k) k3=g(()+,z()+*k,z()+*k) 4

25 (+)=()+ z(+)=z()+(/6)*(k+4*k+k3) z(+)=z()+(/6)*(k+4*k+k3) end subroutne rk3 subroutne rk4(,z,z,,n) real::(:),z(:),z(:),,k,k,k3,k4,k,k,k3,k4 nteger::,n do =,n- k=f((),z(),z()) k=g((),z(),z()) k=f(()+0.5*,z()+0.5**k,z()+0.5**k) k=g(()+0.5*,z()+0.5**k,z()+0.5**k) k3=f(()+0.5*,z()+0.5**k,z()+0.5**k) k3=g(()+0.5*,z()+0.5**k,z()+0.5**k) k4=f(()+,z()+*k3,z()+*k3) k4=g(()+,z()+*k3,z()+*k3) (+)=()+ z(+)=z()+(/6)*(k+*k+*k3+k4) z(+)=z()+(/6)*(k+*k+*k3+k4) end subroutne rk4 real functon f(,,3) result(z) real,ntent(n)::,,3 z=3 end functon f real functon g(,,3) result(z) real,ntent(n)::,,3 z=ep(*)*sn()+*3-* end functon g real functon f(t) result(y)!analytc soluton real,ntent(n)::t y= - 0.5*Ep(*t)*Cos(t) + 0.*Ep(*t)*Cos(t)*Cos(*t) - & 0.*Ep(*t)*Cos(*t)*Sn(t) + 0.*Ep(*t)*Cos(t)*Sn(*t) + & 0.*Ep(*t)*Sn(t)*Sn(*t) end functon f end program ntal_value_problems_system 5

26 Αναφορές: Brce Carnaan, H. A. Luter, James O. Wlkes, Appled Numercal Metods (Capter 6), Jon Wley & Sons, 969. Alks Constantndes, Appled Numercal Metods wt Personal Computes (Capter 5), McGraw Hll Int. Edtons, 988. Γεώργιος Ακρίβης, Βασίλειος ουγαλής, Εισαγωγή στην Αριθμητική Ανάλυση, Πανεπιστημιακές Εκδόσεις Κρήτης, 998. Στέφανος Τραχανάς, Συνήθεις ιαφορικές Εξισώσεις, Πανεπιστημιακές Εκδόσεις Κρήτης,

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων

Κεφάλαιο 1. Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων Κεφάλαιο Αριθµητική ολοκλήρωση συνήθων διαφορικών εξισώσεων και συστηµάτων. Εισαγωγή Η µοντελοποίηση πολλών φυσικών φαινοµένων και συστηµάτων και κυρίως αυτών που εξελίσσονται στο χρόνο επιτυγχάνεται µε

Διαβάστε περισσότερα

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 6Β: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης). Μέθοδος Euler 3. Μέθοδοι

Διαβάστε περισσότερα

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών

Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών Κεφ. 7: Συνήθεις διαφορικές εξισώσεις (ΣΔΕ) - προβλήματα αρχικών τιμών 7. Εισαγωγή (ορισμός προβλήματος, αριθμητική ολοκλήρωση ΣΔΕ, αντικατάσταση ΣΔΕ τάξης n με n εξισώσεις ης τάξης) 7. Μέθοδος Euler 7.3

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών

Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Αριθμητική παραγώγιση εκφράσεις πεπερασμένων διαφορών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 3.0.008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Άσκηση Επιμέλεια απαντήσεων:

Διαβάστε περισσότερα

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης

Παράδειγµα #11 ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Παράδειγµα # ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Σ Ε ΕΠΙΜΕΛΕΙΑ: Ν. Βασιλειάδης Άσκηση ίδεται η διαφορική εξίσωση: dy dx y 0 = 0 x = y + e, Να επιλυθεί το πρόβληµα αρχικών τιµών µε τις µεθόδους Euler και Runge-Kutta

Διαβάστε περισσότερα

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων:

Η διατήρηση μάζας σε ένα σύστημα τριών αντιδραστήρων περιγράφεται από το παρακάτω σύστημα συνήθων διαφορικών εξισώσεων: ΠΑΡΑΔΕΙΓΜΑ 6 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, 5 Ο ΕΞΑΜΗΝΟ ΕΠΙΛΥΣΗ ΕΡΓΑΣΙΑΣ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣ - ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΕΠΙΜΕΛΕΙΑ: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Η διατήρηση μάζας σε ένα σύστημα τριών

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ Σηµειώσεις µαθήµατος ηµήτρης Βαλουγεώργης Αναπληρωτής Καθηγητής Τµήµα Μηχανολόγων Μηχανικών Βιοµηχανίας Εργαστήριο Φυσικών και Χηµικών ιεργασιών Πολυτεχνική Σχολή Πανεπιστήµιο Θεσσαλίας

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες)

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ. Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 5 Ο ΕΞΑΜΗΝΟ, 2016-2017 ΠΕΡΙΕΧΟΜΕΝΑ ΠΑΡΑΔΟΣΕΩΝ Κεφ. 1: Εισαγωγή (διάρκεια: 0.5 εβδομάδες) Κεφ. 2: Επίλυση συστημάτων εξισώσεων (διάρκεια: 3 εβδομάδες) 2.1 Επίλυση εξισώσεων 2.2 Επίλυση

Διαβάστε περισσότερα

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε

Κεφάλαιο 2. Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε Κεφάλαιο Μέθοδος πεπερασµένων διαφορών προβλήµατα οριακών τιµών µε Σ Ε. Εισαγωγή Η µέθοδος των πεπερασµένων διαφορών είναι από τις παλαιότερες και πλέον συνηθισµένες και διαδεδοµένες υπολογιστικές τεχνικές

Διαβάστε περισσότερα

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών

Εφαρµόζοντας τη µέθοδο αριθµητικής ολοκλήρωσης Euler και Runge-Kutta 2 ης, συστηµατική σύγκριση των πέντε µεθόδων. Η επιλογή των σταθερών ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟ ΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑ ΟΣΗΣ:..6 Επιµέλεια απαντήσεων: Ι. Λυχναρόπουλος. Έστω το πρόβληµα αρχικών τιµών: ( dx( d x

Διαβάστε περισσότερα

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Επίλυση παραβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ Δημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Ολοκλήρωση Εισαγωγή Έστω ότι η f είναι μία φραγμένη συνάρτηση στο πεπερασμένο

Διαβάστε περισσότερα

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ

ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ ΠΑΡΑΔΕΙΓΜΑ 14 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 009-010, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #1: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΣΥΣΤΗΜΑΤΑ ΠΡΟΒΛΗΜΑΤΑ ΑΡΧΙΚΩΝ ΤΙΜΩΝ Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ 1 Έστω το πρόβλημα

Διαβάστε περισσότερα

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής:

ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ. Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: ΧΡΟΝΙΚΗ ΟΛΟΚΛΗΡΩΣΗ Για την επίλυση χρονομεταβαλλόμενων προβλημάτων η διακριτοποίηση στο χώρο γίνεται με πεπερασμένα στοιχεία και είναι της μορφής: (,)(,)()() h 1 u x t u x t u t x (1) e Η διαφορά με τα

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή 4. Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων

Κεφάλαιο 6. Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών και παραβολικών διαφορικών εξισώσεων Κεφάλαιο 6 Εισαγωγή στη µέθοδο πεπερασµένων όγκων επίλυση ελλειπτικών παραβολικών διαφορικών εξισώσεων 6.1 Εισαγωγή Η µέθοδος των πεπερασµένων όγκων είναι µία ευρέως διαδεδοµένη υπολογιστική µέθοδος επίλυσης

Διαβάστε περισσότερα

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή

4. Παραγώγιση πεπερασμένων διαφορών Σειρά Taylor Πολυωνυμική παρεμβολή . Παραγώγιση Η διαδικασία της υπολογιστικής επίλυσης συνήθων και μερικών διαφορικών εξισώσεων προϋποθέτει την προσέγγιση της εξαρτημένης μεταβλητής και των παραγώγων της στους κόμβους του πλέγματος. Ειδικά,

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ]

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ ΓΙΑ ΠΡΟΒΛΗΜΑΤΑ ΜΗΧΑΝΙΚΗΣ ΕΦΑΡΜΟΓΕΣ ΜΕ ΧΡΗΣΗ MATLAB ΔΕΥΤΕΡΗ ΕΚΔΟΣΗ [ΒΕΛΤΙΩΜΕΝΗ ΚΑΙ ΕΠΑΥΞΗΜΕΝΗ] Συγγραφείς ΝΤΑΟΥΤΙΔΗΣ ΠΡΟΔΡΟΜΟΣ Πανεπιστήμιο Minnesota, USA ΜΑΣΤΡΟΓΕΩΡΓΟΠΟΥΛΟΣ ΣΠΥΡΟΣ Αριστοτέλειο

Διαβάστε περισσότερα

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης

Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης Εισαγωγή Αριθμητική Ολοκλήρωση της Εξίσωσης Κίνησης: Δ18- Η δυναμική μετατόπιση u(t) είναι δυνατό να προσδιοριστεί με απ ευθείας αριθμητική ολοκλήρωση της εξίσωσης

Διαβάστε περισσότερα

Πεπερασμένες διαφορές

Πεπερασμένες διαφορές Κεφάλαιο 2 Πεπερασμένες διαφορές Αυτό το κεφάλαιο αποτελεί μια εισαγωγή στο αντικείμενο των πεπερασμένων διαφορών για την επίλυση διαφορικών εξισώσεων. Θα εισαγάγουμε ποσότητες που προκύπτουν από διαφορές

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων

Κεφ. 2: Επίλυση συστημάτων εξισώσεων. 2.1 Επίλυση εξισώσεων Κεφ. : Επίλυση συστημάτων εξισώσεων. Επίλυση εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas).. Νόρμες πινάκων,

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6)

Q 12. c 3 Q 23. h 12 + h 23 + h 31 = 0 (6) Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Τοµέας Υδατικών Πόρων Μάθηµα: Τυπικά Υδραυλικά Έργα Μέρος 2: ίκτυα διανοµής Άσκηση E0: Μαθηµατική διατύπωση µοντέλου επίλυσης απλού δικτύου διανοµής

Διαβάστε περισσότερα

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφάλαιο 7. Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφάλαιο 7 Επίλυση υπερβολικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 7. Εξισώσεις κύματος ης ης τάξης Οι κλασσικές αντιπροσωπευτικές εξισώσεις της κατηγορίας των υπερβολικών εξισώσεων είναι οι

Διαβάστε περισσότερα

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ

ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ ΜΕΘΟΔΟΣ ΠΕΠΕΡΑΣΜΕΝΩΝ ΣΤΟΙΧΕΙΩΝ Βασίζεται στην εφαρμογή των παρακάτω βημάτων:. Το φυσικό πεδίο αναπαριστάται με ένα σύνολο απλών γεωμετρικών σχημάτων που ονομάζονται Πεπερασμένα Στοιχεία.. Σε κάθε στοιχείο

Διαβάστε περισσότερα

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ»

Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ. Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» Χρήστος Ι. Σχοινάς Αν. Καθηγητής ΔΠΘ Συμπληρωματικές σημειώσεις για το μάθημα: «Επιχειρησιακή Έρευνα ΙΙ» 2 ΔΥΝΑΜΙΚΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ Προβλήματα ελάχιστης συνεκτικότητας δικτύου Το πρόβλημα της ελάχιστης

Διαβάστε περισσότερα

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43

ΠΕΡΙΕΧΟΜΕΝΑ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ...23 ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...15 ΚΕΦΑΛΑΙΟ 3 ΕΥΘΕΙΕΣ...32 ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...43 ΠΕΡΙΕΧΟΜΕΝΑ ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΓΡΑΜΜΙΚΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ. ΑΠΟΛΥΤΗ ΤΙΜΗ. ΑΝΙΣΟΤΗΤΕΣ...5 ΚΕΦΑΛΑΙΟ ΣΥΣΤΗΜΑΤΑ ΟΡΘΟΓΩΝΙΩΝ ΣΥΝΤΕΤΑΓΜΕΝΩΝ... ΚΕΦΑΛΑΙΟ ΕΥΘΕΙΕΣ... ΚΕΦΑΛΑΙΟ 4 ΚΥΚΛΟΙ...4 ΚΕΦΑΛΑΙΟ 5 ΕΞΙΣΩΣΕΙΣ ΚΑΙ ΟΙ

Διαβάστε περισσότερα

Πεπερασμένες Διαφορές.

Πεπερασμένες Διαφορές. Κεφάλαιο 1 Πεπερασμένες Διαφορές. 1.1 Προσέγγιση παραγώγων. 1.1.1 Πρώτη παράγωγος. Από τον ορισμό της παραγώγου για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι η παράγωγος μιας συνάρτησης f στο σημείο x

Διαβάστε περισσότερα

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11

Πρόλογος Εισαγωγή στη δεύτερη έκδοση Εισαγωγή... 11 Περιεχόμενα Πρόλογος... 9 Εισαγωγή στη δεύτερη έκδοση... 0 Εισαγωγή... Ε. Εισαγωγή στην έννοια της Αριθμητικής Ανάλυσης... Ε. Ταξινόμηση των θεμάτων που απασχολούν την αριθμητική ανάλυση.. Ε.3 Μορφές σφαλμάτων...

Διαβάστε περισσότερα

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ

IV.13 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 1 ης ΤΑΞΕΩΣ IV.3 ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ης ΤΑΞΕΩΣ.Γενική λύση.χωριζόμενων μεταβλητών 3.Ρυθμοί 4.Γραμμικές 5.Γραμμική αυτόνομη 6.Bernoulli αυτόνομη 7.Aσυμπτωτικές ιδιότητες 8.Αυτόνομες 9.Σταθερές τιμές.διάγραμμα ροής.ασυμπτωτική

Διαβάστε περισσότερα

Αριθμητική Ανάλυση & Εφαρμογές

Αριθμητική Ανάλυση & Εφαρμογές Αριθμητική Ανάλυση & Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 2017-2018 Υπολογισμοί και Σφάλματα Παράσταση Πραγματικών Αριθμών Συστήματα Αριθμών Παράσταση Ακέραιου

Διαβάστε περισσότερα

6. Αριθμητική επίλυση συνήθων διαφορικών

6. Αριθμητική επίλυση συνήθων διαφορικών 6. Αριθμητική επίλυση συνήθων διαφορικών Η συμπεριφορά πολλών φυσικών συστημάτων περιγράφεται από συνήθεις διαφορικές εξισώσεις ή από συστήματα συνήθων διαφορικών εξισώσεων. Παραδείγματα τέτοιων συστημάτων

Διαβάστε περισσότερα

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές

Κεφ. 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές Κεφ 7: Επίλυση ελλειπτικών διαφορικών εξισώσεων με πεπερασμένες διαφορές 71 Εισαγωγή πρότυπες εξισώσεις 7 Εξισώσεις πεπερασμένων διαφορών πέντε και εννέα σημείων 73 Οριακές συνθήκες μικτού τύπου και ακανόνιστα

Διαβάστε περισσότερα

2.1 Αριθμητική επίλυση εξισώσεων

2.1 Αριθμητική επίλυση εξισώσεων . Αριθμητική επίλυση εξισώσεων Στο κεφάλαιο αυτό διαπραγματεύεται μεθόδους εύρεσης των ριζών εξισώσεων γραμμικών ή μη-γραμμικών για τις οποίες δεν υπάρχουν αναλυτικές 5 4 3 εκφράσεις. Παραδείγματα εξισώσεων

Διαβάστε περισσότερα

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι:

Όριο συνάρτησης στο x. 2 με εξαίρεση το σημείο A(2,4) Από τον παρακάτω πίνακα τιμών και τη γραφική παράσταση του παραπάνω σχήματος παρατηρούμε ότι: Όριο συνάρτησης στο Στα παρακάτω θα προσεγγίσουμε την διαισθητικά με τη βοήθεια γραφικών παραστάσεων και πινάκων τιμών. 4 4 Έστω η συνάρτηση f με τύπο f ) = και πεδίο ορισμού το σύνολο ) ) η οποία μπορεί

Διαβάστε περισσότερα

Πίνακας Περιεχομένων

Πίνακας Περιεχομένων Πίνακας Περιεχομένων Πρόλογος... 13 Πρώτο Μέρος: Γενικές Έννοιες Κεφάλαιο 1 ο : Αλγοριθμική... 19 1.1 Περιγραφή Αλγορίθμου... 19 1.2. Παράσταση Αλγορίθμων... 21 1.2.1 Διαγράμματα Ροής... 22 1.2.2 Ψευδογλώσσα

Διαβάστε περισσότερα

1.1. Διαφορική Εξίσωση και λύση αυτής

1.1. Διαφορική Εξίσωση και λύση αυτής Εισαγωγή στις συνήθεις διαφορικές εξισώσεις 9 Διαφορική Εξίσωση και λύση αυτής Σε ότι ακολουθεί με τον όρο συνάρτηση θα εννοούμε μια πραγματική συνάρτηση μιας πραγματικής μεταβλητής, ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

Μέθοδοι πολυδιάστατης ελαχιστοποίησης

Μέθοδοι πολυδιάστατης ελαχιστοποίησης Μέθοδοι πολυδιάστατης ελαχιστοποίησης με παραγώγους Μέθοδοι πολυδιάστατης ελαχιστοποίησης Δ. Γ. Παπαγεωργίου Τμήμα Μηχανικών Επιστήμης Υλικών Πανεπιστήμιο Ιωαννίνων dpapageo@cc.uoi.gr http://pc64.materials.uoi.gr/dpapageo

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε.

Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. Κεφάλαιο 4 Αριθμητικές Μέθοδοι για την επίλυση ΠΑΤ Δ.Ε. 4.1 Προβλήματα αρχικών τιμών Στο κεφάλαο αυτό θα ασχοληθούμε με μεθόδους αριθμητικής επίλυσης προβλημάτων αρχικών τιμών για Συνήθεις Διαφορικές Εξισώσεις

Διαβάστε περισσότερα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα

Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α. Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1. Σφάλματα Π Ε Ρ Ι Ε Χ Ο Μ Ε Ν Α Πρόλογος...15 ΚΕΦΑΛΑΙΟ 1 Σφάλματα 1.1 Εισαγωγή...17 1.2 Αρχικά Σφάλματα (σφάλματα μετρήσεων)...18 1.2.1 Απλές μετρήσεις...18 1.2.2 Σύνθετες μετρήσεις...19 1.2.3 Σημαντικά ψηφία και

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2015 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2015 1 / 68 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

Αριθμητική Ανάλυση και Εφαρμογές

Αριθμητική Ανάλυση και Εφαρμογές Αριθμητική Ανάλυση και Εφαρμογές Διδάσκων: Δημήτριος Ι. Φωτιάδης Τμήμα Μηχανικών Επιστήμης Υλικών Ιωάννινα 07-08 Αριθμητική Παραγώγιση Εισαγωγή Ορισμός 7. Αν y f x είναι μια συνάρτηση ορισμένη σε ένα διάστημα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος

ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ 1, Επιμέλεια λύσεων: Γιώργος Τάτσιος ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 6-7, 5 Ο ΕΞΑΜΗΝΟ ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Απαντήσεις: ΠΡΟΟΔΟΣ, --6 Επιμέλεια λύσεων: Γιώργος Τάτσιος Άσκηση [] Επιλύστε με μία απευθείας μέθοδο διατηρώντας τρία σημαντικά ψηφία σε

Διαβάστε περισσότερα

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14

Περιεχόμενα. Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Περιεχόμενα Κεφάλαιο 1 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΜΙΑ ΕΥΘΕΙΑ... 13 1.1 Οι συντεταγμένες ενός σημείου...13 1.2 Απόλυτη τιμή...14 Κεφάλαιο 2 ΣΥΣΤΗΜΑΤΑ ΣΥΝΤΕΤΑΓΜΕΝΩΝ ΣΕ ΕΝΑ ΕΠΙΠΕΔΟ 20 2.1 Οι συντεταγμένες

Διαβάστε περισσότερα

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο:

KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: KΕΦΑΛΑΙΟ 8 ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟ ΟΙ ΕΠΙΛΥΣΗΣ ΣΥΝΗΘΩΝ ΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ Έστω [ α, b], f :[ α, b], y. Το τυπικό πρόβληµα αρχικών τιµών που θα µας απασχολήσει, είναι το ακόλουθο: Ζητείται µια συνάρτηση y :[

Διαβάστε περισσότερα

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη)

Μαθηματικά. Ενότητα 2: Διαφορικός Λογισμός. Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Μαθηματικά Ενότητα 2: Διαφορικός Λογισμός Σαριαννίδης Νικόλαος Τμήμα Διοίκησης Επιχειρήσεων (Κοζάνη) Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Οκτώβριος 2014 Δρ. Δημήτρης Βαρσάμης Οκτώβριος 2014 1 / 42 Αριθμητικές Μέθοδοι

Διαβάστε περισσότερα

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου

A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Σχολή Θετικών Επιστημών, Τμήμα Μαθηματικών, Πανεπιστήμιο Αιγαίου A Τελική Εξέταση του μαθήματος «Αριθμητική Ανάλυση» Εξεταστική περίοδος Ιουνίου 6, Διδάσκων: Κώστας Χουσιάδας Διάρκεια εξέτασης: ώρες (Σε παρένθεση δίνεται η βαθμολογική αξία κάθε υπο-ερωτήματος. Σύνολο

Διαβάστε περισσότερα

Γραμμικός Προγραμματισμός Μέθοδος Simplex

Γραμμικός Προγραμματισμός Μέθοδος Simplex ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Επιχειρησιακή Έρευνα Γραμμικός Προγραμματισμός Μέθοδος Simplex Η παρουσίαση προετοιμάστηκε από τον Ν.Α. Παναγιώτου Περιεχόμενα Παρουσίασης 1. Πρότυπη Μορφή ΓΠ 2. Πινακοποίηση

Διαβάστε περισσότερα

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx

την κεντρώα έκφραση πεπερασμένων διαφορών 2 ης τάξης και για τη παράγωγο f την ανάδρομη έκφραση πεπερασμένων διαφορών 2 ης τάξης xxx ΑΡΙΘΜΗΤΙΚΕΣ ΜΕΘΟΔΟΙ, 0-0, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΑΡΙΘΜΗΤΙΚΗ ΠΑΡΑΓΩΓΙΣΗ και ΟΛΟΚΛΗΡΩΣΗ Ημερομηνία παράδοσης --0 Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΑΣΚΗΣΗ Με βάση τη σειρά Taylor βρείτε για τη παράγωγο

Διαβάστε περισσότερα

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΤΑΞΙΝΟΜΗΣΗ ΜΕΡΙΚΩΝ ΔΙΑΦΟΡΙΚΩΝ ΕΞΙΣΩΣΕΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU ειδικές περιπτώσεις: Cholesky, Thomas..

Διαβάστε περισσότερα

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ.

ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, , 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: ΔΙΔΑΣΚΩΝ: Δ. ΑΣΚΗΣΗ 1 ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 9-1, 5 Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #3: ΠΑΡΑΒΟΛΙΚΑ ΠΡΟΒΛΗΜΑΤΑ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ: 15.1.9 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος Δίδεται η διαφορική

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: βελτιστοποίηση χωρίς περιορισμούς Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 7-8 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ

ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ Ασκήσεις ΜΑΘΗΜΑΤΙΚΩΝ ΔΑΣΟΛΟΓΙΑΣ για Γενική Επανάληψη Πολυχρόνη Μωυσιάδη, Καθηγητή ΑΠΘ ΟΜΑΔΑ 1. Συναρτήσεις 1. Δείξτε ότι: και υπολογίστε την τιμή 2. 2. Να υπολογισθούν οι τιμές και 3. Υπολογίστε τις τιμές

Διαβάστε περισσότερα

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών

Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών Κεφ. 6Α: Συνήθεις διαφορικές εξισώσεις - προβλήματα δύο οριακών τιμών 1. Εισαγωγή. Προβλήματα δύο οριακών τιμών 3. Η μέθοδος των πεπερασμένων διαφορών 4. Οριακές συνθήκες με παραγώγους 5. Παραδείγματα

Διαβάστε περισσότερα

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ.

ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, , 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #1: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ, 005-06, 3 ο ΕΞΑΜΗΝΟ ΑΠΑΝΤΗΣΕΙΣ ΕΡΓΑΣΙΑΣ #: ΑΡΙΘΜΗΤΙΚΗ ΚΙΝΗΤΗΣ ΥΠΟ ΙΑΣΤΟΛΗΣ ΚΑΙ ΡΙΖΕΣ ΕΞΙΣΩΣΕΩΝ ΕΠΙΜΕΛΕΙΑ: Σ. Βαρούτης. Πως ορίζεται και τι σηµαίνει ο όρος lop στους επιστηµονικούς υπολογισµούς.

Διαβάστε περισσότερα

Μέθοδοι μονοδιάστατης ελαχιστοποίησης

Μέθοδοι μονοδιάστατης ελαχιστοποίησης Βασικές αρχές μεθόδων ελαχιστοποίησης Μέθοδοι μονοδιάστατης ελαχιστοποίησης Οι μέθοδοι ελαχιστοποίησης είναι επαναληπτικές. Ξεκινώντας από μια αρχική προσέγγιση του ελαχίστου (την συμβολίζουμε ) παράγουν

Διαβάστε περισσότερα

Non Linear Equations (2)

Non Linear Equations (2) Non Linear Equations () Τρίτη, 17 Φεβρουαρίου 015 5:14 μμ 15.0.19 Page 1 15.0.19 Page 15.0.19 Page 3 15.0.19 Page 4 15.0.19 Page 5 15.0.19 Page 6 15.0.19 Page 7 15.0.19 Page 8 15.0.19 Page 9 15.0.19 Page

Διαβάστε περισσότερα

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x

Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/2017. Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης. dy dx = 2y + x 2 y 2 2x Συνήθεις Διαφορικές Εξισώσεις Ι Ασκήσεις - 09/11/017 Άσκηση 1. Να βρεθεί η γενική λύση της διαφορικής εξίσωσης dx y + x y. x Παρατηρούμε ότι η δ.ε. είναι ομογενής. Πράγματι, dx y x + 1 x y x y x + 1 (

Διαβάστε περισσότερα

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D.

Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Βασίλειος Μαχαιράς Πολιτικός Μηχανικός Ph.D. Μη γραμμικός προγραμματισμός: μέθοδοι μονοδιάστατης ελαχιστοποίησης Πανεπιστήμιο Θεσσαλίας Σχολή Θετικών Επιστημών ΤμήμαΠληροφορικής Διάλεξη 6 η /2017 Τι παρουσιάστηκε

Διαβάστε περισσότερα

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων

Κεφ. 2: Επίλυση συστημάτων αλγεβρικών εξισώσεων. 2.1 Επίλυση απλών εξισώσεων Κεφ. : Επίλυση συστημάτων αλγεβρικών εξισώσεων. Επίλυση απλών εξισώσεων. Επίλυση συστημάτων με απευθείας μεθόδους.. Μέθοδοι Gauss, Gauss-Jorda.. Παραγοντοποίηση LU (ειδικές περιπτώσεις: Cholesky, Thomas)..

Διαβάστε περισσότερα

ΜΕΜ251 Αριθμητική Ανάλυση

ΜΕΜ251 Αριθμητική Ανάλυση ΜΕΜ251 Αριθμητική Ανάλυση Διάλεξη 03, 12 Φεβρουαρίου 2018 Μιχάλης Πλεξουσάκης Τμήμα Μαθηματικών και Εφαρμοσμένων Μαθηματικών Περιεχόμενα 1. Επαναληπτικές μέθοδοι - Γενική θεωρία 2. Η μέθοδος του Newton

Διαβάστε περισσότερα

Κεφάλαιο 0: Εισαγωγή

Κεφάλαιο 0: Εισαγωγή Κεφάλαιο : Εισαγωγή Διαφορικές εξισώσεις Οι Μερικές Διαφορικές Εξισώσεις (ΜΔΕ) αλλά και οι Συνήθεις Διαφορικές Εξισώσεις (ΣΔΕ) εμφανίζονται παντού στις επιστήμες από τη μηχανική μέχρι τη βιολογία Τις περισσότερες

Διαβάστε περισσότερα

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2)

Κανόνας της αλυσίδας. J ανοικτά διαστήματα) ώστε ( ), ( ) ( ) ( ) fog ' x = f ' g x g ' x, x I (2) 8 Κανόνας της αλυσίδας Από τον Απειροστικό Λογισμό για συναρτήσεις μιας μεταβλητής γνωρίζουμε ότι: Αν g : I R R και f : J R R είναι συναρτήσεις ( όπου I, J ανοικτά διαστήματα ώστε, g( τότε η : I g I J

Διαβάστε περισσότερα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα

x,f με j 012,,,...,n x,x S x f S x είναι 3 ης τάξης οι δεύτερες παράγωγοί τους S x S x y y Μέθοδος κυβικών splines: Έστω ότι έχουμε τα δεδομένα Μέθοδος κυβικών sples: Έστω ότι έχουμε τα δεδομένα,f με,,,...,,. Για κάθε διάστημα βρίσκουμε ένα πολυώνυμο παρεμβολής 3 ης τάξης S,,..., έτσι ώστε να ισχύουν τα παρακάτω: Συνθήκη Α: S f, S f S Συνθήκη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 6: Εξίσωση διάχυσης (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε την εξίσωση

Διαβάστε περισσότερα

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr

Παντελής Μπουμπούλης, M.Sc., Ph.D. σελ. 2 math-gr.blogspot.com, bouboulis.mysch.gr VI Ολοκληρώματα Παντελής Μπουμπούλης, MSc, PhD σελ mth-grlogspotcom, ououlismyschgr ΜΕΡΟΣ Αρχική Συνάρτηση Ορισμός Έστω f μια συνάρτηση ορισμένη σε ένα διάστημα Δ Αρχική συνάρτηση ή παράγουσα της στο Δ

Διαβάστε περισσότερα

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ

ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ ΠΡΟΒΛΗΜΑΤΑ ΔΥΟ ΔΙΑΣΤΑΣΕΩΝ Η ανάλυση προβλημάτων δύο διαστάσεων με τη μέθοδο των Πεπερασμένων Στοιχείων περιλαμβάνει τα ίδια βήματα όπως και στα προβλήματα μιας διάστασης. Η ανάλυση γίνεται λίγο πιο πολύπλοκη

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια)

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη 16: O αλγόριθμος SIMPLE (συνέχεια) Χειμερινό εξάμηνο 2008 Προηγούμενη παρουσίαση... Εξετάσαμε λύσεις

Διαβάστε περισσότερα

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών

Αριθμητική Ανάλυση. Ενότητα 1: Εισαγωγή Βασικές Έννοιες. Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Ενότητα 1: Εισαγωγή Βασικές Έννοιες Φραγκίσκος Κουτελιέρης Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών ΑΡΙΘΜΗΤΙΚΗ ΑΝΑΛΥΣΗ ΦΡΑΓΚΙΣΚΟΣ ΚΟΥΤΕΛΙΕΡΗΣ Εισαγωγή 2 Περιεχόμενα 1. Εισαγωγή 2. Αριθμητική παραγώγιση

Διαβάστε περισσότερα

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον

Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Τεχνολογικό Εκπαιδευτικό Ίδρυμα Κεντρικής Μακεδονίας - Σέρρες Τμήμα Μηχανικών Πληροφορικής Αριθμητικές Μέθοδοι σε Προγραμματιστικό Περιβάλλον Δρ. Δημήτρης Βαρσάμης Επίκουρος Καθηγητής Δρ. Δημήτρης Βαρσάμης

Διαβάστε περισσότερα

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N

f στον κόμβο i ενός πλέγματος ( i = 1, 2,,N ΥΠΟΛΟΓΙΣΤΙΚΕΣ ΜΕΘΟΔΟΙ, 008-009, Ο ΕΞΑΜΗΝΟ ΕΡΓΑΣΙΑ #: ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ ΠΡΟΒΛΗΜΑΤΑ ΟΡΙΑΚΩΝ ΤΙΜΩΝ ΗΜΕΡΟΜΗΝΙΑ ΠΑΡΑΔΟΣΗΣ:..008 ΔΙΔΑΣΚΩΝ: Δ. Βαλουγεώργης Επιμέλεια απαντήσεων: Ιωάννης Λυχναρόπουλος

Διαβάστε περισσότερα

f(x) = και στην συνέχεια

f(x) = και στην συνέχεια ΕΡΩΤΗΣΕΙΣ ΜΑΘΗΤΩΝ Ερώτηση. Στις συναρτήσεις μπορούμε να μετασχηματίσουμε πρώτα τον τύπο τους και μετά να βρίσκουμε το πεδίο ορισμού τους; Όχι. Το πεδίο ορισμού της συνάρτησης το βρίσκουμε πριν μετασχηματίσουμε

Διαβάστε περισσότερα

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines

Κεφ. 3: Παρεμβολή. 3.1 Εισαγωγή. 3.2 Πολυωνυμική παρεμβολή Παρεμβολή Lagrange Παρεμβολή Newton. 3.3 Παρεμβολή με κυβικές splines Κεφ. 3: Παρεμβολή 3. Εισαγωγή 3. Πολυωνυμική παρεμβολή 3.. Παρεμβολή Lagrage 3.. Παρεμβολή Newto 3.3 Παρεμβολή με κυβικές splies 3.4 Μέθοδος ελαχίστων τετραγώνων 3.5 Παρεμβολή με ορθογώνια πολυώνυμα 3.

Διαβάστε περισσότερα

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου

Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου Η Θεωρία στα Μαθηματικά κατεύθυνσης της Γ Λυκείου wwwaskisopolisgr έκδοση 5-6 wwwaskisopolisgr ΣΥΝΑΡΤΗΣΕΙΣ 5 Τι ονομάζουμε πραγματική συνάρτηση; Έστω Α ένα υποσύνολο του Ονομάζουμε πραγματική συνάρτηση

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ

ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΚΑ Β ΓΥΜΝΑΣΙΟΥ. ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ 1. Τι καλείται μεταβλητή; ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ ΜΑΘΗΜΑΤΙΑ Β ΓΥΜΝΑΣΙΟΥ ΜΕΡΟΣ 1ο ΑΛΓΕΒΡΑ Μεταβλητή είναι ένα γράμμα (π.χ., y, t, ) που το χρησιμοποιούμε για να παραστήσουμε ένα οποιοδήποτε στοιχείο ενός συνόλου..

Διαβάστε περισσότερα

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ

11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11 ΣΥΝΗΘΕΙΣ ΔΙΑΦΟΡΙΚΕΣ ΕΞΙΣΩΣΕΙΣ 11.1 Γενικά περί συνήθων διαφορικών εξισώσεων Μια συνήθης διαφορική εξίσωση (ΣΔΕ) 1 ης τάξης έχει τη μορφή dy d = f (, y()) όπου f(, y) γνωστή και y() άγνωστη συνάρτηση.

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017

Βιομαθηματικά BIO-156. Ολοκλήρωση. Ντίνα Λύκα. Εαρινό Εξάμηνο, 2017 Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 07 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή παράγουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι, αν

Διαβάστε περισσότερα

z είναι οι τρεις ανεξάρτητες

z είναι οι τρεις ανεξάρτητες Κεφάλαιο 5 Επίλυση παραβολικών διαφορικών εξισώσεων µε πεπερασµένες διαφορές 5. Εξίσωση θερµότητας ή διάχυσης Η πλέον αντιπροσωπευτική εξίσωση µεταξύ των παραβολικών εξισώσεων είναι η εξίσωση θερµότητας

Διαβάστε περισσότερα

website:

website: Αλεξάνδρειο Τεχνολογικό Εκπαιδευτικό Ιδρυμα Θεσσαλονίκης Τμήμα Μηχανικών Αυτοματισμού Μαθηματική Μοντελοποίηση Αναγνώριση Συστημάτων Μαάιτα Τζαμάλ-Οδυσσέας 6 Μαρτίου 2017 1 Εισαγωγή Κάθε φυσικό σύστημα

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-56 Ολοκλήρωση Ντίνα Λύκα Εαρινό Εξάμηνο, 03 lik@biology.uo.gr Ορισμός αντιπαραγώγου ή πρωτεύουσας ή αρχικής συνάρτησης Μια συνάρτηση F ονομάζεται αντιπαράγωγος της σε ένα διάστημα Ι,

Διαβάστε περισσότερα

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης

1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης 1 Αριθμητική κινητής υποδιαστολής και σφάλματα στρογγύλευσης Στη συγκεκριμένη ενότητα εξετάζουμε θέματα σχετικά με την αριθμητική πεπερασμένης ακρίβειας που χρησιμοποιούν οι σημερινοί υπολογιστές και τα

Διαβάστε περισσότερα

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα:

ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. ΜΕΡΟΣ Α : Άλγεβρα. Κεφάλαιο 2 ο (Προτείνεται να διατεθούν 12 διδακτικές ώρες) Ειδικότερα: ΜΑΘΗΜΑΤΙΚΑ ΘΕΤΙΚΗΣ-ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΜΕΡΟΣ Α : Άλγεβρα Κεφάλαιο ο (Προτείνεται να διατεθούν διδακτικές ώρες) Ειδικότερα:. -. (Προτείνεται να διατεθούν 5 διδακτικές ώρες).3 (Προτείνεται να διατεθούν

Διαβάστε περισσότερα

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ

Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ Μ Α Θ Η Μ Α Τ Α Γ Λ Υ Κ Ε Ι Ο Υ ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ ΚΑΙ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ (Α ΜΕΡΟΣ: ΣΥΝΑΡΤΗΣΕΙΣ) Επιμέλεια: Καραγιάννης Ιωάννης, Σχολικός Σύμβουλος Μαθηματικών

Διαβάστε περισσότερα

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο

Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Κεφάλαιο 5. Το Συμπτωτικό Πολυώνυμο Σύνοψη Στο κεφάλαιο αυτό παρουσιάζεται η ιδέα του συμπτωτικού πολυωνύμου, του πολυωνύμου, δηλαδή, που είναι του μικρότερου δυνατού βαθμού και που, για συγκεκριμένες,

Διαβάστε περισσότερα

2. Η μέθοδος του Euler

2. Η μέθοδος του Euler 2. Η μέθοδος του Euler Ασκήσεις 2.5 Έστω a = t 0 < t 1 < < t N = b ένας διαμερισμός του [a, b]. Υποθέστε ότι ο διαμερισμός είναι ημιομοιόμορφος, ότι υπάρχει δηλαδή θετική σταθερά µ, ανεξάρτητη του N, τέτοια

Διαβάστε περισσότερα

Μαθηματική Εισαγωγή Συναρτήσεις

Μαθηματική Εισαγωγή Συναρτήσεις Φυσικός Ραδιοηλεκτρολόγος (MSc) ο Γενικό Λύκειο Καστοριάς A. Μαθηματική Εισαγωγή Πράξεις με αριθμούς σε εκθετική μορφή Επίλυση βασικών μορφών εξισώσεων Συναρτήσεις Στοιχεία τριγωνομετρίας Διανύσματα Καστοριά,

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

Διαφορικές Εξισώσεις.

Διαφορικές Εξισώσεις. Διαφορικές Εξισώσεις. Εαρινό εξάμηνο 05-6. Λύσεις δεύτερου φυλλαδίου ασκήσεων.. Βρείτε όλες τις λύσεις της εξίσωσης Bernoulli x y = xy + y 3 καθορίζοντας προσεκτικά το διάστημα στο οποίο ορίζεται καθεμιά

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων

ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ. Διάλεξη 2: Περιγραφή αριθμητικών μεθόδων ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΙΑΣ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΥΔΡΑΥΛΙΚΗΣ ΚΑΙ ΠΕΡΙΒΑΛΛΟΝΤΙΚΗΣ ΤΕΧΝΙΚΗΣ Διάλεξη : Περιγραφή αριθμητικών μεθόδων Χειμερινό εξάμηνο 008 Προηγούμενη παρουσίαση... Γράψαμε τις εξισώσεις

Διαβάστε περισσότερα

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B)

5269: Υπολογιστικές Μέθοδοι για Μηχανικούς. Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών (B) 569: Υπολογιστικές Μέθοδοι για Μηχανικούς Συνήθεις Διαφορικές Εξισώσεις Πρόβλημα Αρχικών τιμών B ttp://ecoursescemengntuagr/courses/computational_metods_or_engineers/ Επίλυση διαφορικών εξισώσεων Α Επίλυση

Διαβάστε περισσότερα

Βιομαθηματικά BIO-156

Βιομαθηματικά BIO-156 Βιομαθηματικά BIO-156 Συνεχή στο χρόνο δυναμικά συστήματα Ντίνα Λύκα Εαρινό Εξάμηνο, 2013 lika@biology.uoc.gr Συνεχή στο χρόνο δυναμικά συστήματα Τα συνεχή στο χρόνο δυναμικά συστήματα περιγράφουν φαινόμενα

Διαβάστε περισσότερα

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x)

[1] είναι ταυτοτικά ίση με το μηδέν. Στην περίπτωση που το στήριγμα μιας συνάρτησης ελέγχου φ ( x) [] 9 ΣΥΝΑΡΤΗΣΙΑΚΟΙ ΧΩΡΟΙ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ FOURIER Η «συνάρτηση» δέλτα του irac Η «συνάρτηση» δέλτα ορίζεται μέσω της σχέσης φ (0) αν 0 δ[ φ ] = φ δ dx = (9) 0 αν 0 όπου η φ είναι μια συνάρτηση που ανήκει

Διαβάστε περισσότερα