Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων

Save this PDF as:
 WORD  PNG  TXT  JPG

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων"

Transcript

1 ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ Καθηγητής κ. Σ. Νατσιάβας Αριθμητικές μέθοδοι σε ταλαντώσεις μηχανολογικών συστημάτων Στοιχεία Φοιτητή Ονοματεπώνυμο: Νατσάκης Αναστάσιος Αριθμός Ειδικού Μητρώου: 4264 Τμήμα: Μηχανολόγων Μηχανικών Εξάμηνο: 9 ο Ακαδημαϊκό έτος:

2 1. Α Ερώτημα 1.1 Γωνίες φ2 και φ3 Για τον προσδιορισμό των γωνιών φ 2 και φ 3 καταστρώνουμε αρχικά τις εξισώσεις που περιγράφουν τον μηχανισμό του μαδητήρα. Αυτές είναι οι εξής: από την οποία εξάγονται 2 εξισώσεις, μία για την κατεύθυνση x και μία για την κατεύθυνση y: προκύπτοντας ένα σύστημα 2 εξισώσεων με 2 αγνώστους. Όμως επειδή το σύστημα είναι μη γραμμικό, αν και έχει αναλυτική λύση, επιλύεται αριθμητικά χρησιμοποιώντας την μέθοδο Newton Raphson. Η μέθοδος Newton Raphson είναι μία επαναληπτική μέθοδος κατά την οποία θεωρείται μία αρχική εκτίμηση της λύσης και συνέχεια υπολογίζεται μία καλύτερη προσέγγιση της πραγματικής λύσης. Όταν η τιμή των 2 συναρτήσεων γίνει μικρότερη από την ακρίβεια που έχουμε ορίσει, τότε θεωρούμε ότι έχουμε προσδιορίσει την πραγματική λύση. Στο συγκεκριμένο πρόβλημα ζητήθηκε να λυθεί το σύστημα των εξισώσεων για κάθε γωνία θ. Έτσι όταν η μέθοδος έβρισκε μία λύση για τις γωνίες φ 2 και φ 3 για συγκεκριμένη γωνία θ, μετέβαλλε την γωνία θ κατά μία μικρή τιμή και έψαχνε λύση του καινούριου συστήματος που προέκυπτε. Για να λύνεται το καινούριο σύστημα πιο γρήγορα, αλλά και να παρουσιάζει μεγαλύτερη ευστάθεια η μέθοδος, σαν αρχική εκτίμηση των γωνιών οριζόταν η τιμή των γωνιών στο προηγούμενο βήμα (για την προηγούμενη θ). Εφόσον η θ μεταβάλλεται λίγο, λογικό είναι και οι 2 άλλες γωνίες να μην παρουσιάζουν μεγάλες μεταβολές. Έτσι η αρχική εκτίμηση βρίσκεται πολύ κοντά στην πραγματική λύση και ο επιλυτής λύνει πιο γρήγορα το σύστημα. Για να στήσουμε την αριθμητική μέθοδο του Newton Raphson χρειάζεται να υπολογίζουμε τον Ιακωβιανό πίνακα των εξισώσεών μας, ο οποίος δίνεται από τον τύπο: όπου f είναι το διάνυσμα των εξισώσεων και q είναι το διάνυσμα των αγνώστων (στην περίπτωσή μας φ 2 και φ 3. Κάνοντας τις πράξεις προσδιορίζουμε τον Ιακωβιανό πίνακα στην εξής μορφή: Ισχύει ότι πολλαπλασιάζοντας τον Ιακωβιανό πίνακα με το διάνυσμα της νέα εκτίμησης της λύσης, προκύπτει το διάνυσμα των εξισώσεων. Άρα πολλαπλασιάζοντας τον αντίστροφο

3 του Ιακωβιανού με το διάνυσμα των εξισώσεων προκύπτει η νέα εκτίμηση της λύσης. Αντικαθιστώντας την νέα αυτή εκτίμηση στις εξισώσεις ελέγχουμε το σφάλμα της εκτίμησης, και αν είναι μεγαλύτερο από την ακρίβεια που έχουμε θέση, τότε επαναλαμβάνουμε την διαδικασία για να προσδιορίσουμε τον καινούριο Ιακωβιανό πίνακα για το νέο σημείο. Επαναλαμβάνοντας τους υπολογισμούς για κάθε γωνία θ, προκύπτουν οι λύσεις για τις γωνίες φ 2 και φ 3 για κάθε θ. Εικόνα 1 Γωνίες φ2 και φ3 Όπως γίνεται φανερό, για να μπορεί να επιλυθεί το πρόβλημα με αυτή τη μέθοδο, θα πρέπει να υπάρχει ο αντίστροφος του Ιακωβιανού πίνακα, ώστε να μπορεί να πολλαπλασιαστεί με το διάνυσμα των εξισώσεων. Επιπλέον μπορούμε εύκολα να παρατηρήσουμε ότι υπάρχουν σημεία του μηχανισμού για τον οποίο ισχύει ότι η οριζουσά του είναι μηδέν. Αυτά τα σημεία προσδιορίζονται εύκολα, εάν μηδενίσουμε την ορίζουσα: Και προκύπτει τελικά ότι Άρα για τις θέσεις για τις οποίες ισχύει φ 2 φ 3 =(κ+1)π/2 η μέθοδος μας δεν μπορεί να υπολογίσει την λύση του συστήματος. Τέτοια σημεία είναι τα σημεία έκτασης και επικάλυψης του μηχανισμού. 1.2 Γωνιακή ταχύτητα και επιτάχυνση των μελών Ο προσδιορισμός της γωνιακής ταχύτητας των μελών είναι απλός στην περίπτωση που γνωρίζουμε την ταχύτητα των μελών για κάθε γωνία θ. Παραγωγίζοντας τις εξισώσεις κίνησης από το προηγούμενο ερώτημα προκύπτουν οι εξής σχέσεις: το οποίο είναι ένα γραμμικό σύστημα 2 αγνώστων με 2 εξισώσεις και λύνεται εύκολα για κάθε τριάδα θ, φ 2,φ 3. Ομοίως εργαζόμαστε και για τον προσδιορισμό των γωνιακών

4 επιταχύνσεων. Παραγωγίζοντας τις εξισώσεις από τις οποίες προκύπτουν οι γωνιακές ταχύτητες έχουμε: το οποίο είναι και πάλι ένα σύστημα 2 εξισώσεων με 2 αγνώστους. Στην περίπτωσή μας ισχύει ότι η γωνιακή επιτάχυνση του 1 ου μέλους είναι μηδέν, αφού το μέλος έχει σταθερή ταχύτητα. Τα αποτελέσματα των υπολογισμών για την γωνιακή ταχύτητα και επιτάχυνση των μελών 1 και 2 φαίνεται στις εικόνες Εικόνα 2 Γωνιακές ταχύτητες του μέλους 2 και 3 Εικόνα 3 γωνιακές επιταχύνσεις του μέλους 2 και Ταχύτητα και επιτάχυνση μάζας μαδητήρα Για τον προσδιορισμό της ταχύτητας και της επιτάχυνσης της μάζας του μαδητήρα, χρειάζεται να προσδιορίσουμε πρώτα την θέση του για κάθε γωνία του 1 ου μέλους θ. Για να προσδιορίσουμε την θέση παίρνουμε το διάνυσμα θέσης του σημείου Δ που ισούται με:

5 Εικόνα 4 Θέση μάζας Δ στην κατεύθυνση x και y Εικόνα 5 Θέση μάζας Δ στο χώρο έπειτα παραγωγίζουμε ως προς το χρόνο για να προκύψει η ταχύτητα. Με μία επιπλέον παραγώγιση προκύπτει και η επιτάχυνση. Οι σχέσεις για την ταχύτητα και την επιτάχυνση είναι οι εξής:

6 Εικόνα 6 ταχύτητα μάζας Δ στην κατεύθυνση x και y Εικόνα 7 επιτάχυνση μάζας Δ στην κατεύθυνση x και y 1.4 Θέση, ταχύτητα και επιτάχυνση κέντρου μάζας Για τον προσδιορισμό της θέσης του κέντρου μάζας, χρειάζεται να προσδιορίσουμε την θέση των κέντρων μάζας του κάθε μέλους. Έπειτα πολλαπλασιάζουμε το διάνυσμα του κάθε μέλους με την μάζα του μέλους, προσθέτουμε τα επιμέρους γινόμενα και διαιρούμε με την συνολική μάζα των μελών. Έτσι προκύπτουν οι εξής εξισώσεις:

7 Εικόνα 8 θέση κέντρου μάζας στην κατεύθυνση x και y Εικόνα 9 θέση κέντρου μάζας μηχανισμού στο χώρο Παραγωγίζοντας τις εξισώσεις μία φορά προκύπτει η ταχύτητα του κέντρου μάζας, ενώ με δεύτερη παραγώγιση προκύπτει η επιτάχυνση του κέντρου μάζας: Εικόνα 10 ταχύτητα κέντρου μάζας στην κατεύθυνση x και y

8 Οι εξισώσεις υπολογισμού της επιτάχυνσης του κέντρου μάζας δεν παρουσιάζονται λόγω του ότι το μέγεθός τους δεν τις επιτρέπει να χωρέσουν σε μία σειρά. Εικόνα 11 επιτάχυνση κέντρου μάζας στην κατεύθυνση x και y Η ακινητοποίηση του κέντρου μάζας δεν είναι δυνατή μόνο με την προσθήκη μαζών στην προέκταση των μελών 1 και 2. Η ακινητοποίηση του κέντρου μάζας είναι δυνατή μόνο με την προσθήκη 3 τουλάχιστον μαζών στον μηχανισμό. Δηλαδή μόνο εάν τοποθετηθούν μάζες στις προεκτάσεις και των 3 ων μελών. 1.5 Ισοδύναμη μαζική ροπή αδράνειας Όπως μας δίνεται και από την άσκηση, η ισοδύναμη ροπή αδράνειας μπορεί να δοθεί από τον τύπο: όπου Τ είναι η συνολική κινητική ενέργεια του μηχανισμού σε κάθε θέση θ. Άρα, προσδιορίζοντας την συνολική κινητική ενέργεια του μηχανισμού για κάθε θ, μπορούμε να υπολογίσουμε την ισοδύναμη μαζική ροπή αδράνειας. Η κινητική ενέργεια του κάθε μέλους δίνεται από τις παρακάτω σχέσεις: Και η ισοδύναμη μαζική ροπή αδράνειας από την σχέση:

9 Εικόνα 12 Η ισοδύναμη μαζική ροπή αδράνειας του μηχανισμού 1.6 Δυνάμεις αρθρώσεων Για τον προσδιορισμό των δυνάμεων αρθρώσεων χρησιμοποιούμε τον νόμο του Νεύτωνα. Από τη στιγμή που γνωρίζουμε τα κινηματικά μεγέθη όλων των μελών, μπορούμε εύκολα να εφαρμόσουμε τον νόμο του Νεύτωνα γι αυτά. Έτσι προκύπτουν οι εξής εξισώσεις: 1 ο μέλος: 2 ο μέλος: 3 ο μέλος: Με αυτόν τον τρόπο, καταλήγουμε σε ένα σύστημα 9 εξισώσεων με 9 αγνώστους. Επειδή το σύστημα αυτό είναι γραμμικό, η επίλυσή του γίνεται πολύ εύκολα. Επιλύοντας το σύστημα για όλες τις τριάδες θ, φ 2 και φ 3, προσδιορίζουμε τις δυνάμεις για κάθε σημείο λειτουργίας του μηχανισμού.

10 Εικόνα 13 δύναμη στον σύνδεσμο Α στην κατεύθυνση x και y Εικόνα 14 δύναμη στον σύνδεσμο Β στην κατεύθυνση x και y Εικόνα 15 δύναμη στον σύνδεσμο Γ στην κατεύθυνση x και y

11 Εικόνα 16 δύναμη στον σύνδεσμο Ο στην κατεύθυνση x και y Υπολογίζοντας την απαιτούμενη ροπή Μ 0 σε κάθε σημείο λειτουργίας του μηχανισμού, προσθέτοντας όλες τις τιμές και διαιρώντας με τον αριθμό των τιμών, προσδιορίζουμε την μέση ισχύ του κινητήρα, ώστε να δουλεύει ο μηχανισμός με τις συγκεκριμένες στροφές (240 rpm). Έτσι υπολογίζουμε ότι η μέση ισχύς του κινητήρα είναι P m =711.4 W, ή 0.95 Hp. 1.7 Συνισταμένη αδρανειακή δύναμη Ο τρόπος υπολογισμού της συνισταμένης αδρανειακής δύναμης είναι πολύ απλός. Είτε προσδιορίζουμε τις δυνάμεις στα σημεία στήριξης Ο και Γ, χωρίς όμως να λάβουμε υπ όψιν την δύναμη F Δ, λόγω του ότι δεν είναι αδρανειακή δύναμη. Ένας πιο απλός υπολογισμός είναι να εφαρμοστεί η σχέση του Νεύτωνα πάνω στο κέντρο μάζας του μηχανισμού. Γνωρίζοντας τη επιτάχυνση του κέντρου μάζας κάθε στιγμή, μπορούμε εύκολα να υπολογίσουμε τι δύναμη ασκεί το πλαίσιο στο κέντρο μάζας για να κινηθεί. Η δύναμη αυτή είναι ίση και αντίθετη με τη συνισταμένη αδρανειακή δύναμη που ασκεί ο μηχανισμός στο πλαίσιο. Εικόνα 17 Συνισταμένη αδρανειακή δύναμη στο πλαίσιο στην κατεύθυνση x και y

12 2 Β Ερώτημα 2.1 Κεντρική διαφορά Για να υπολογίσουμε την ταχύτητα του μηχανισμού στην μόνιμη κατάσταση λειτουργίας, θα πρέπει να καταστρώσουμε αρχικά την εξίσωση κίνησης του μηχανισμού. Για την κατάστρωση αυτή χρησιμοποιούμε τις εξισώσεις του Lagrance: όπου Τ είναι η κινητική ενέργεια του μηχανισμού, V η δυναμική και D η συνάρτηση σκέδασης του Rayleigh. Για το σύστημα που μελετάμε ισχύουν τα εξής: Άρα η εξίσωσης κίνησης είναι: όπου I eq είναι η παράγωγος της ισοδύναμης μαζικής ροπής αδράνειας ως προς την γωνία θ. Λύνοντας λοιπόν αυτή την εξίσωση, προσδιορίζουμε για κάθε χρονική στιγμή την γωνία θ και την γωνιακή ταχύτητα και επιτάχυνση. Για να προχωρήσουμε στην αριθμητική ολοκλήρωση της εξίσωσης, αντικαθιστούμε την ταχύτητα και την επιτάχυνση με τα εξής: όπου θ n η γωνία την χρονική στιγμή n, θ n+1 η γωνία θ στην χρονική στιγμή n+1 και h είναι το βήμα της αριθμητικής ολοκλήρωσης. Αντικαθιστώντας την ταχύτητα και την επιτάχυνση στην εξίσωση κίνησης, προκύπτει μία γραμμική εξίσωση 2 ου βαθμού, την οποία και λύνουμε ως προς θ n+1 με την γνωστή μέθοδο επίλυσης εξισώσεων 2 ου βαθμού.

13 Όπως φαίνεται, στην εξίσωση εμφανίζεται ο όρος θ n 1, δηλαδή η γωνία κατά την χρονική στιγμή n 1. Είναι λογικό λοιπόν, η μέθοδος αυτή να μην μπορεί να ξεκινήσει, γιατί για n=0 χρειαζόμαστε την γωνία την χρονική στιγμή 1. Για να ξεπεράσουμε αυτό το εμπόδιο, και να ξεκινήσει η επίλυση, υπολογίζουμε την γωνία την χρονική στιγμή 1 από την παρακάτω σχέση: Λύνοντας την εξίσωση δευτέρου βαθμού προκύπτουν οι ζητούμενες γωνίες, και βάση αυτών υπολογίζονται οι ταχύτητες και επιταχύνσεις για κάθε χρονική στιγμή. Όμως λόγο των πολύ μεγάλων αριθμών που εμφανίζονται κατά την επίλυση, επιλέγεται μία λίγο πιο σταθερή μέθοδος από την κλασσική. Βάση αυτής της μεθόδου, ισχύει: όπου α, β και γ οι συντελεστές της εξίσωσης. Η επίλυση αυτή παρουσιάζει μεγαλύτερη σταθερότητα όταν το β 2 είναι πολύ μεγαλύτερο του 4αγ. Όπως φαίνεται και από την εξίσωση κίνησης, είναι αναγκαίος ο προσδιορισμός των μεγεθών Ι eq, Ι eq, Μ 0 και της μερικής παραγώγου της γωνίας φ 3 ως προς θ. Για τον υπολογισμό αυτών τον μεγεθών σε κάθε χρονική στιγμή, χρησιμοποιούνται προσεγγιστικά πολυώνυμα. Τα πολυώνυμα αυτά είναι τέτοια, ώστε να προσεγγίζουν τις τιμές των μεγεθών αυτών για κάθε γωνία θ (άρα και για κάθε χρονική στιγμή). Η προσέγγιση έγινε με την μέθοδο ελάχιστων τετραγώνων, και βασίστηκε στα δεδομένα από το Α ερώτημα. Οι εξισώσεις προσέγγισης των μεγεθών είναι: ( *6*θ e 014*5*θ e 011*4*θ e 009*3*θ e 006*2*θ )*1000/(2Pi) I eq =(1.5006e 018*θ e 015*θ e 012*θ e 010*θ e 006*θ *θ *θ+2.19) )*1000/(2Pi) M o =3.327e 015*vt e 012*vt e 009*vt e 006*vt *vt *vt Ολοκληρώνοντας αριθμητικά την εξίσωση, με αρχικές συνθήκες: θ 0 =2 rad, θ 0=0 και προσδιορίζοντας την αρχική γωνιακή επιτάχυνση από την εξίσωση κίνησης, αντικαθιστώντας την αρχική θέση και ταχύτητα, παρουσιάζεται το εξής αποτέλεσμα:

14 Εικόνα 18 χρονική απόκριση μηχανισμού 2.2 Μείωση διακυμάνσεων μηχανισμού Για τη μείωση των διακυμάνσεων του μηχανισμού προστίθεται ένας σφόνδυλος, ο οποίος αυξάνει την αδράνεια του μηχανισμού και απορροφά της απότομες μεταβολές της επιτάχυνσης. Για να μελετηθεί η συνεισφορά του σφονδύλου στην εξομάλυνση της ταχύτητας του μηχανισμού, λύθηκε το σύστημα για πολλές τιμές της μαζικής ροπής αδράνειας του σφονδύλου, ξεκινώντας από 0 και καταλήγοντας σε 25 kgm 2. Εικόνα 19 Συσχέτιση βαθμού ανομοιομορφίας δ και μαζικής ροπής αδράνειας για μικρό κινητήρα Από την ανάλυση αυτή, μπορούμε εύκολα να συμπεράνουμε ότι για γωνιακή ταχύτητα 32 rad/sec, πετυχαίνουμε τον ιδανικό βαθμό ανομοιομορφίας της γωνιακής ταχύτητας δ=0.01 για πρόσθετη μαζική ροπή αδράνειας I add =149 kg m 2. Λύνοντας την εξίσωση προσθέτοντας την επιπλέον μαζική ροπή αδράνειας, προκύπτει το εξής αποτέλεσμα:

15 Εικόνα 20 χρονική απόκριση μηχανισμού με πρόσθετη μαζική ροπή αδράνειας και μεσαίο κινητήρα Παρατηρούμε ότι ο μηχανισμός χρειάζεται περίπου 140 δευτερόλεπτα για να φτάσει την μόνιμη κατάσταση, λόγο της αυξημένης ροπής αδράνειας. Όμως επίσης παρατηρούμε ότι οι διακυμάνσεις της ταχύτητας είναι πολύ μικρές, όπως προβλέφθηκε και από το προηγούμενο διάγραμμα. Επαναλαμβάνοντας την ίδια ανάλυση για έναν μεγαλύτερο κινητήρα (30 hp αυτή τη φορά), καταλήγουμε στο παρακάτω διάγραμμα σχετικά με την συσχέτιση του βαθμού ανομοιομορφίας και της επιπρόσθετης μαζικής ροπής αδράνειας: Εικόνα 21 Συσχέτιση βαθμού ανομοιομορφίας δ και μαζικής ροπής αδράνειας για μεγάλο κινητήρα Στην προκειμένη περίπτωση, για να επιτευχθεί βαθμός ανομοιομορφίας δ=0.01, πρέπει να προστεθεί μαζική ροπή αδράνειας I add =132 kg m 2. Προσθέτοντας αυτή τη μάζα έχουμε την εξής μεταβατική κατάσταση:

16 Εικόνα 22 χρονική απόκριση μηχανισμού με πρόσθετη μαζική ροπή αδράνειας και μεγάλο κινητήρα Σε αυτή την περίπτωση παρατηρούμε ότι ο μηχανισμός χρειάζεται περίπου 25 δευτερόλεπτα για να φτάσει στην μόνιμη κατάσταση, δηλαδή σχεδόν 5 φορές πιο γρήγορα από ότι με τον προηγούμενο κινητήρα (1 hp). Επιπλέον επιτυγχάνεται περίπου 5 φορές μεγαλύτερη γωνιακή ταχύτητα. Στην περίπτωση που τοποθετήσουμε μικρότερο κινητήρα, τότε από την ανάλυση προκύπτει ότι χρειαζόμαστε μεγαλύτερη μαζική ροπή αδράνειας για να πετύχουμε τον επιθυμητό βαθμό ανομοιομορφίας. φ Εικόνα 23 Συσχέτιση βαθμού ανομοιομορφίας δ και μαζικής ροπής αδράνειας για μικρό κινητήρα Για έναν μικρότερο κινητήρα ( hp ή 90 W), προκύπτει απαιτούμενη μαζική ροπή αδράνειας I add = 176 kg m 2 και η μεταβατική απόκριση του μηχανισμού γι αυτή την περίπτωση φαίνεται στην παρακάτω εικόνα:

17 Εικόνα 24 χρονική απόκριση μηχανισμού με πρόσθετη μαζική ροπή αδράνειας και μικρό κινητήρα Η μεταβατική περίοδος διαρκεί περίπου 220 δευτερόλεπτα, κάτι που δικαιολογείται από την μικρή ισχύ του κινητήρα. Και σε αυτή την περίπτωση βλέπουμε πως ο μηχανισμός δέχεται μικρές αυξομειώσεις της ταχύτητας του, ενώ η τελική του ταχύτητα είναι περίπου 8 rad/sec. 2.3 Η μέθοδος Newmark Για να ολοκληρωθεί το σύστημα με την μέθοδο Newmark θα πρέπει αρχικά να καταστρωθούν οι εξισώσεις κίνησης. Χρησιμοποιώντας και πάλι τις εξισώσεις του Lagrance, όπως και στην μέθοδο της κεντρικής διαφοράς, προκύπτουν οι εξισώσεις κίνησης. Γνωρίζουμε ότι: Έτσι προκύπτουν οι 2 εξισώσεις κίνησης για το σύστημά μας, που σε μητρωική μορφή γράφονται ως εξής:

18 Όπου Από την μέθοδο του Newmark γνωρίζουμε ότι: Αντικαθιστώντας τις δύο αυτές εξισώσεις στο σύστημα των εξισώσεων κίνησης, προκύπτει ένα σύστημα 2 εξισώσεων με δύο αγνώστους (γωνιακή επιτάχυνση του 1 ου και 2 ου μέλους). Επειδή αυτή η εξίσωση περιέχει μη γραμμικούς όρους, που προέρχονται από τον όρο που είναι υψωμένος στο τετράγωνο, δεν είναι εύκολη η αναλυτική επίλυσή του. Γι αυτό χρησιμοποιούμε και πάλι την μέθοδο Newton Raphson ώστε να προσδιορίζουμε σε κάθε χρονικό βήμα την λύση του συστήματος. Γνωρίζοντας την γωνιακή επιτάχυνση για την επόμενη χρονική στιγμή, μπορούμε να προσδιορίσουμε εύκολα και την γωνιακή ταχύτητα και γωνία, από τις εξισώσεις που δόθηκαν παραπάνω. Η μέθοδος του Newton Raphson δεν αναλύεται περισσότερο σε αυτή την παράγραφο, καθώς έχει περιγραφεί αναλυτικά στην πρώτη παράγραφο. Πρέπει επιπλέον να υπολογιστεί η επιθυμητή στιβαρότητα του στρεπτικού ελατηρίου, ώστε η πρώτη ιδιοσυχνότητα που αντιστοιχεί στην ελαστική ιδιομορφή του συστήματος να είναι ίση με την γωνιακή ταχύτητα περιστροφής, δηλαδή 25 rad/sec. Για να υπολογιστεί λοιπόν η επιθυμητή στιβαρότητα θα πρέπει να λυθεί το ιδιοπρόβλημα Κ ω 2 Μ =0. Έτσι έχουμε: Ή όπου είναι η μέση τιμή της μαζικής ροπής αδράνειας του μηχανισμού 4 ων μελών. Κάνοντας τους υπολογισμούς προκύπτει ότι k 0 = Nm. Έτσι ολοκληρώνοντας το σύστημα γι αυτή την τιμή του k 0, προκύπτει η παρακάτω μεταβατική απόκριση. Εικόνα 25 χρονική απόκριση μηχανισμού με k0 τέτοιο ώστε η διέγερση να έχει συχνότητα ίση με την πρώτη ιδιοσυχνότητα

19 Παρατηρούμε ότι το σύστημα δεν φτάνει σε μία μόνιμη κατάσταση ταλάντωσης, και αυτό είναι λογικό αν αναλογιστεί κανείς ότι τα χαρακτηριστικά του συστήματος (η k 0 ) έχουν επιλεγεί έτσι, ώστε να διεγείρεται το σύστημα στην πρώτη του ιδιομορφή. Εάν δεν υπήρχε απόσβεση στο σύστημα, τότε αυτό θα έκανε ταλάντωση άπειρου εύρους. Έπειτα μελετάται η απόκριση του συστήματος στην περίπτωση k=10k 0. Εικόνα 26 χρονική απόκριση μηχανισμού με k0 10πλάσιο από την προηγούμενη περίπτωση Το σύστημα σε αυτή την περίπτωση εμφανίζει περιοδική απόκριση, έστω και με μεγάλη περίοδο, σχετικά με την περίοδο της διέγερσης. Στην επόμενη περίπτωση, όπου k=k 0 /10, έχουμε την εξής απόκριση. Εικόνα 27 χρονική απόκριση μηχανισμού με k0 υπό 10πλάσιο από την πρώτη περίπτωση Όπως αναμενόταν, εμφανίζεται και πάλι περιοδική απόκριση, μικρότερου εύρους. Στην τελευταία περίπτωση, όπου έχουμε σχεδόν απαραμόρφωτο σύνδεσμο (k=1e7), τα 2 μέλη εμφανίζονται να κινούνται με την ίδια ακριβώς ταχύτητα, σαν να ήταν δηλαδή ένα σώμα.

20 Εικόνα 28 χρονική απόκριση μηχανισμού με k0 πολύ μεγάλο (απαραμόρφωτο)

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της

απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση της 1. Ένα σώμα μάζας m =, kg εκτελεί εξαναγκασμένη ταλάντωση μικρής απόσβεσης, με τη βοήθεια της διάταξης που φαίνεται στο διπλανό σχήμα. Η σταθερά του ελατηρίου είναι ίση με k = 45 N/m και η χρονική εξίσωση

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα. ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 03 Νόμοι κίνησης του Νεύτωνα ΦΥΣ102 1 Δύναμη είναι: Η αιτία που προκαλεί μεταβολή

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ

ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ ΠΡΟΒΛΗΜΑ 1 ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 4 ΚΕΦΑΛΑΙΟ Η λεπτή, ομογενής ράβδος ΟΑ του σχήματος έχει μήκος, μάζα και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο ακλόνητο άξονα (άρθρωση) που διέρχεται

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 3. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 3 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Περιεχόμενα: Διακριτή Μοντελοποίηση Μηχανικών Συστημάτων Επανάληψη: Διακριτά στοιχεία μηχανικών δυναμικών συστημάτων Δυναμικά

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 22. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 22 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Ανακοινώσεις Εξέταση Μαθήματος: 1/4/2014, 12.00 Απαιτείται αποδεικτικό ταυτότητας (Α.Τ., Διαβατήριο, Διπλ. Οδ.) Απαγορεύεται

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ ( Μεθοδολογία- Παραδείγματα ) Κλεομένης Γ. Τσιγάνης

Διαβάστε περισσότερα

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση. Μάθημα/Τάξη: Φυσική Γ Λυκείου Κεφάλαιο: Ταλαντώσεις Ονοματεπώνυμο Μαθητή: Ημερομηνία: 7-11-2016 Επιδιωκόμενος Στόχος: 80/100 Θέμα A Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα

Διαβάστε περισσότερα

7. Δυναμική Ανάλυση ΠΒΣ

7. Δυναμική Ανάλυση ΠΒΣ ΠΠΜ 501: Προχωρημένη Ανάλυση Κατασκευών με Η/Υ 7. Δυναμική Ανάλυση ΠΒΣ Χειμερινό εξάμηνο 2016 Πέτρος Κωμοδρόμος komodromos@ucy.ac.cy http://www.eng.ucy.ac.cy/petros 1 Θέματα Εισαγωγή στα πολυβάθμια συστήματα

Διαβάστε περισσότερα

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο

Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Ένα εκκρεμές σε επιταχυνόμενο αμαξίδιο Το πρόβλημά μας είναι να προσδιορίσουμε την περίοδο των ταλαντώσεων του εκκρεμούς στο πρόβλημα που απεικονίζεται στο παραπάνω σχήμα υπό την προϋπόθεση ότι η δύναμη

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ 25/7/2015 ΕΠΩΝΥΜΟ:... ΟΝΟΜΑ:... ΤΜΗΜΑ:... ΗΜΕΡΟΜΗΝΙΑ:... ΤΣΙΜΙΣΚΗ &ΚΑΡΟΛΟΥ ΝΤΗΛ ΓΩΝΙΑ THΛ: 270727 222594 ΑΡΤΑΚΗΣ 12 - Κ. ΤΟΥΜΠΑ THΛ: 919113 949422 www.syghrono.gr ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ-ΟΜΟΓΕΝΩΝ

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ε π α ν α λ η π τ ι κ ά θ έ µ α τ α 0 0 5 Γ ΛΥΚΕΙΟΥ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ & ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ 1 ΘΕΜΑ 1 o Για τις ερωτήσεις 1 4, να γράψετε στο τετράδιο σας τον αριθµό της ερώτησης και δίπλα το γράµµα που

Διαβάστε περισσότερα

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια)

Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος (συνέχεια) Εξίσωση Κίνησης Μονοβάθμιου Συστήματος: Επιρροή Μόνιμου Φορτίου Βαρύτητας Δ03-2 Μέχρι τώρα στη διατύπωση της εξίσωσης κίνησης δεν έχει ληφθεί υπόψη το

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης

Δυναμική Μηχανών I. Σύνοψη Εξεταστέας Ύλης Δυναμική Μηχανών I 9 1 Σύνοψη Εξεταστέας Ύλης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Ύλη Δυναμικής Μηχανών

Διαβάστε περισσότερα

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ.

ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΟΝΟΜΑΤΕΠΩΝΥΜΟ. ΤΕΙ ΠΕΙΡΑΙΑ ΗΜ: 1/7/14 ΣΤΕΦ - ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΑΥΤΟΜΑΤΙΣΜΟΥ Α ΕΞΕΤΑΣΤΙΚΗ -ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ:Μ.ΠΗΛΑΚΟΥΤΑ ΔΙΑΡΚΕΙΑ 2 ΩΡΕΣ B ΟΝΟΜΑΤΕΠΩΝΥΜΟ. 1. (2.5) Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο

Διαβάστε περισσότερα

Γενικευμένα Mονοβάθμια Συστήματα

Γενικευμένα Mονοβάθμια Συστήματα Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Γενικευμένα Mονοβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Δυναμική Ανάλυση Ραβδωτών Φορέων 1 1. Είδη γενικευμένων μονοβαθμίων συστημάτων xu

Διαβάστε περισσότερα

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ

ΘΕΩΡΗΤΙΚΗ ΜΗΧΑΝΙΚΗ ΙΙ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΦΥΣΙΚΗΣ ΤΟΜΕΑΣ ΑΣΤΡΟΝΟΜΙΑΣ ΑΣΤΡΟΦΥΣΙΚΗΣ ΚΑΙ ΜΗΧΑΝΙΚΗΣ ΣΠΟΥΔ ΑΣΤΗΡΙΟ ΜΗΧΑΝΙΚΗΣ ΑΣΚΗΣΕΙΣ ΑΝΑΛΥΤΙΚΗΣ ΔΥΝΑΜΙΚΗΣ Μεθοδολογία Κλεομένης Γ. Τσιγάνης Λέκτορας ΑΠΘ Πρόχειρες

Διαβάστε περισσότερα

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 10//10/01 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΓΡΑΠΤΗ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας 1 Kg βρίσκεται πάνω σε κεκλιμένο επίπεδο γωνίας κλίσης 45º. Μεταξύ

Διαβάστε περισσότερα

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς

Μέτρηση της επιτάχυνσης της βαρύτητας. με τη μέθοδο του απλού εκκρεμούς Εργαστηριακή Άσκηση 5 Μέτρηση της επιτάχυνσης της βαρύτητας με τη μέθοδο του απλού εκκρεμούς Βαρσάμης Χρήστος Στόχος: Μέτρηση της επιτάχυνσης της βαρύτητας, g. Πειραματική διάταξη: Χρήση απλού εκκρεμούς.

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Προτεινόμενες Λύσεις Άσκηση ( 5 μονάδες) Δύο σύγχρονες πηγές, Π και Π, που απέχουν μεταξύ τους

Διαβάστε περισσότερα

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ

ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/2013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΑΤΕΙ ΠΕΙΡΑΙΑ/ ΣΤΕΦ 3//7/013 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΙΑΣ ΑΠΑΝΤΗΣΕΙΣ ΓΡΑΠΤΗΣ ΕΞΕΤΑΣΗ ΣΤΗ ΦΥΣΙΚΗ ΕΞΕΤΑΣΤΗΣ: ΒΑΡΣΑΜΗΣ ΧΡΗΣΤΟΣ ΔΙΑΡΚΕΙΑ ΩΡΕΣ ΑΣΚΗΣΗ 1 Σώμα μάζας m=0.1 Kg κινείται σε οριζόντιο δάπεδο ευθύγραμμα με την

Διαβάστε περισσότερα

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση

ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2013 Γ Λυκείου Θετική & Τεχνολογική Κατεύθυνση ΦΥΣΙΚΗ ΘΕΜΑ 1 ο Στις ερωτήσεις 1 4 να γράψετε τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1. Σώμα

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΤΑΛΑΝΤΩΣΕΙΣ ΜΕ ΑΠΟΣΒΕΣΗ ΚΑΙ ΔΙΕΓΕΡΣΗ ΑΣΚΗΣΗ 1 d x dx Η διαφορική εξίσωση κίνησης ενός ταλαντωτή δίνεται από τη σχέση: λ μx. Αν η μάζα d d του ταλαντωτή είναι ίση με =.5 kg, τότε να διερευνήσετε την κίνηση

Διαβάστε περισσότερα

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου

Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Προτεινόμενο διαγώνισμα Φυσικής Α Λυκείου Θέμα 1 ο Σε κάθε μια από τις παρακάτω προτάσεις 1-5 να επιλέξετε τη μια σωστή απάντηση: 1. Όταν ένα σώμα ισορροπεί τότε: i. Ο ρυθμός μεταβολής της ταχύτητάς του

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 3-0-0 ΘΕΡΙΝ ΣΕΙΡ ΘΕΜ ο ΔΙΓΩΝΙΣΜ ΣΤΗ ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 17-10-11 ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ Α Θέµα 1 ο ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω ερωτήσεις 1-4 δίπλα το γράµµα που αντιστοιχεί στη

Διαβάστε περισσότερα

Ανάλυση Ηλεκτρικών Κυκλωμάτων

Ανάλυση Ηλεκτρικών Κυκλωμάτων Ανάλυση Ηλεκτρικών Κυκλωμάτων Κεφάλαιο 5: Θεωρήματα κυκλωμάτων Οι διαφάνειες ακολουθούν το βιβλίο του Κων/νου Παπαδόπουλου «Ανάλυση Ηλεκτρικών Κυκλωμάτων» ISN: 978-960-93-7110-0 κωδ. ΕΥΔΟΞΟΣ: 50657177

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης

Δυναμική Μηχανών I. Χρονική Απόκριση Συστημάτων 2 ης Τάξης Δυναμική Μηχανών I 5 5 Χρονική Απόκριση Συστημάτων 2 ης Τάξης 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com Απαγορεύεται οποιαδήποτε αναπαραγωγή χωρίς άδεια Περιεχόμενα

Διαβάστε περισσότερα

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ

ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ ΕΝΟΤΗΤΑ 1.2 ΔΥΝΑΜΙΚΗ ΣΕ ΜΙΑ ΔΙΑΣΤΑΣΗ 1. Τι λέμε δύναμη, πως συμβολίζεται και ποια η μονάδα μέτρησής της. Δύναμη είναι η αιτία που προκαλεί τη μεταβολή της κινητικής κατάστασης των σωμάτων ή την παραμόρφωσή

Διαβάστε περισσότερα

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α

Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου. Ταλαντώσεις. Θέμα Α Διαγώνισμα Φυσικής Προσανατολισμού Γ Λυκείου Θέμα Α 1. Ένα σώμα εκτελεί απλή αρμονική ταλάντωση περιόδου Τ και τη χρονική στιγμή t=0 βρίσκεται στην ακραία αρνητική του απομάκρυνση. Μετά από χρόνο t 1 =

Διαβάστε περισσότερα

Εισαγωγή στην Ρομποτική

Εισαγωγή στην Ρομποτική Τμήμα Μηχανολογίας Τ.Ε.Ι. Κρήτης Εισαγωγή στην Ρομποτική 1 Γενική περιγραφή ρομποτικού βραχίονα σύνδεσμοι αρθρώσεις αρπάγη Περιστροφική Πρισματική Βάση ρομποτικού βραχίονα 3 Βασικές ρομποτικές αρθρώσεις

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΑΠΛΗ ΑΡΜΟΝΙΚΗ ΤΑΛΑΝΤΩΣΗ ΘΕΜΑ 1 Α. Ερωτήσεις πολλαπλής επιλογής 1. Σώμα εκτελεί Α.Α.Τ με περίοδο Τ και πλάτος Α. Αν διπλασιάσουμε το πλάτος της ταλάντωσης τότε η περίοδος της θα : α. παραμείνει

Διαβάστε περισσότερα

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ

3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ 3. ΥΝΑΜΙΚΗ ΡΟΜΠΟΤΙΚΩΝ ΒΡΑΧΙΟΝΩΝ Η δυναµική ασχολείται µε την εξαγωγή και τη µελέτη του δυναµικού µοντέλου ενός ροµποτικού βραχίονα. Το δυναµικό µοντέλο συνίσταται στις διαφορικές εξισώσεις που περιγράφουν

Διαβάστε περισσότερα

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr

I. ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ. math-gr I ΜΙΓΑΔΙΚΟΙ ΑΡΙΘΜΟΙ i e ΜΕΡΟΣ Ι ΟΡΙΣΜΟΣ - ΒΑΣΙΚΕΣ ΠΡΑΞΕΙΣ Α Ορισμός Ο ορισμός του συνόλου των Μιγαδικών αριθμών (C) βασίζεται στις εξής παραδοχές: Υπάρχει ένας αριθμός i για τον οποίο ισχύει i Το σύνολο

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΗ ΥΛΗ:ΗΛΕΚΤΡΙΚΕΣ-ΜΗΧΑΝΙΚΕΣ ΤΑΛΑΝΤΩΣΕΙΣ ΘΕΜΑ 1 Ο Στις ερωτήσεις 1-4 να επιλέξετε τη σωστή πρόταση. 1.Σώμα εκτελεί απλή αρμονική ταλάντωση και κάποια

Διαβάστε περισσότερα

Δημήτρης Αγαλόπουλος Σελίδα 1

Δημήτρης Αγαλόπουλος Σελίδα 1 ΛΥΣΗ Δ1. Η ράβδος διαγράφει γωνία μέχρι να συγκρουστεί με το σώμα (Σ 1 ). Τη χρονική στιγμή t=0 βρίσκεται στην οριζόντια θέση (Α), την χρονική στιγμή t 1 γίνεται κατακόρυφη θέση (Γ) και συγκρούεται με

Διαβάστε περισσότερα

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις Α1 Α5 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 05-06 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 08//05 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Να γράψετε στο τετράδιο σας τον αριθμό καθεμιάς από

Διαβάστε περισσότερα

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων

Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Αριθμητική εύρεση ριζών μη γραμμικών εξισώσεων Με τον όρο μη γραμμικές εξισώσεις εννοούμε εξισώσεις της μορφής: f( ) 0 που προέρχονται από συναρτήσεις f () που είναι μη γραμμικές ως προς. Περιέχουν δηλαδή

Διαβάστε περισσότερα

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών

Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Συνήθεις διαφορικές εξισώσεις προβλήματα οριακών τιμών Οι παρούσες σημειώσεις αποτελούν βοήθημα στο μάθημα Αριθμητικές Μέθοδοι του 5 ου εξαμήνου του ΤΜΜ ημήτρης Βαλουγεώργης Καθηγητής Εργαστήριο Φυσικών

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση.

ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. ΕΙΣΑΓΩΓΙΚΑ ΣΧΟΛΙΑ Η δύναμη που ασκείται σε ένα σώμα προκαλεί μεταβολή της ταχύτητάς του δηλαδή επιτάχυνση. Η δύναμη είναι ένα διανυσματικό μέγεθος. Όταν κατά την κίνηση ενός σώματος η δύναμη είναι μηδενική

Διαβάστε περισσότερα

, g 10 m / s, / 2, / 2, Απάντηση

, g 10 m / s, / 2, / 2, Απάντηση Φυσική κατεύθυνσης Στη διάταξη του διπλανού σχήματος η ράβδος Σ 1 είναι ομογενής, έχει μάζα 1 =0,3kg, μήκος (ΑΓ) = l = 0,8 και μπορεί να περιστρέφεται σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα κάθετο

Διαβάστε περισσότερα

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24

ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 ΕΚΦΩΝΗΣΕΙΣ ΑΣΚΗΣΕΩΝ 6 24 Εκφώνηση άσκησης 6. Ένα σώμα, μάζας m, εκτελεί απλή αρμονική ταλάντωση έχοντας ολική ενέργεια Ε. Χωρίς να αλλάξουμε τα φυσικά χαρακτηριστικά του συστήματος, προσφέρουμε στο σώμα

Διαβάστε περισσότερα

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧ/ΚΩΝ & ΜΗΧ/ΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ Θέματα Εξετάσεων Ασκήσεις στο Mάθημα: "ΡΟΜΠΟΤΙΚΗ Ι: ΑΝΑΛΥΣΗ, ΕΛΕΓΧΟΣ, ΕΡΓΑΣΤΗΡΙΟ" 1 η Σειρά Θεμάτων Θέμα 1-1 Έστω ρομποτικός

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm

ΑΠΑΝΤΗΣΕΙΣ. Η κινητική ενέργεια του κυλίνδρου λόγω της μεταφορικής του κίνησης δίνεται από την σχέση: Κ μετ = 1 m u 2 cm ΠΡΟΣΟΜΟΙΩΣΗ ΑΠΟΛΥΤΗΡΙΩΝ ΕΞΕΤΑΣΕΩΝ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΟΥ ΛΥΕΙΟΥ Μ.ΤΕΤΑΡΤΗ 0 ΑΠΡΙΛΙΟΥ 011 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΗ ΘΕΤΙΗΣ - ΤΕΧΝΟΛΟΓΙΗΣ ΑΤΕΥΘΥΝΣΗΣ ΑΠΑΝΤΗΣΕΙΣ Θέμα 1 ο 1. γ. γ 3. α 4. δ 5. α) Λ β) Σ γ)

Διαβάστε περισσότερα

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με

κατά την οποία το μέτρο της ταχύτητας του κέντρου μάζας του τροχού είναι ίσο με ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Β Λ ΗΜΕΡΟΜΗΝΙΑ: 06/0/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ)

ΤΑΛΑΝΤΩΣΕΙΣ (23 ΠΕΡΙΟΔΟΙ) α (cm/s ) ΚΕΦΑΛΑΙΟ 3 Κατηγορία Α ΤΑΛΑΝΤΩΣΕΙΣ (3 ΠΕΡΙΟΔΟΙ) 1. Να προσδιορίσετε ποια από τα πιο κάτω φυσικά μεγέθη μπορεί να έχουν την ίδια κατεύθυνση για ένα απλό αρμονικό ταλαντωτή: α. θέση και ταχύτητα,

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη

Διαβάστε περισσότερα

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 1 ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΜΕ ΝΕΟ ΣΥΣΤΗΜΑ 2014 ΘΕΜΑ Α.1 Α1. Να χαρακτηρίσετε με (Σ) τις σωστές και με (Λ) τις λανθασμένες προτάσεις Στην ευθύγραμμα ομαλά επιβραδυνόμενη κίνηση: Α. Η ταχύτητα

Διαβάστε περισσότερα

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής.

Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. ΑΕΙ ΠΕΙΡΑΙΑ Τ.Τ Τμήμα Μηχανικών Αυτοματισμού Τ.Ε. Έλεγχος στροφών κινητήρα DC με ελεγκτή PI, και αντιστάθμιση διαταραχής. Α) Σκοπός: Σκοπός της παρούσας άσκησης είναι να επιδειχθεί ο έλεγχος των στροφών

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 28/12/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις

Διαβάστε περισσότερα

, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m 2. Οι ταχύτητες υ και υ των σφαιρών μετά την κρούση

, συγκρούεται μετωπικά και ελαστικά με ακίνητη σφαίρα μάζας m 2. Οι ταχύτητες υ και υ των σφαιρών μετά την κρούση ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 13 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ:

Διαβάστε περισσότερα

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις

ΔΕΟ13 - Επαναληπτικές Εξετάσεις 2010 Λύσεις ΔΕΟ - Επαναληπτικές Εξετάσεις Λύσεις ΘΕΜΑ () Το Διάγραμμα Διασποράς εμφανίζεται στο επόμενο σχήμα. Από αυτό προκύπτει καταρχήν μία θετική σχέση μεταξύ των δύο μεταβλητών. Επίσης, από το διάγραμμα φαίνεται

Διαβάστε περισσότερα

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ 1ο. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΘΕΜΑ 1ο Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση 1 Ένα σώμα εκτελεί αρμονική ταλάντωση με ακραίες θέσεις που

Διαβάστε περισσότερα

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική

ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική Α ΤΑΞΗ ΕΠΑΝΑΛΗΨΗ Α ΛΥΚΕΙΟΥ στη Φυσική ΜΕΡΟΣ 1 : Ευθύγραμμες Κινήσεις 1. Να επαναληφθεί το τυπολόγιο όλων των κινήσεων - σελίδα 2 (ευθύγραμμων και ομαλών, ομαλά μεταβαλλόμενων) 2. Να επαναληφθούν όλες οι

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΕΥΤΕΡΑ 23 ΜΑΪΟΥ 2016 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

Διαβάστε περισσότερα

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΛΥΣΕΙΣ. Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις 1-4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΜΘΗΜ / ΤΞΗ: ΦΥΣΙΚΗ ΚΤΕΥΘΥΝΣΗΣ / Γ ΛΥΚΕΙΟΥ ΣΕΙΡ: η (ΘΕΡΙΝ) ΗΜΕΡΟΜΗΝΙ: /0/ ΘΕΜ ο ΛΥΣΕΙΣ Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις -4 και δίπλα το γράμμα που αντιστοιχεί

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 10. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι -. - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: - opyrght ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών -. Με επιφύλαξη παντός δικαιώµατος.

Διαβάστε περισσότερα

Πολυβάθμια Συστήματα

Πολυβάθμια Συστήματα Πολυβάθμια Συστήματα Εισαγωγή Πολυβάθμια Συστήματα: Δ19-2 Η βασική προϋπόθεση για την προσομοίωση μίας κατασκευής ως μονοβάθμιο ταλαντωτή είναι πως η μάζα, ο μηχανισμός απόσβεσης και η ακαμψία μπορούν

Διαβάστε περισσότερα

γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης

γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης η εξεταστική περίοδος από 4/0/5 έως 08//5 γραπτή εξέταση στη ΦΥΣΙΚΗ B κατεύθυνσης Τάξη: Β Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Στις ερωτήσεις Α-Α4 να επιλέξετε τη σωστή απάντηση.

Διαβάστε περισσότερα

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους

Παράδειγμα 1. Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με. Σχήμα 1. στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Παράδειγμα 1 Δίνεται ο κάτωθι κλειστός βρόχος αρνητικής ανάδρασης με _ + Σχήμα 1 στο οποίο εφαρμόζουμε αρνητική ανάδραση κέρδους Α) Γράψτε το σύστημα ευθέως κλάδου σε κανονική παρατηρήσιμη μορφή στο χώρο

Διαβάστε περισσότερα

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b

ΑΣΚΗΣΗ 7. έκδοση DΥΝI-EXC b ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΑΣΚΗΣΗ 7 έκδοση DΥΝI-EXC07-06b Copyright Ε.Μ.Π. - 06 Σχολή

Διαβάστε περισσότερα

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ

ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 23 ΜΑΪOY 2016 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ (ΝΕΟ ΣΥΣΤΗΜΑ) 3 ΜΑΪOY 016 ΕΚΦΩΝΗΣΕΙΣ Στις ερωτήσεις Α1-Α4 να γράψετε στο τετράδιό σας τον αριθµό της ερώτησης και, δίπλα, το γράµµα που αντιστοιχεί στη φράση η οποία συµπληρώνει

Διαβάστε περισσότερα

υ λ γ. λ δ. λ 0 υ. Μονάδες 5

υ λ γ. λ δ. λ 0 υ. Μονάδες 5 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 1 ΙΟΥΝΙΟΥ 01 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΕΠΤΑ

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://www.study4exams.gr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011

Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 20 05 2011 Απολυτήριες εξετάσεις Γ Τάξης Ημερήσιου Γενικού Λυκείου ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ 0 05 011 ΘΕΜΑ Α Α1. Σωστό το γ. Α. Σωστό το β. Α3. Σωστό το γ. Α4. Σωστό το γ. Α.5. α. Σωστό β. Λάθος γ. Σωστό δ. Λάθος ε. Λάθος

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5)

ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) Σελίδα 1 από 5 ΔΙΑΓΩΝΙΣΜΑ 02 ΦΥΣΙΚΗ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Διάρκεια: 3ώρες ΣΥΝΟΛΟ ΣΕΛΙ ΩΝ: ΠΕΝΤΕ (5) ΘΕΜΑ A Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1- Α4 και

Διαβάστε περισσότερα

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός)

Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) 4 Η ΠΑΓΚΥΠΡΙΑ ΟΛΥΜΠΙΑ Α ΦΥΣΙΚΗΣ Γ ΛΥΚΕΙΟΥ (Επαναληπτικός ιαγωνισμός) Κυριακή, 5 Απριλίου, 00, Ώρα:.00 4.00 Οδηγίες: ) Το δοκίμιο αποτελείται από έξι (6) θέματα. ) Να απαντήσετε σε όλα τα θέματα. ) Επιτρέπεται

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 24/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 24/01/2016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 015-016 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ Α ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 4/01/016 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: Γιάννης Τζαγκαράκης Απαντήσεις ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς

Διαβάστε περισσότερα

Στεφάνου Μ. 1 Φυσικός

Στεφάνου Μ. 1 Φυσικός 1 ΕΡΓΟ ΕΝΕΡΓΕΙΑ Α. ΤΟ ΠΡΟΒΛΗΜΑ Βιομηχανική επανάσταση ατμομηχανές καύσιμα μηχανές απόδοση μιας μηχανής φως θερμότητα ηλεκτρισμός κ.τ.λ Οι δυνάμεις δεν επαρκούν πάντα στη μελέτη των αλληλεπιδράσεων Ανεπαρκείς

Διαβάστε περισσότερα

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15.

υναµική Μηχανών Ι Ακαδηµαϊκό έτος : Ε. Μ. Π. Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15. υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 010-011 ΥΝΑΜΙΚΗ ΜΗΧΑΝΩΝ Ι - 15.1 - υναµική Μηχανών Ι Ακαδηµαϊκό έτος: 010-011 Copyright ΕΜΠ - Σχολή Μηχανολόγων Μηχανικών - Εργαστήριο υναµικής και Κατασκευών - 010.

Διαβάστε περισσότερα

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ

ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ 1 ΠΡΟΤΕΙΝΟΜΕΝΟ ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Α ΛΥΚΕΙΟΥ ΘΕΜΑ 1 ο 1. Aν ο ρυθμός μεταβολής της ταχύτητας ενός σώματος είναι σταθερός, τότε το σώμα: (i) Ηρεμεί. (ii) Κινείται με σταθερή ταχύτητα. (iii) Κινείται με μεταβαλλόμενη

Διαβάστε περισσότερα

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις)

ΣΥΣΤΗΜΑΤΑ. 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) 6 ΣΥΣΤΗΜΑΤΑ 6.1 ΓΡΑΜΜΙΚΑ ΣΥΣΤΗΜΑΤΑ (Επαναλήψεις-Συμπληρώσεις) Η εξίσωση αx βy γ Στο Γυμνάσιο διαπιστώσαμε με την βοήθεια παραδειγμάτων ότι η εξίσωση αx βy γ, με α 0 ή β 0, που λέγεται γραμμική εξίσωση,

Διαβάστε περισσότερα

Κύματα Εξισώσεις Μεθοδολογία

Κύματα Εξισώσεις Μεθοδολογία Κύματα Εξισώσεις Μεθοδολογία Η εξίσωση του κύματος που εκφράζει την απομάκρυνση y ενός σημείου του μέσου, έστω Μ, που απέχει απόσταση χ από την πηγή τη χρονική στιγμή, είναι: y A ( ) με Η ταχύτητα με την

Διαβάστε περισσότερα

Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9.

Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9. Η Φυσική στην Α Λυκείου. Η ΔΙΔΑΣΚΑΛΙΑ 9. users.sch.gr/ /yphysicsalyceum9.htm 1/14 Η ομαλή κυκλική κίνηση είναι ΚΙΝΗΣΗ υλικού σημείου, είναι δηλαδή ένα ΦΑΙΝΟΜΕΝΟ κατά το οποίο η θέση ενός υλικού σημείου

Διαβάστε περισσότερα

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE

6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ LAPLACE 6. ΚΕΦΑΛΑΙΟ ΜΕΤΑΣΧΗΜΑΤΙΣΜΟΣ APACE Σκοπός του κεφαλαίου είναι να ορίσει τον αμφίπλευρο μετασχηματισμό aplace ή απλώς μετασχηματισμό aplace (Μ) και το μονόπλευρο μετασχηματισμό aplace (ΜΜ), να περιγράψει

Διαβάστε περισσότερα

ΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ΖΕΥΓΟΥΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΓΡΑΜΜΙΚΑ ΚΑΙ ΜΗ ΓΡΑΜΜΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΠΟ ΠΕΡΙΟΔΙΚΗ ΔΙΕΓΕΡΣΗ

ΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ΖΕΥΓΟΥΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΓΡΑΜΜΙΚΑ ΚΑΙ ΜΗ ΓΡΑΜΜΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΥΠΟ ΠΕΡΙΟΔΙΚΗ ΔΙΕΓΕΡΣΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΤΜΗΜΑ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΤΑΣΚΕΥΑΣΤΙΚΟΣ ΤΟΜΕΑΣ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΔΥΝΑΜΙΚΗ ΜΕΛΕΤΗ ΖΕΥΓΟΥΣ ΟΔΟΝΤΩΤΩΝ ΤΡΟΧΩΝ ΜΕ ΓΡΑΜΜΙΚΑ ΚΑΙ ΜΗ ΓΡΑΜΜΙΚΑ ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ

Διαβάστε περισσότερα

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων

Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών. Πολυβάθμια Συστήματα. Ε.Ι. Σαπουντζάκης. Καθηγητής ΕΜΠ. Δυναμική Ανάλυση Ραβδωτών Φορέων Εθνικό Μετσόβιο Πολυτεχνείο Σχολή Πολιτικών Μηχανικών Πολυβάθμια Συστήματα Ε.Ι. Σαπουντζάκης Καθηγητής ΕΜΠ Συστήματα με Κατανεμημένη Μάζα και Δυσκαμψία 1. Εξίσωση Κίνησης χωρίς Απόσβεση: Επιβαλλόμενες

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 2 ΦΥΓΟΚΕΝΤΡΟΣ ΔΥΝΑΜΗ Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία Διεξαγωγής: 05/12/11 Ημερομηνία Παράδοσης:

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές

Δυναμική Μηχανών I. Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις. Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές Δυναμική Μηχανών I Επίλυση Προβλημάτων Αρχικών Συνθηκών σε Συνήθεις 5 3 Διαφορικές Εξισώσεις με Σταθερούς Συντελεστές 2015 Δημήτριος Τζεράνης, Ph.D Τμήμα Μηχανολόγων Μηχανικών Ε.Μ.Π. tzeranis@gmail.com

Διαβάστε περισσότερα

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014

ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ ΠΡΟΣΠΑΘΕΙΑ ΣΑΣ ΚΙ 2014 ΤΟ ΥΛΙΚΟ ΕΧΕΙ ΑΝΤΛΗΘΕΙ ΑΠΟ ΤΑ ΨΗΦΙΑΚΑ ΕΚΠΑΙΔΕΥΤΙΚΑ ΒΟΗΘΗΜΑΤΑ ΤΟΥ ΥΠΟΥΡΓΕΙΟΥ ΠΑΙΔΕΙΑΣ http://wwwstudy4examsgr/ ΕΧΕΙ ΤΑΞΙΝΟΜΗΘΕΙ ΑΝΑ ΕΝΟΤΗΤΑ ΚΑΙ ΑΝΑ ΤΥΠΟ ΓΙΑ ΔΙΕΥΚΟΛΥΝΣΗ ΤΗΣ ΜΕΛΕΤΗΣ ΣΑΣ ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΣΤΗ

Διαβάστε περισσότερα

Απόκριση σε Αρμονική Διέγερση

Απόκριση σε Αρμονική Διέγερση Δυναμική Μηχανών Ι Διδάσκων: Αντωνιάδης Ιωάννης Απόκριση σε Αρμονική Διέγερση Άδεια Χρήσης Το παρόν υλικό βασίζεται στην παρουσίαση Απόκριση σε Αρμονική Διέγερση του καθ. Ιωάννη Αντωνιάδη και υπόκειται

Διαβάστε περισσότερα

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση.

Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α1-Α4 και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ 03-0 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ ΣΕΙΡΑ: Α (ΛΥΣΕΙΣ) ΗΜΕΡΟΜΗΝΙΑ: 0/0/03 ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω ερωτήσεις Α-Α

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α

ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ Γ Λ Υ Κ Ε Ι Ο Υ 08/01/2017 ΘΕΜΑ Α Στις παρακάτω ερωτήσεις πολλαπλού τύπου 1-7, να επιλέξετε τη σωστή απάντηση και στο απαντητικό σας φύλλο να μεταφέρετε τον αριθμό και το γράμμα της

Διαβάστε περισσότερα

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο.

5. Το διάγραμμα του σχήματος παριστάνει την ταχύτητα ενός σώματος που εκτελεί απλή αρμονική ταλάντωση σε συνάρτηση με τον χρόνο. ΔΙΑΓΩΝΙΣΜΑ ΦΥΣΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 9/0/06 ΘΕΜΑ Α Στις ερωτήσεις 7 να γράψετε στο τετράδιό σας τον αριθμό της ερώτησης και δίπλα το γράμμα που αντιστοιχεί στη σωστή απάντηση. Mια μικρή σφαίρα προσκρούει

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ ΑΝΑΣΚΟΠΗΣΗ ΘΕΩΡΙΑΣ ΣΥΝΟΡΘΩΣΕΩΝ Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ Επίκουρος Καθηγητής ΤΕΙ Αθήνας 3ο εξάμηνο http://eclass.teiath.gr Παρουσιάσεις,

Διαβάστε περισσότερα

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ)

ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) ΤΟΠΟΓΡΑΦΙΚΑ ΔΙΚΤΥΑ ΚΑΙ ΥΠΟΛΟΓΙΣΜΟΙ Η ΣΥΝΟΡΘΩΣΗ ΤΩΝ ΟΡΙΖΟΝΤΙΩΝ ΔΙΚΤΥΩΝ (ΤΟ ΣΥΣΤΗΜΑ ΤΩΝ ΚΑΝΟΝΙΚΩΝ ΕΞΙΣΩΣΕΩΝ) Βασίλης Δ. Ανδριτσάνος Δρ. Αγρονόμος - Τοπογράφος Μηχανικός ΑΠΘ 3ο εξάμηνο http://eclass.teiath.gr

Διαβάστε περισσότερα

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑ Α Ι. Στις ερωτήσεις 1-4 να γράψετε στο τετράδιο σας τον αριθμό της ερώτησης και το γράμμα που αντιστοιχεί στη σωστή απάντηση. 1.

Διαβάστε περισσότερα

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου

% ] Βαγγέλης Δημητριάδης 4 ο ΓΕΛ Ζωγράφου 1. Ομογενής και ισοπαχής ράβδος μήκους L= 4 m και μάζας M= 2 kg ισορροπεί οριζόντια. Το άκρο Α της ράβδου συνδέεται με άρθρωση σε κατακόρυφο τοίχο. Σε σημείο Κ της ράβδου έχει προσδεθεί το ένα άκρο κατακόρυφου

Διαβάστε περισσότερα

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , ,

ΚΕΝΤΡΟ ΘΕΩΡΗΤΙΚΗΣ ΦΥΣΙΚΗΣ & ΧΗΜΕΙΑΣ ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Λεωφ. Κηφισίας 56, Αμπελόκηποι Αθήνα Τηλ.: , , ΕΔΟΥΑΡΔΟΥ ΛΑΓΑΝΑ Ph.D. Αμπελόκηποι Αθήνα Τηλ.: 0 69 97 985, 77 98 044, www.edlag.gr ΛΥΜΕΝΑ ΘΕΜΑΤΑ ΕΞΕΤΑΣΕΩΝ - ΑΣΚΗΣΕΙΣ Τηλ.: 0 69 97 985, e-mail: edlag@otenet.gr, www.edlag.gr ΣΜΑΡΑΓΔΑ ΣΑΡΑΝΤΟΠΟΥΛΟΥ, MSC,

Διαβάστε περισσότερα

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει

7. Αν υψώσουμε και τα δύο μέλη μιας εξίσωσης στον κύβο (και γενικά σε οποιαδήποτε περιττή δύναμη), τότε προκύπτει 8 7y = 4 y + y ( 8 7y) = ( 4 y + y) ( y) + 4 y y 4 y = 4 y y 8 7y = 4 y + ( 4 y) = ( 4 y y) ( 4 y) = 4( 4 y)( y) ( 4 y) 4( 4 y)( y) = 0 ( 4 y) [ 4 y 4( y) ] = 4 ( 4 y)( y + 4) = 0 y = ή y = 4) 0 4 H y

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΕΣ ΔΥΝΑΜΟΜΕΤΡΩΝ

ΤΕΧΝΟΛΟΓΙΕΣ ΔΥΝΑΜΟΜΕΤΡΩΝ ΤΕΧΝΟΛΟΓΙΕΣ ΔΥΝΑΜΟΜΕΤΡΩΝ Τα δυναμόμετρα chassis (δηλαδή όχι πάγκου) χωρίζονται σε δύο μεγάλες κατηγορίες: Α. Αδρανειακά Β. Ελεγχόμενου φορτίου Τα δυναμόμετρα τύπου Α (με γνωστότερο εκπρόσωπο το dynojet)

Διαβάστε περισσότερα

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ ΕΤΟΥΣ 2016-2017 ΜΑΘΗΜΑ / ΤΑΞΗ : ΦΥΣΙΚΗ ΘΕΤΙΚΩΝ ΣΠΟΥΔΩΝ Γ ΛΥΚΕΙΟΥ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: 13/11/16 ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΑΡΧΩΝ ΜΑΡΚΟΣ ΘΕΜΑ Α Οδηγία: Να γράψετε στο τετράδιό σας τον αριθμό

Διαβάστε περισσότερα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα

Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα Τμήμα Φυσικής Πανεπιστημίου Κύπρου Χειμερινό Εξάμηνο 2016/2017 ΦΥΣ102 Φυσική για Χημικούς Διδάσκων: Μάριος Κώστα ΔΙΑΛΕΞΗ 19 Ταλαντώσεις Απλή αρμονική κίνηση ΦΥΣ102 1 Ταλαντώσεις Ελατηρίου Όταν ένα αντικείμενο

Διαβάστε περισσότερα

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ ΜΗΧΑΝΩΝ Εργαστηριακή Άσκηση 1 Προσδιορισμός Τεχνικών Παραμέτρων Ταλαντωτή Ενός Βαθμού Ελευθερίας Ονοματεπώνυμο: Παριανού Θεοδώρα Όνομα Πατρός: Απόστολος Αριθμός μητρώου: 1000107 Ημερομηνία

Διαβάστε περισσότερα

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα.

ΟΡΟΣΗΜΟ. 1ο Κριτήριο αξιολόγησης στα κεφ Θέμα 1. Κριτήρια αξιολόγησης Ταλαντώσεις - Κύματα. 1ο Κριτήριο αξιολόγησης στα κεφ. 1-2 Θέμα 1 Ποια από τις παρακάτω προτάσεις είναι σωστή; 1. Ένα σώμα μάζας m είναι δεμένο στην ελεύθερη άκρη κατακόρυφου ιδανικού ελατηρίου σταθεράς k και ηρεμεί στη θέση

Διαβάστε περισσότερα

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 4 ΣΕΛΙ ΕΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΙΣΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΤΟΥ ΕΞΩΤΕΡΙΚΟΥ ΚΑΙ ΤΕΚΝΩΝ ΕΛΛΗΝΩΝ ΥΠΑΛΛΗΛΩΝ ΣΤΟ ΕΞΩΤΕΡΙΚΟ ΠΕΜΠΤΗ 12 ΣΕΠΤΕΜΒΡΙΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΘΕΤΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ: ΦΥΣΙΚΗ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ:

Διαβάστε περισσότερα

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 1 Ονοματεπώνυμο.. Υπεύθυνος Καθηγητής: Γκαραγκουνούλης Ιωάννης Γ ΤΑΞΗ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΣΤΗ ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ > Τρίτη 3-1-2012 2 ΘΕΜΑ 1ο Να γράψετε

Διαβάστε περισσότερα

2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ

2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ 2. Ανάλυση του βασικού κινηματικού μηχανισμού των εμβολοφόρων ΜΕΚ Προαπαιτούμενες γνώσεις: (α) Γνώσεις των τμημάτων κινηματικού μηχανισμού Μηχανής Εσωτερικής Καύσης (β) Αριθμητικός υπολογισμός παραγώγου

Διαβάστε περισσότερα

B ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ ΓΕΛ ΝΟΕΜΒΡΙΟΣ Φυσική ΘΕΜΑ Α

B ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ ΓΕΛ ΝΟΕΜΒΡΙΟΣ Φυσική ΘΕΜΑ Α Προτεινόμενα Θέματα Γ ΓΕΛ ΝΟΕΜΒΡΙΟΣ 015 Φυσική ΘΕΜΑ Α προσανατολισμού Στις προτάσεις από 1-4 να βρείτε την σωστή απάντηση. Α1. Σε μία εξαναγκασμένη μηχανική ταλάντωση: Α. Η συχνότητα της ταλάντωσης είναι

Διαβάστε περισσότερα

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ

Δυναμική Μηχανών I. Διάλεξη 7. Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ Δυναμική Μηχανών I Διάλεξη 7 Χειμερινό Εξάμηνο 2013 Τμήμα Μηχανολόγων Μηχ., ΕΜΠ 1 Περιεχόμενα Επανάληψη 1 ου μέρους μαθήματος: Μοντελοποίηση & Κατάστρωση Δυναμικών Εξισώσεων Εισαγωγή 2 ου μέρους μαθήματος:

Διαβάστε περισσότερα

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ

ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ ΕΡΓΑΣΤΗΡΙΟ ΔΥΝΑΜΙΚΗΣ & ΚΑΤΑΣΚΕΥΩΝ ΤΟΜΕΑΣ ΜΗΧΑΝΟΛΟΓΙΚΩΝ ΚΑΤΑΣΚΕΥΩΝ & ΑΥΤΟΜΑΤΟΥ ΕΛΕΓΧΟΥ ΣΧΟΛΗ ΜΗΧΑΝΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΑΛΑΝΤΩΣΕΙΣ ΜΗΧΑΝΙΚΩΝ ΣΥΣΤΗΜΑΤΩΝ ΠΟΛΛΩΝ ΒΑΘΜΩΝ ΕΛΕΥΘΕΡΙΑΣ έκδοση

Διαβάστε περισσότερα