Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation"

Transcript

1 Nonlinear Dyn: manuscript No. (will be inserted by the editor) Nonlinear coupling of transverse modes of a fixed-fixed microbeam under direct and parametric excitation Prashant N. Kambali Ashok Kumar Pandey This is the author s copy of accepted manuscript on 6 September 016. The copyright belongs to Nonlinear Dynamics Journal Springer. The final publication is available at Springer via Abstract Tuning of linear frequency and nonlinear frequency response of microelectromechanical systems (MEMS) are important in order to obtain high operating bandwidth. Linear frequency tuning can be achieved through various mechanisms such as heating softening due to DC voltage etc. Nonlinear frequency response is influenced by non-linear stiffness quality factor and forcing. In this paper we present the influence of nonlinear coupling in tuning the nonlinear frequency response of two transverse modes of a fixed-fixed microbeam under the influence of direct and parametric forces near and below the coupling regions. To do the analysis we use nonlinear equation governing the motion along in-plane and out-of-plane directions. For a given DC and AC forcing we obtain static and dynamic equations using the Galerkin s method based on first mode approximation under the two different resonant conditions. First we consider one-to-one internal resonance condition in which the linear frequencies of two transverse modes show coupling. Second we consider the case in which the linear frequencies of two transverse modes are uncoupled. To obtain the non-linear frequency response under both the conditions we solve the dynamic equation with the method of multiple scale (MMS). After validating the results obtained using MMS with the numerical simulation of modal equation we discuss the influence of linear and nonlinear coupling on the frequency response of the in-plane and out-of-plane motion of fixed-fixed beam. We also analyzed the influence of quality factor on the frequency response of the beams near the coupling region. We found that the nonlinear response shows single curve near the coupling region with wider width for low value of quality factor and it shows two different curves when the quality fac- Prashant N. Kambali Department of Mechanical and Aerospace Engineering Indian Institute of Technology Hyderabad Kandi 5085 Telangana India me1p1004@iith.ac.in Ashok Kumar Pandey Department of Mechanical and Aerospace Engineering Indian Institute of Technology Hyderabad Kandi 5085 Telangana India ashok@iith.ac.in

2 tor is high. Consequently we can effectively tune the quality factor and forcing to obtain different types of coupled response of two modes of a fixed-fixed microbeam. 1 Introduction Microelectromechanical systems (MEMS) have been the subject of intense research in the design of sensitive sensors and actuators. The performance of MEMS based sensors and actuators are mainly dependent on their resonance frequencies. Hence it is important to study the linear and nonlinear frequency tuning of such devices. While the linear frequency tuning can be achieved through various mechanisms such as hardening due to residual stresses softening due to heating and DC voltage and their combined effect etc. the nonlinear frequency response can be tuned due to nonlinear stiffness quality factor and forcing 1 5. In this paper we discuss about the tuning of nonlinear frequency response of a fixed-fixed microbeam under the direct and parametric excitation by controlling the linear and nonlinear stiffness through the coupling of two transverse modes and their quality factors at different excitation force. Many researchers have analyzed the linear and nonlinear frequency response of in-plane or out-of-plane motion of a fixed-fixed or cantilever beam using one degree of freedom model. Younis and Nayfey 6 and Nayfeh et al. 7 studied the linear and nonlinear response of out-of-plane motion of a fixed-fixed beam subjected to direct forcing. Dumitru et al. 8 analyzed the nonlinear behavior of out-of-plane motion of a cantilever beam subjected to the fringing and direct forces. Linzon et al. 10 studied the parametric response of a cantilever beam in out-of-plane direction under the influence of fringing forces from two symmetrically placed side electrodes. Gutschmidt and Gottlieb 11 1 studied the in-plane motion of an array of fixed-fixed beams under the parametric excitation. Lifshitz et al. 13 analyzed the parametric response of an array of fixed-fixed beams along in-plane direction and compare the results with experiments conducted by Buks and Roukes 14. Kambali and Pandey 15 studied nonlinear response of out-ofplane motion of a fixed-fixed beam under the combined effect of direct and fringing forces. While the direct force leads to the nonlinear Duffing response the fringing force induces parametric response. The combined effect of direct and fringing force results in the nonlinear Duffing response with enhanced amplitude as well as frequency width. To analyze the influence of the coupling of two or more modes Nayfeh et al. 16 analyzed the nonlinear response of longitudinal and transverse motion of a taut string subjected to end excitation. Daqaq et al. 17 studied the linear and nonlinear coupled behavior of torsional micromirror when its torsional and transverse modes show :1 internal resonance condition. Isacsson et al. 18 presented numerical and analytical study of the linear and nonlinear coupled behavior of longitudinal and transverse motion of an array of carbon nanotube with fixed-free condition under parametric excitation. Samanta et al. 19 studied nonlinear coupling between various transverse modes of a MoS nanomechanical beam under 1:1 1: and 1:3 internal resonance conditions. Recently Ramini et al. 9 presented experimental studies of primary and parametric resonances of a MEMS arch resonator. Wie et al. 0 investigated the weak and strong coupling in a periodically driven Duffing resonator elastically coupled to a van der Pol oscillator under 1:1 internal resonance condition. Matheny et al. 1 studied

3 3 intra- and intermodal nonlinear coupling of a doubly clamped piezoelectric beam. Westra et al. presented theoretical and experimental studies of nonlinear intermodal coupling between the flexural vibration modes of a single clamped-clamped beam. Conley et al. 3 analyzed the nonlinear dynamics of fixed-fixed nanowire and found the transition from a planer motion to whirling motion on increasing the excitation amplitude. Mahboob et al. 4 analyzed the nonlinear coupling of nanomechanical resonators by the coupled Vander Pol-Duffing equations. In this paper we model and analyze the nonlinear coupling of two transverse modes of a fixed-fixed beam under the condition of 1:1 internal resonance. To do nonlinear coupled analysis of in-plane and out-of-plane modes near and away from the coupling region we consider the dimensions and properties of a fixed-fixed beam separated by two side electrodes and a bottom electrode as described by Kambali et al.. The electrostatic force along the out-of-plane direction is based on direct forcing between the bottom electrode and the beam and the parametric forcing between the beam and side electrodes. The force along in-plane direction is pure parametric forcing between the beam and the symmetrically placed side electrodes. Under the electrostatic forcing we apply Galerkin s method to governing equations along two directions and obtain the reduced order form of corresponding static and dynamics equations. To obtain the condition of coupling we take appropriate value of DC voltage such that the linear frequencies of in-plane mode ω 1 and out-of-plane mode ω 1 show coupling. To obtain the nonlinear coupled response we solve the modal dynamic equation using the method of multiple scales under the condition of ω 1 ω. After validating the multiple scale solution with numerical results obtained by solving modal dynamic equations we analyze the influence of quality factor on nonlinear frequency response near the coupling region. Governing equations To present the partial differential equations governing the in-plane and out-ofplane motions of a fixed-fixed microbeam we consider a beam of length L width B and thickness H which is separated from the two side electrodes E 1 and E by gaps of g 0 and g 1 respectively and the bottom electrode E g by a gap of d as shown in Fig. 1 (a) and (b). Taking the deflection of the beam along in-plane and out-of-plane as y(x t) and z(x t) respectively as shown in Fig. 1(a) the governing equation of motion along in-plane and out-of-plane directions considering damping residual tension and mid-plane stretching 1 can be written as: EI z ȳ + ρa ȳ + C 1 ȳ N 0 + EA L EIȳ z + ρa z + C 3 z N 0 + EA L L 0 L 0 ( z ) + ȳ d x ȳ n = Qȳ(ȳ z t) (.1) ( z ) + ȳ d x z n = Q z (ȳ z t) (.) where the subscripts prime and dot represent differentiation with respect to x and t respectively N 0 is the initial tension induced in the beam by fabrication processes and heating E is the Young s modulus of the beam EI is the bending

4 4 Fig. 1 (a) A fixed-fixed beam of width B thickness H separated from the side electrodes E 1 and E by g 0 g 1 and the ground electrode E g by distance d are subjected to direct force Q z and fringing field force Q y; (b) Top view of a fixed-fixed beam of length L. separated from the side electrodes E 1 and E by g 0 g 1 respectively. rigidity I z = HB 3 /1 I y = BH 3 /1 are area moment of inertia about z and y- axes and ρ is the material density. The boundary conditions for the fixed-fixed beam are taken as ȳ(0 t) = ȳ(l t) = 0 z(0 t) = z(l t) = 0 ȳ (0 t) = ȳ (L t) = 0 z (0 t) = z (L t) = 0. (.3) The forcing Q y and Q z are the effective electrostatic forces per unit length along y and z directions for the beam under the direct and fringing field effect as shown in Fig. 1 (a). The expressions for the forcing are given by Qȳ(ȳ z t) = 1 k 1ɛ 0 H (V10 + v(t)) (g 0 ȳ) (V 1 + v(t)) (g 1 + ȳ) (.4) Q z (ȳ z t) = 1 V 1g ɛ B 3 B (d z) B ( d z ) k (d z) 3 1 ɛ 0 H ( k3 g 0 B z B ) (V 10 + v(t)) + (V 1 + v(t)) (.5) where ɛ 0 = F/m is the vacuum permittivity. Here k 1 contributes for the net effect of fringing and direct fields in y-direction k and k 3 represent the strength of the fringing field effects from the bottom electrode and two side electrodes in the z-direction deflection. Further details regarding the extraction of electrostatic force parameters can be found in 5. V ij = V i V j is the voltage difference between the beam and electrodes and v(t) = V ac cos(ωt)..1 Non-dimensionalization To obtain the non-dimensional form of the governing equations we define the ratio of the beam and side electrode gaps as r 0 = (g 0 /g 0 ) r 1 = (g 1 /g 0 ) and use the variables x = x/l y = ȳ/g 0 z = z/d t = t/t where T = ρal 4 /EI z. Finally the non-dimensional nonlinear dynamic equations along the in-plane and out-ofplane directions for fixed-fixed beam under direct and parametric excitation can

5 5 be written as: y + ÿ + c 1 ẏ N + α 1 Γ (y y) + α Γ (z z)y = β s (V10 + v(t)) (1 y) (V 1 + v(t)) (r 1 + y) z + α 3 z + c 3 ż α 3 N + α 1 Γ (y y) + α Γ (z z)z = (β g + β g (1 z) (.6) β 3g (1 z) 3 ) (V 1g + v(t)) (1 z) (α g + α g z)(v 10 + v(t)) + (V 1 + v(t)). (.7) The corresponding non-dimensional form of the boundary conditions can be written as y(0 t) = y(1 t) = 0 z(0 t) = z(1 t) = 0 y (0 t) = y (1 t) = 0 z (0 t) = z (1 t) = 0. (.8) The various non-dimensionalised parameters as mentioned in above equations are defined as Γ (p(x t) q(x t)) = 1 0 p q x x dx N = N 0L α 1 = 6g 0 EI z B α = 6d B α 3 = β s = 6k 1σ 1 B 3 g0 3 β g = 5.9σ 1 H 3 d 3 β g = 0.109σ 1 B H 3 d β 3g = k σ 1 H 3 B 3 σ 1 = ɛ 0L 4 E α g = 0.094σ 1 g 0 B H d α g = k σ 1 g 0 B 3 H c 1 = C 1L 4 EIz T c 3 = C 3L 4. (.9) EIy T α 3 Since the beam deflection is based on its static component due to DC voltage and dynamic component due to AC voltage the deflection along y and z directions can be written as 1 ( Iz y(x t) = u s (x) + u(x t) z(x t) = w s (x) + w(x t). (.10) where u s (x) and w s (x) are static deflections. By substituting Eqn. (.10) in Eqns. (.6) and (.7) and subsequently setting the time derivatives and dynamic forcing terms equal to zero we get the static equations as: u s N + α 1 Γ (u s u s ) + α Γ (w s w s ) u (V10 ) s = β s (1 u s ) (V 1) (r 1 + u s ) I y ) (.11) w s α 3 N + α 1 Γ (u s u s ) + α Γ (w s w s ) w s = (β g + β g (1 w s ) β 3g (1 w s ) 3 (V 1g ) ) (1 w s ) α g(v 10 ) + (V 1 ) α g (V 10 ) w s + (V 1 ) w s. (.1) Similarly substituting Eqn. (.10) in Eqns. (.6) and (.7) expanding the forcing terms about u n = 0 and w n = 0 upto the first order and subtracting the contribution of the nonlinear static terms given by Eqns. (.11) and (.1) we get the

6 6 nonlinear dynamic equations for beam as u + u tt + c 1 u t α 1 Γ (u u) + α 1 Γ (u s u) + α Γ (w w) + α Γ (w s w)u s N + α 1 Γ (u s u s ) + α 1 Γ (u u) + α 1 Γ (u s u) + α Γ (w s w s ) + α Γ (w w) +α Γ (w s w)u (V10 ) u = β s (1 u s ) 3 + (V 1) u V 10 v(t) + v(t) (r 1 + u s ) 3 + β s (1 u s ) 1 + u (1 u s ) β s V 1 v(t) + v(t) (r 1 + u s ) 1 u (r 1 + u s ) (.13) w + α 3 w tt + c 3 w t α 3 α 1 Γ (u u) + α 1 Γ (u s u) + α Γ (w w) + α Γ (w s w) w s α 3 N + α 1 Γ (u s u s ) + α 1 Γ (u u) + α 1 Γ (u s u) + α Γ (w s w s ) + α Γ (w w) +α Γ (w s w)w = (β g + β 3g (1 w s ) 3 )w (V 1g) 1 + V 1g v(t) + v(t) (1 w s ) (1 w s ) 3 + β g w β g (V 1g v(t) + v(t) ) β 3g (V 1g v(t) + v(t) )(1 w s (1 w s ) w) α g w(v 10 ) + (V 1 ) (V 10 v(t) + v(t) )(α g α g w s α g w) (V 1 v(t) + v(t) )(α g α g w s α g w) (.14). Reduced order model To obtain the static and dynamic equations to perform coupled analysis under 1:1 internal resonance condition near the coupling region which is much below the pull-in voltage 3 we use Galerkin method based on first mode approximation of the in-plane and out-of-plane displacements with negligible error 6. Assuming the static and dynamic displacements subjected to the first transverse mode φ(x) the displacement along in-plane and out-of-plane directions can be written as 3: u s (x) = q 1 (y z)φ(x) w s (x) = q (y z)φ(x) (.15) u(x t) = P 1 (t)φ(x) w(x t) = P (t)φ(x) (.16) where q 1 and q are static deflections and P 1 (t) and P (t) are non-dimensional modal variables. φ(x) is ( undamped exact mode ) shape which is taken as φ(x) = cosh(ζx) cos(ζx) ν sinh(ζx) sin(ζx) where for the first mode ζ = 4.73 and ν = such that 1 0 (φ 1(x)) dx = 1. After premultiplying the denominator terms on either side of the Eqns (.11) (.1) substituting the assumed solution given by Eqn. (.15) and applying Galerkin s method we obtain the nonlinear static equations in both the directions which are given in Appendix A. Similarly by premultiplying the denominator terms on either side of the Eqns. (.13) and (.14) substituting the assumed static and dynamic solutions given by Eqns. (.15) and (.16) and applying Galerkin s method we obtain the nonlinear

7 7 modal dynamic equations in both the directions as: P 1tt (t) + λ 1P 1 (t) + t 1 P 1 (t) 3 + t P 1 (t) + t 3 P (t) + t 4 P (t) + t 5 (V 10 v(t) +v(t) ) + t 6 (V 1 v(t) + v(t) ) P 1 (t) + t 11 P 1t (t) + t 7 P (t) + t 8 P (t) +t 9 (V 10 v(t) + v(t) ) + t 10 (V 1 v(t) + v(t) ) = 0 (.17) P tt (t) + λ P (t) + s 1 P (t) 3 + s P (t) + s 3 P (t) + s 4 P (t) + s 5 (V 1g v(t) +v(t) ) + s 6 (V 10 v(t) + V 1 v(t) + v(t) ) P 1 (t) + s 11 P t (t) + s 7 P 1 (t) +s 8 P 1 (t) + s 9 (V 1g v(t) + v(t) ) + s 10 (V 10 v(t) + V 1 v(t) + v(t) ) = 0 (.18) where all coefficients of each term in above Eqns. (.17) and (.18) are given in Appendix A. Neglecting the damping term nonlinear terms and the dynamic forcing terms from above Eqns. (.17) and (.18) we get linear modal dynamic equations as: P 1tt (t) + λ 1P 1 (t) + t 8 P (t) = 0 (.19) P tt (t) + λ P (t) + s 8 P 1 (t) = 0. (.0) To obtain the linear frequency from the above equation we assume the solution of Eqns.(.19) and (.0) as P 1 (t) = βe iωt P (t) = γe iωt. Substituting the assumed solutions in the modal Eqns.(.19) and (.0) we get (λ 1 ω )β + t 8 γ = 0 (λ ω )γ + s 8 β = 0 For non-trivial solution the determinant of these system of equations should be zero. After solving the resulting equation we get two values of ω corresponding to two directions as 1 ω 1 = (λ (λ 1 + λ ) ± 1 λ ) + 4t 8 s 8 where λ 1 λ t 8 and s 8 are given in Appendix A. (.1) 3 Method of multiple scale In this section we apply the method of multiple scales (MMS) in solving Eqns. (.17) and (.18) assuming the modal displacements as functions multiple time scales T 0 = t T 1 = ɛt and T = ɛ t as P 1 (t) = ɛx 11 (T 0 T 1 T ) + ɛ x 1 (T 0 T 1 T ) + ɛ 3 x 13 (T 0 T 1 T ) + O(ɛ 4 ) P (t) = ɛx 1 (T 0 T 1 T ) + ɛ x (T 0 T 1 T ) + ɛ 3 x 3 (T 0 T 1 T ) + O(ɛ 4 ) (3.1)

8 8 where ɛ is a dimensionless small positive number. Subsequently the derivative terms with respect to t can be defined in terms of new time scales as d dt = dt 0 T 0 dt + dt 1 T 1 dt + ( d dt d dt = dt = (D 0 + ɛd 1 + ɛ D ) T dt ) = (D 0 + ɛd 1 + ɛ D ) = (D0 + ɛd 0 D 1 + ɛ D1 +ɛ D 0 D ) + H.O.T (3.) Rescaling the damping and forcing terms with different powers of ɛ as t 11 = ɛt 11 s 11 = ɛs 11 v(t) = ɛ V ac cos(ωt) (3.3) substituting the assumed solution from Eqns. (3.1) to (3.3) in Eqns (.17) and (.18) and by comparing different powers of ɛ upto third order we get the following three sets of equations as O(ɛ 1 ) D 0x 11 + λ 1x 11 + t 8 x 1 = 0 D 0x 1 + λ x 1 + s 8 x 11 = 0 (3.4) O(ɛ ) D0x 1 + λ 1x 1 + t 8 x = D 0 D 1 x 11 t 11 D 0 x 11 t x 11 t 4 x 11 x 1 t 7 x 1 t 9 η 11 cos(ω ac t) t 10 η 1 cos(ω ac t) D0x + λ x + s 8 x 1 = D 0 D 1 x 1 s 11 D 0 x 1 s x 1 s 4 x 11 x 1 s 7 x 11 s 9 η 1 cos(ω ac t) s 10 (η 11 + η 1 ) cos(ω ac t) (3.5) O(ɛ 3 ) D0x 13 + λ 1x 13 + t 8 x 3 = t 11 (D 0 x 1 + D 1 x 11 ) (D 0 D 1 x 1 +D1x 11 + D 0 D x 11 ) t 1 x 3 11 t x 11 x 1 t 3 x 11 x 1 t 4 (x 11 x + x 1 x 1 ) t 5 η 11 cos(ω ac t)x 11 t 6 η 1 cos(ω ac t)x 11 t 7 x 1 x D0x 3 + λ x 3 + s 8 x 13 = s 11 (D 0 x + D 1 x 1 ) (D 0 D 1 x + D1x 1 +D 0 D x 1 ) s 1 x 3 1 s x 1 x s 3 x 1 x 11 s 4 (x 11 x + x 1 x 1 ) s 5 η 1 cos(ω ac t)x 1 s 6 (η 11 + η 1 ) cos(ω ac t)x 1 s 7 x 11 x 1 (3.6) where η 11 = V 10 V ac η 1 = V 1 V ac and η 1 = V 1g V ac. 3.1 Solution of 1 st order equation Solutions x 11 and x 1 for the two homogeneous second order coupled equations given by Eqn. (3.4) are can be written as x 11 = A 1 (T 1 T )e iω 1T 0 + A (T 1 T )e iω T 0 + Ā1(T 1 T )e iω 1T 0 + Ā(T 1 T )e iω T 0 x 1 = k 1 A 1 (T 1 T )e iω 1T 0 + k A (T 1 T )e iω T 0 + k 1 Ā 1 (T 1 T )e iω 1T 0 +k Ā (T 1 T )e iω T 0 (3.7)

9 9 where ω 1 and ω are the coupled natural frequencies of the system in two orthogonal directions obtained from linear analysis. Substituting the assumed form of the solution from Eqn.(3.7) into Eqn.(3.4) we get (λ 1 ω 1) + t 8 k 1 A 1 e iω 1T 0 + (λ 1 ω ) + t 8 k A e iω T 0 = 0 (λ ω 1)k 1 + s 8 A 1 e iω 1T 0 + (λ ω )k + s 8 A e iω T 0 = 0. (3.8) Equating the coefficients of different terms on both sides of Eqn.(3.8) we get (λ 1 ω 1) + t 8 k 1 = 0 (λ 1 ω ) + t 8 k = 0 (3.9) (λ ω 1)k 1 + s 8 = 0 (λ ω )k + s 8 = 0. (3.10) On solving Eqns.(3.9) and (3.10) for k 1 and k we get the solvability condition as ( ω k n = n λ ) ( ) 1 s8 = t 8 ωn λ (3.11) where n = 1 and. 3. Solution of nd order equation To obtain the solution of Eqn. (3.5) we substitute Eqn. (3.7) into it and eliminate the secular terms. Taking the detuning parameters σ 1 and σ as Ω = ω 1 + ɛσ 1 ω = ω 1 + ɛσ. (3.1) and substituting x 11 and x 1 from Eqn. (3.7) into Eqn. (3.5) we get D 0x 1 + λ 1x 1 + t 8 x = i(ω 1 D 1 A 1 e iω 1T 0 + ω D 1 A e iω T 0 ) it 11 (A 1 ω 1 e iω 1T 0 +A ω e iω T 0 ) t (A 1e iω 1T 0 + A 1 Ā 1 + A e iω T 0 + A Ā + A 1 Ā e i(ω 1 ω )T 0 +A 1 A e i(ω 1+ω )T 0 ) t 4 (A 1k 1 e iω 1T 0 + A 1 Ā 1 k 1 + A k e iω T 0 + A Ā k + A 1 Ā (k 1 + k )e i(ω 1 ω )T 0 + A 1 A (k 1 + k )e i(ω 1+ω )T 0 ) t 7 (k 1A 1e iω 1T 0 + k 1A 1 Ā 1 +k A e iω T 0 + k A Ā + k 1 k A 1 Ā e i(ω 1 ω )T 0 + k 1 k A 1 A e i(ω 1+ω )T 0 ) + t 9 η 11e iω act 0 t 10 η 1e iω act 0 + cc (3.13) D 0x + λ x + s 8 x 1 = i(ω 1 k 1 D 1 A 1 e iω 1T 0 + k ω D 1 A e iω T 0 ) is 11 (k 1 A 1 ω 1 e iω 1T 0 + k A ω e iω T 0 ) s (k 1A 1e iω 1T 0 + k 1A 1 Ā 1 + k A e iω T 0 + k A Ā +k 1 k A 1 Ā e i(ω 1 ω )T 0 + k 1 k A 1 A e i(ω 1+ω )T 0 ) s 4 (A 1k 1 e iω 1T 0 + A 1 Ā 1 k 1 +A k e iω T 0 + A Ā k + A 1 Ā (k 1 + k )e i(ω 1 ω )T 0 + A 1 A (k 1 + k )e i(ω 1+ω )T 0 ) s 7 (A 1e iω 1T 0 + A 1 Ā 1 + A e iω T 0 + A Ā + A 1 Ā e i(ω 1 ω )T 0 + A 1 A e i(ω 1+ω )T 0 ) + s 9 η 1e iω act 0 s 10 (η 11 + η 1 )e iω act 0 + cc. (3.14) Assuming the solution of homogeneous form of Eqn.(3.5) as x 1 = P 11 e iω 1T 0 + P 1 e iω T 0 + cc x = P 1 e iω 1T 0 + P e iω T 0 + cc (3.15)

10 10 and substituting it in Eqns. (3.13) and (3.14) and eliminating the secular terms we get (λ 1 ω 1)P 11 e iω 1T 0 + (λ 1 ω )P 1 e iω T 0 + t 8 (P 1 e iω 1T 0 + P e iω T 0 ) = R 11 e iω 1T 0 + R 1 e iω T 0 (3.16) (λ ω 1)P 1 e iω 1T 0 + (λ ω )P e iω T 0 + s 8 (P 11 e iω 1T 0 + P 1 e iω T 0 ) The above equations can also be written in the matrix form as (λ 1 ωn) t 8 P1n s 8 (λ ωn) = P n = R 1 e iω 1T 0 + R e iω T 0. (3.17) R1n where n = 1 and R 1n and R n are the coefficients of e iω 1T 0 and e iω T 0 appearing in Eqns. (3.13) and (3.14) as R n R 11 = iω 1 D 1 A 1 iω D 1 A e iσ T 1 it 11 A 1 ω 1 it 11 A ω e iσ T 1 ( ) t9 η 11 + t 10 η 1 e iσ 1T 1 R 1 = iω 1 D 1 A 1 e iσ T 1 iω D 1 A it 11 A 1 ω 1 e iσ T 1 it 11 A ω ( ) t9 η 11 + t 10 η 1 e i(σ 1 σ )T 1 R 1 = iω 1 k 1 D 1 A 1 ik ω D 1 A e iσ T 1 is 11 k 1 A 1 ω 1 is 11 k A ω e iσ T 1 ( ) s9 η 1 + s 10 (η 11 + η 1 ) e iσ 1T 1 R = iω 1 k 1 D 1 A 1 e iσ T 1 iω k D 1 A is 11 k 1 A 1 ω 1 e iσ T 1 is 11 k A ω ( ) s9 η 1 + s 10 (η 11 + η 1 ) e i(σ 1 σ )T 1. (3.18) Solving Eqns. (3.16) and (3.17) and using Eqn. (3.11) we get the solvability conditions in terms of R 1n and R n as R 1n = t 8 (λ ω n) R n = ( t8 s 8 ) k n R n = k n R n (3.19) where kn = ( t 8 s 8 )k n. For n = 1 and k 1 = ( t 8 s 8 )k 1 the solvability condition R 11 + k 1 R 1 = 0 reduces to iω 1 (1 + k 1 k1 )D 1 A 1 iω (1 + k k1 )D 1 A e iσ T 1 = iω 1 A 1 (t 11 + s 11 k 1 k1 ) + iω A (t 11 + s 11 k k1 )e iσ T 1 ( t9 η 11 + t 10 η k 1 s 9 η 1 + k ) 1 s 10 (η 11 + η 1 ) e iσ 1T 1. (3.0)

11 11 Similarly for n = and k = ( t 8 s 8 )k the solvability condition R 1 + k R = 0 can be written as iω 1 (1 + k 1 k )D 1 A 1 e iσ T 1 iω (1 + k k )D 1 A = iω A (t 11 + s 11 k k ) + iω 1 A 1 (t 11 + s 11 k 1 k )e iσ T 1 ( t9 η 11 + t 10 η k s 9 η 1 + k ) s 10 (η 11 + η 1 ) e i(σ 1 σ )T 1. (3.1) Solving Eqns. (3.0) and (3.1) simultaneously we find the expressions for D 1 A 1 and D 1 A as D 1 A 1 = B 1A 1 + B A e iσ T 1 + ib 3 e iσ 1T 1 B 4 D 1 A = B 5A + B 6 A 1 e iσ T 1 + ib 7 e i(σ 1 σ )T 1 B 8 (3.) where B 1 B... B 8 are defined in Appendix B. Now substituting D 1 A 1 and D 1 A from Eqn.(3.) into the second order Eqns. (3.13) and (3.14) we obtain the complete solution for second order equations as x 1 = A 3 (T 1 T )e iω 1T 0 + A 4 (T 1 T )e iω T 0 + c 11 A 1e iω 1T 0 + c 1 A 1 Ā 1 + c 13 A e iω T 0 + c 14 A Ā + c 15 A 1 Ā e i(ω 1 ω )T 0 + c 16 A 1 A e i(ω 1+ω )T 0 + cc x = k 1 A 3 (T 1 T )e iω 1T 0 + k A 4 (T 1 T )e iω T 0 + c 1 A 1e iω 1T 0 + c A 1 Ā 1 + c 3 A e iω T 0 + c 4 A Ā + c 5 A 1 Ā e i(ω 1 ω )T 0 + c 6 A 1 A e i(ω 1+ω )T 0 + cc (3.3) On substituting Eqn.(3.3) in Eqns. (3.13) and (3.14) and comparing the coefficients of same terms on both side of the resulting equations we obtain the following equations in terms of coefficients c ij. Coefficients of A 1e iω 1T 0 : Coefficients of A 1 Ā 1 : Coefficients of A e iω T 0 : Coefficients of A Ā : 4c 11 ω 1 + c 11 λ 1 + t 8 c 1 = t t 4 k 1 t 7 k 1 4c 1 ω 1 + c 1 λ + s 8 c 11 = s 7 s 4 k 1 s k 1 (3.4) λ 1c 1 + t 8 c = t t 4 k 1 t 7 k 1 λ c + s 8 c 1 = s 7 s 4 k 1 s k 1 (3.5) 4c 13 ω + c 13 λ 1 + t 8 c 3 = t t 4 k t 7 k 4c 3 ω + c 3 λ + s 8 c 13 = s 7 s 4 k s k (3.6) λ 1c 14 + t 8 c 4 = t t 4 k t 7 k λ c 4 + s 8 c 14 = s 7 s 4 k s k (3.7)

12 1 Coefficients of A 1 Ā e i(ω 1 ω )T 0 : c 15 (ω 1 ω ) + λ 1c 15 + t 8 c 5 = t t 4 (k 1 + k ) t 7 k 1 k c 5 (ω 1 ω ) + λ c 5 + s 8 c 15 = s 7 s 4 (k 1 + k ) s k 1 k (3.8) Coefficients of A 1 A e i(ω 1+ω )T 0 : c 16 (ω 1 + ω ) + λ 1c 16 + t 8 c 6 = t t 4 (k 1 + k ) t 7 k 1 k c 6 (ω 1 + ω ) + λ c 6 + s 8 c 16 = s 7 s 4 (k 1 + k ) s k 1 k (3.9) Solving above equations simultaneously the coefficients c ij are obtained which are given in Appendix B. 3.3 Solution of 3 rd order equation Substituting Eqns. (3.7) and (3.3) into Eqn.(3.6) using Ω = ω 1 + ɛσ 1 ω = ω 1 + ɛσ and separating the secular terms similar to previous section we obtain the following equations: R 11 = iω 1 (D 1 A 3 + D A 1 ) D 1A 1 t 11 D 1 A 1 iω (D 1 A 4 + D A ) + D 1A +t 11 D 1 A e iσ T 1 it 11 ω 1 A 3 it 11 ω A 4 e iσ T 1 g 11 A 1Āe iσ T 1 g 1 A Āe iσ T 1 g 13 A A 1 Ā 1 e iσ T 1 g 14 A Ā1e iσ T 1 g 15 A 1Ā1 g 16 A 1 A Ā (3.30) R 1 = iω (D 1 A 4 + D A ) D A t 11 D 1 A iω 1 (D 1 A 3 + D A 1 ) + D 1A 1 t 11 D 1 A 1 e iσ T 1 it 11 ω A 4 it 11 ω 1 A 3 e iσ T 1 f 11 A Ā1e iσ T 1 f 1 A 1Ā1 e iσ T 1 f 13 A 1 A Ā e iσ T 1 f 14 A 1Āe iσ T 1 f 15 A Ā f 16 A A 1 Ā 1 (3.31) R 1 = iω 1 k 1 (D 1 A 3 + D A 1 ) k 1 D 1A 1 s 11 k 1 D 1 A 1 ik ω (D 1 A 4 + D A ) +k D 1A + k s 11 D 1 A e iσ T 1 is 11 k 1 ω 1 A 3 is 11 k ω A 4 e iσ T 1 g 1 A 1Ā1e iσ T 1 (g A Ā + g 3 A A 1 Ā 1 )e iσ T 1 g 4 A Ā1e iσ T 1 g 5 A 1Ā1 g 6 A 1 A Ā (3.3) R = ik ω (D 1 A 4 + D A ) k D 1A s 11 k D 1 A ik 1 ω 1 (D 1 A 3 + D A 1 ) +k 1 D 1A 1 + s 11 k 1 D 1 A 1 e iσ T 1 ik s 11 ω A 4 ik 1 s 11 ω 1 A 3 e iσ T 1 f 1 A Ā1 e iσ T 1 f A 1Ā1e iσ T 1 f 3 A 1 A Ā e iσ T 1 f 4 A 1Āe iσ T 1 f 5 A Ā f 6 A A 1 Ā 1 (3.33) where g n1...g n6 and f n1...f n6 for n = 1 and are given in Appendix B. Substituting the above equations in solvability condition given by Eqn.(3.19) we get the following two conditions iω 1 B 11 (D 1 A 3 + D A 1 ) B 11 D 1A 1 B 13 D 1 A 1 iω B 1 (D 1 A 4 + D A ) +B 1 D 1A + B 14 D 1 A e iσ T 1 = iω 1 B 13 A 3 + iω B 14 A 4 e iσ T 1 + ḡ 1 Ā A 1e iσ T 1 +ḡ Ā A e iσ T 1 + ḡ 3 A 1 A Ā 1 e iσ T 1 + ḡ 4 A Ā1e iσ T 1 + ḡ 5 A 1Ā1 + ḡ 6 A 1 Ā A (3.34)

13 13 iω G 1 (D 1 A 4 + D A ) G 1 D 1A G 13 D 1 A iω 1 G 11 (D 1 A 3 + D A 1 ) +G 11 D 1A 1 + G 14 D 1 A 1 e iσ T 1 = iω G 13 A 4 + iω 1 G 14 A 3 e iσ T 1 + f 1 Ā 1 A e iσ T 1 + f Ā 1 A 1e iσ T 1 + f 3 A 1 A Ā e iσ T 1 + f 4 A 1Āe iσ T 1 + f 5 A Ā + f 6 A 1 Ā 1 A (3.35) where g n = g 1n + k 1 g n fn = f 1n + k f n and the coefficients B 11 B 1 B 13 B 14 G 11 G 1 G 13 G 14 f 1n and g 1n for n = are mentioned in Appendix B. Now by following the procedure as mentioned in 717 we find A 3 and A 4 so as to eliminate D1A 1 and D1A from Eqns. (3.34) and (3.35). Such conditions lead to the following equations D 1 iω 1 A 3 + D 1 A 1 = 0 iω 1 A 3 + D 1 A 1 = h 11 (T ) D 1 iω A 4 + D 1 A = 0 iω A 4 + D 1 A = h 1 (T ); (3.36) However it is evident from Eqn.(3.) that D 1 A 1 and D 1 A are implicit functions of slow time scale T. Thus we take h 11 (T ) = h 1 (T ) =0. Now using Eqns.(3.) and (3.36) the expressions for A 3 and A 4 can be written as A 3 = ib 1 ω 1 B 4 A 1 + ib ω 1 B 4 A e iσ T 1 B 3 ω 1 B 4 e iσ 1T 1 A 4 = ib 5 ω B 8 A + ib 6 ω B 8 A 1 e iσ T 1 B 7 ω B 8 e i(σ 1 σ )T 1. (3.37) Using Eqn. (3.37) in Eqns. (3.34) and (3.35) we can find the values for D A 1 and D A by solving the following equations iω 1 B 11 D A 1 iω B 1 D A e iσ T 1 = B 13 D 1 A 1 + B 14 D 1 A e iσ T 1 + iω 1 B 13 A 3 +iω B 14 A 4 e iσ T 1 + ḡ 1 Ā A 1e iσ T 1 + ḡ Ā A e iσ T 1 + ḡ 3 A 1 A Ā 1 e iσ T 1 +ḡ 4 A Ā1e iσ T 1 + ḡ 5 A 1Ā1 + ḡ 6 A 1 Ā A (3.38) iω 1 G 11 D A 1 e iσ T 1 iω G 1 D A = G 13 D 1 A + G 14 D 1 A 1 e iσ T 1 +iω G 13 A 4 + iω 1 G 14 A 3 e iσ T 1 + f 1 Ā 1 A e iσ T 1 + f Ā 1 A 1e iσ T 1 + f 3 A 1 A Ā e iσ T 1 + f 4 A 1Āe iσ T 1 + f 5 A Ā + f 6 A 1 Ā 1 A. (3.39) The expressions for D A 1 and D A can be obtained as i D A 1 = (B 14 G 1 B 1 G 13 )D 1 A e iσ T 1 + (B 13 G 1 ω 1 (B 11 G 1 B 1 G 11 ) B 1 G 14 )D 1 A 1 + iω 1 (B 13 G 1 B 1 G 14 )A 3 + iω (B 14 G 1 B 1 G 13 )A 4 e iσ T 1 D A = +G 1 Ḡ B 1 F e iσ T 1 i (B 14 G 11 B 11 G 13 )D 1 A + (B 13 G 11 ω (B 1 G 11 B 11 G 1 ) B 11 G 14 )D 1 A 1 e iσ T 1 + iω (B 14 G 11 B 11 G 13 )A 4 + iω 1 (B 13 G 11 B 11 G 14 )A 3 e iσ T 1 + G 11 Ḡe iσ T 1 B 11 F (3.40)

14 14 where F and Ḡ are given in the Appendix B. To get the final solution we apply the method of reconstitution 7 17 and write modulation in the following form da 1 = ɛd 1 A 1 + ɛ D A dt da = ɛd 1 A + ɛ D A +... (3.41) dt Substituting the values of D 1 A 1 and D 1 A from Eqn. (3.) D A 1 and D A from Eqn. (3.40) and A 3 and A 4 from Eqn.(3.37) into Eqn.(3.41) and setting ɛ = 1 such that T 0 = T 1 = T = t we get the reconstituted modulation equations as A 1 = (B 13 G 1 G 14 B 1 ) 1 + i 4ω 1 (B 11 G 1 G 11 B 1 ) (B14 G 1 G 13 B 1 ) + i 4ω 1 (B 11 G 1 G 11 B 1 ) (G1 Ḡ B 1 F e iσ t ) + i ω 1 (B 11 G 1 G 11 B 1 ) A (B13 G 11 G 14 B 11 ) = i 4ω (B 1 G 11 G 1 B 11 ) e iσ t (B 14 G 11 G 13 B 11 ) i 4ω (B 1 G 11 G 1 B 11 ) (G11 Ḡe iσt B 11 F ) + i ω (B 1 G 11 G 1 B 11 ) B1 A 1 + B A e iσt + i B 3 B 4 B 4 B5 e iσ 1t B 4 B 8 A + B 6 B 8 A 1 e iσ t + i B 7 B 8 e i(σ 1 σ )t (3.4) e iσ t B1 B 4 A 1 + B B 4 A e iσ t + i B 3 B 4 e iσ 1t B5 A + B 6 A 1 e iσt + i B 7 e i(σ 1 σ )t B 8 B 8 B 8. (3.43) To express the modulation equations in polar form we rewrite A 1 and A as Here a n and β n are real functions of time t hence A n = 1 a ne iβ n n = 1. (3.44) A 1 = 1 a 1e iβ 1 A 1 = 1 ( a 1e iβ 1 + ia 1 β 1 e iβ 1 ) A 1 and A can be written as A = 1 a e iβ A = 1 ( a e iβ + ia β e iβ ). (3.45) Substituting Eqn.(3.45) into Eqns.(3.4) and (3.43) we get 1 ( a 1e iβ 1 + ia 1 β 1 e iβ 1 ) = ( ) 1 + ih 11 h a 1 e iβ 1 + h 33 a e i(β +σ t) + ih 44 e iσ 1t +ih 55 e iσ t h 66 a e iβ + h 77 a 1 e i(β 1 σ t) + ih 88 e i(σ 1 σ )t + ih 99 ḡ 1 a 1a e i(β 1 β σ t) + ḡ a 3 e i(β +σ t) + ḡ 3 a 1a e i(β +σ t) + ḡ 4 a 1 a e i(β β 1 +σ t) +ḡ 5 a 3 1e iβ 1 + ḡ 6 a 1 a e iβ 1 ih 1010 f 1 a 1 a e i(σ t β 1 +β ) + f a 3 1e iβ 1 + f 3 a 1 a e iβ 1 + f 4 a 1a e i(β 1 β σ t) + f 5 a 3 e i(β +σ t) + f 6 a 1a e i(β +σ t) (3.46)

15 1 ( a e iβ + ia β e iβ ) = ( ) 1 + il 11 l a e iβ + l 33 a 1 e i(β 1 σ t) + il 44 e i(σ 1 σ )t +il 55 e iσ t l 66 a 1 e iβ 1 + l 77 a e i(β +σ t) + il 88 e iσ 1t + il 99 ḡ 1 a 1a e i(β 1 β σ t) 15 +ḡ a 3 e iβ + ḡ 3 a 1a e iβ + ḡ 4 a 1 a e i(β β 1 +σ t) + ḡ 5 a 3 1e i(β 1 σ t) + ḡ 6 a 1 a il 1010 f 1 a 1 a e i(σ t β 1 +β ) + f a 3 1e i(β 1 σ t) + f 3 a 1 a e i(β 1 σ t) e i(β 1 σ t) + f 4 a 1a e i(β 1 β σ t) + f 5 a 3 e iβ + f 6 a 1a e iβ (3.47) where h 11 h... h 1010 and l 11 l... l 1010 are given in Appendix B. Finally we convert the above non-autonomous equations into autonomous forms by defining two new variables and their corresponding time derivative terms as θ 1 = (σ 1 t β 1 ) θ = (σ 1 σ )t β θ 1 = (σ 1 β 1 ) θ = (σ 1 σ ) β (3.48) Substiting Eqn.(3.48) into Eqns.(3.46) and (3.47) and separating the real and imaginary parts we get the following form of modulation equations a 1 = h a 1 + h 3 a cos(θ 1 θ ) h 4 sin(θ 1 ) + h 1 h 3 a sin(θ 1 θ ) h 4 cos(θ 1 ) + h 5 h 6 a sin(θ 1 θ ) h 8 cos(θ 1 ) + h 9 ḡ 1 a 1a sin(θ 1 θ ) ḡ a 3 sin(θ 1 θ ) ḡ 3 a 1a sin(θ 1 θ ) ḡ 4 a a 1 sin (θ 1 θ ) h 10 f 1 a a 1 sin (θ 1 θ ) + f 4 a 1a sin(θ 1 θ ) f 5 a 3 sin(θ 1 θ ) f 6 a 1a sin (θ 1 θ ) (3.49) a 1 θ 1 = a 1 σ 1 h 3 a sin(θ 1 θ ) h 4 cos(θ 1 ) h 1 h a 1 + h 3 a cos(θ 1 θ ) h 4 sin(θ 1 ) h 5 h 6 a cos(θ 1 θ ) + h 7 a 1 h 8 sin(θ 1 ) h 9 ḡ 1 a 1a cos(θ 1 θ ) + ḡ a 3 cos(θ 1 θ ) + ḡ 3 a 1a cos(θ 1 θ ) + ḡ 4 a a 1 cos (θ 1 θ ) + ḡ 5 a ḡ 6 a 1 a + h 10 f 1 a a 1 cos (θ 1 θ ) + f a f 3 a 1 a + f 4 a 1a cos(θ 1 θ ) + f 5 a 3 cos(θ 1 θ ) + f 6 a 1a cos (θ 1 θ ) (3.50) a = l a + l 3 a 1 cos(θ 1 θ ) l 4 sin(θ ) + l 1 l 3 a 1 sin(θ 1 θ ) l 4 cos(θ ) + l 5 l 6 a 1 sin(θ 1 θ ) l 8 cos(θ ) + l 9 ḡ 1 a 1a sin (θ 1 θ ) ḡ 4 a a 1 sin(θ 1 θ ) + ḡ 5 a 3 1a sin(θ 1 θ ) + ḡ 6 a a 1 sin (θ 1 θ ) l 10 f 1 a a 1 sin (θ 1 θ ) + f a 3 1 sin(θ 1 θ ) + f 3 a 1 a sin(θ 1 θ ) + f 4 a 1a sin (θ 1 θ ) (3.51) a θ = a (σ 1 σ ) + l 3 a 1 sin(θ 1 θ ) l 4 cos(θ ) l 1 l a + l 3 a 1 cos(θ 1 θ ) l 4 sin(θ ) l 5 l 6 a 1 cos(θ 1 θ ) + l 7 a l 8 sin(θ ) l 9 ḡ 1 a 1a cos (θ 1 θ ) + ḡ a 3 + ḡ 3 a a 1 + ḡ 4 a a 1 cos(θ 1 θ ) + ḡ 5 a 3 1 cos(θ 1 θ ) + ḡ 6 a a 1 cos(θ 1 θ ) + l 10 f 1 a a 1 cos (θ 1 θ ) + f a 3 1 cos(θ 1 θ ) + f 3 a 1 a cos(θ 1 θ ) + f 4 a 1a cos (θ 1 θ ) + f 5 a 3 + f 6 a a 1 (3.5)

16 16 where h 1 h... h 10 and l 1 l...l 10 are given in Appendix B. To obtain the equilibrium solution we set time derivatives terms to zero in Eqns. (3.49) (3.5) and solve the resulting equations. Finally the response of the beam upto second term can be written using Eqns. (3.1) (3.7) (3.3) and (3.44) and ɛ = 1 as ( P 1 (t) = x 11 + x 1 = 1 + i Λ 11 ) ( a 1 cos(ω 1 t + β 1 ) i Λ 1 ) a cos(ω t + β ) +Λ 13 cos(ω 1 + σ 1 )t + 1 c 11a 1 cos (ω 1 t + β 1 ) + 1 c 1a c 13a cos (ω t + β ) + 1 c 14a + 1 c 15a 1 a cos (ω 1 ω )t + β 1 β + 1 c 16a 1 a cos (ω 1 + ω )t + β 1 + β (3.53) ( P (t) = x 1 + x = k i Λ ( 11 )a 1 cos(ω 1 t + β 1 ) + k 1 + i Λ 1 ) a cos(ω t +β ) + Λ 14 cos(ω 1 + σ 1 )t + 1 c 1a 1 cos (ω 1 t + β 1 ) + 1 c a c 3a cos (ω t + β ) + 1 c 4a + 1 c 5a 1 a cos (ω 1 ω )t + β 1 β + 1 c 6a 1 a cos (ω 1 + ω )t + β 1 + β (3.54) where the terms Λ 11 Λ 1 Λ 13 and Λ 14 are defined as B1 Λ 11 = + B 6 B Λ 1 = + B 5 ω 1 B 4 ω B 8 ω 1 B 4 ω B 8 B3 Λ 13 = + B 7 Λ 14 = ω 1 B 4 ω B 8 k 1 B 3 ω 1 B 4 + k B 7 ω B 8. (3.55) 4 Results and discussion In this section we first study the linear frequency variation of in-plane and outof-plane modes of a microbeam to locate the coupling region. Subsequently we validate the modulation equations developed by the method of multiple scales with numerical solution obtained by solving the modal dynamic equations. Finally we use the method of multiple scale to study coupled nonlinear response near and away from the coupling region. Additionally we also analyze the influence of quality factor on the non-linear frequency response near the coupled region. To do the study we consider the dimensions material properties and electrostatic force coefficients in a fixed-fixed microbeam as mentioned in and are given in Table Linear frequency analysis To analyze the variation of linear frequency of two transverse modes of a fixed-fixed microbeam we numerically solve the nonlinear static equations (given in Appendix

17 17 Table 1 Dimensions material properties and the electrostatic force coefficients in a fixed-fixed microbeam Quantity Symbol Fixed-fixed beam Length L 500 µm Width B 4 µm Height H 00 nm Side gap g 0 g µm 7 µm Bottom gap d 500 µm Youngs modulus E N/m Initial tension N µn Density ρ 37.4 kg/m 3 Electric constant ɛ F/m Fringing coefficients k 1 k k Fig. (a) Variation of static deflection q 1 verses DC voltage for in-plane mode. (b) Variation of static deflection q verses DC voltage for out-of-plane mode.(c) Variation of in-plane and out-of-plane frequencies with DC voltage for equal interbeam gaps ((g 0 = g 0 = 4.5µm) and unequal interbeam gaps (g 0 = 4.5µm g 1 = 7 µm) and their comparison with experimental results. It also shows 1:1 internal resonance at V dc = 81 V. A) and linear modal dynamic equations given by Eqns. (.19) and (.0) as described in. Subsequently we obtain linear frequencies corresponding to both the modes from Eqn. (.1). Figures (a) and (b) show the variation of static deflection verses DC voltage for in-plane and out-plane modes with a pull-in voltage of about V dc = 199 V. Figure (c) shows the variation of in-plane and out-of-plane linear frequencies verses DC voltage and their comparison with experiments from. As the DC voltage is varied from 0 to 90 V the in-plane frequency decreases due to electrostatic softening effect and the out-of-plane frequency increases due to stretching of the beam in the in-plane direction. Consequently the two frequencies come near to each other and they eventually show 1:1 internal resonance at DC voltage of 81 V. We define this point as coupling point or region. It also shows the variation in-plane and out-of-plane frequencies with DC voltage for equal interbeam gaps (g 0 = g 0 = 4.5µm) with no coupling. In the following section we apply the method of multiple scales to find nonlinear frequency response near the coupling region. We also compare the nonlinear response of different modes when the operating linear frequencies are below the coupling range.

18 18 Fig. 3 (a) Uncoupled frequency verses Ω ω 1 showing parametric response for in-plane mode. (b) Uncoupled nonlinear frequency verses Ω ω showing duffing response for out-of-plane mode. Here LP denotes limit point. 4. Nonlinear response of uncoupled in-plane and out-of-plane modes At very low DC voltage the linear frequencies of in-plane and out-of-plane modes do not show any coupling region. To find the nonlinear response of uncoupled modes much below the coupling region we neglect the coupling terms from Eqns. (.17) and (.18) and solve the governing equations of each modes separately. To solve the non-linear dynamic equation we consider only the dynamic component as the static deflection is negligible at low DC voltage. Subsequently the method of multiple scales can be used to obtain the modulation equations for each modes separately. While the nonlinear response of in-plane mode turns out to be purely parametric the nonlinear response of out-of-plane mode shows Duffing like response under the influence of direct and parametric forces 15. Figure 3 shows uncoupled nonlinear frequency verses Ω ω 1 showing parametric response for in-plane mode in Fig. 3(a) when V ac = 0.07 V V dc = 0.05 V and Q 1 = Figure 3(b) shows uncoupled nonlinear response verses Ω ω for the out-of-plane mode when V ac = 5 V V dc = V and Q 1 = The values of AC and DC voltages are selected to show bi-stability region in the nonlinear response. Now we present coupled nonlinear frequency response of two modes near the coupling region using the methods of multiple scales presented in the theoretical section. 4.3 Validation of MMS solution near coupling region To validate the solutions obtained by solving the modulation Eqns. (3.49) (3.50) (3.51) and (3.5) from the method of multiple scales (MMS) near the coupling region we solve the original modal dynamic Eqns. (.17) and (.18) using the Runge-Kutte method. To compare the results we convert a 1 and a appearing in the modulation equations to equivalent expression of P 1 (t) and P (t) as given by

19 19 Fig. 4 (a) Comparison of numerical results with solutions based on MMS for in-plane mode at coupling point (b) Comparison of numerical results with solutions based on MMS for outof-plane mode at coupling point. Here we take V dc = 81 V V ac = 0.05 V Q 1 = Q = 10 6 σ = respectively. Fig. 5 Long-time histories at coupling point for V dc = 81 V V ac = 0.05 V Q 1 = Q = 10 6 when σ 1 = 0.1 and σ = Eqns. (3.53) and (3.54). Thus P 1 (t) and P (t) obtained from MMS are compared with the solutions obtained from the original equations. Figures 4(a) and (b) show comparisons between numerical results and the solutions based on MMS for inplane and out-of-plane modes near the coupling point for the parameter values V dc = 81 V V ac = 0.05 V Q 1 = Q = 10 6 and σ = Figures 5(a) and (b) show the long-time histories of the response for in-plane and out-of-plane modes when σ 1 = 0.1 and σ = The time histories show that the steady state response of in-plane and out-of-plane modes consists of single frequency.

20 0 Fig. 6 (a) Comparison of numerical results with solutions based on MMS for in-plane mode at coupling point (b) Comparison of numerical results with solutions based on MMS for outof-plane mode at coupling point. Here we take V dc = 81 V V ac = V Q 1 = Q = 10 8 σ = respectively. Fig. 7 Long-time histories at coupling point for V dc = 81 V V ac = V Q 1 = Q = 10 8 when σ 1 = 0.1 and σ = Similarly the comparisons between the numerical results and the solutions based on MMS for in-plane and out-of-plane modes at coupling point (V dc = 81 V and V ac = V) at different quality factors Q 1 = and Q = 10 8 are shown in Figs. 6(a) and (b). In this case both in-plane and out-of-plane frequency response show two peaks. The long-time histories as shown in Figs. 7(a) and (b) for σ 1 = 0.1 and σ = also show that the steady state response of both in-plane and out-of-plane modes consist of two frequencies corresponding to two peaks appearing in the response. Thus it shows clearly the influence of one mode on another.

21 1 Fig. 8 (a) Frequency response for different AC voltages below coupling point corresponding to (a) in-plane mode (b) out-of-plane mode. Here V dc = 70 V Q 1 = Q = 10 6 σ = LP denotes limit point. 4.4 Nonlinear response near and below the coupling region Fig. 9 Frequency response for different AC voltages at coupling point corresponding to (a) in-plane mode (b) out-of-plane mode. Here V dc = 81 V Q 1 = Q = 10 6 σ = LP denotes limit point and H denotes hopf bifurcation point. In this section to show the influence of coupling on nonlinear response near and below the coupling region we analyze the variation of a 1 and a corresponding to in-plane and out-of-plane modes. For the linear frequency relation below the coupling region at V dc = 70 V and near the coupling region at V dc = 81 V we take Q 1 = Q = Figures 8(a) and (b) show the frequency response for different AC voltages below coupling point along in-plane and out-of-plane directions. With the increase in V ac from 0.04 to 0.06 the response amplitude increases

22 Fig. 10 Frequency response for different AC voltages at coupling point corresponding to (a) in-plane mode (b) out-of-plane mode. Here V dc = 81 V Q 1 = Q = 10 8 σ = LP denotes limit point. Fig. 11 Frequency response below coupling point corresponding to (a) in-plane mode (b) out-of-plane mode. Here V dc = 79 V V ac = V Q 1 = Q = 10 6 σ = LP denotes limit point. in both the cases. However only single peak is observed in both the cases due to relatively low quality factor. The frequency response for in-plane motion is found to be linear whereas out-of-plane motion shows nonlinear response. By operating the beam near the coupling region at V dc = 81 V the nonlinear coupled response of two modes shows combined effect of parametric and Duffing like response when the quality factors remains same as Q 1 = Q = 10 6 which are shown in Figures 9 (a) and (b). The coupling between parametric and duffing response at coupling point is due to simultaneous parametric and direct excitation of microbeam by two symmetrically placed side electrodes and a bottom electrode 15. It is also observed that as AC voltage V ac is increased from 0.05 to 0.14 V the

23 3 Fig. 1 Frequency response above coupling point corresponding to (a) in-plane mode (b) outof-plane mode. Here V dc = 83 V V ac = 0.06 V Q 1 = Q = 10 6 σ = LP denotes limit point. response amplitude and the bandwidth gradually increase with increasing hardening effect. To see the influence of quality factor on the non-linear coupled response near the coupling region we take another set of quality factors Q 1 = and Q = 10 8 as shown in Figs. 10 (a) and (b). It is observed that coupled response shows two peaks thus clearly indicating the influence of one mode on another. With further increase in AC voltage V ac from to 0.00 V the response amplitude of two modes increase gradually along both directions and frequency response of one of the two modes becomes nonlinear showing hardening effect when V ac is more than V. Figures 11(a) and (b) show the frequency response of the in-plane and out-of-plane directions below the coupling point at DC voltage V dc = 79 V when V ac = V Q 1 = and Q = Similarly the frequency response along the in-plane and out-of-plane directions above the coupling point at a DC voltage of V dc = 83 V for V ac = V and same values of quality factors are shown in Figures 1(a) and (b). The results in both the cases show that the coupled effect reduces drastically as we go up or below the coupled region. Finally we state that the tuning of nonlinear frequency response of two modes near and below the coupling region by the application DC voltage and quality factors. The study presented in this paper can also be extended to understand the coupling of different modes of beams in MEMS arrays. 5 Conclusion In this paper we have developed a theoretical model for in-plane and out-of-plane motions of a fixed-fixed microbeam separated from two symmetrically placed side electrodes and a bottom electrode. Using the electrostatic force model based on the direct and fringing forces we obtain the partial differential equations governing the nonlinear motion of in-plane and out-of-plane motions. To do linear and nonlinear analysis we obtain the reduced order form of the equations using the Galerkin s

24 4 method. To analyze the variation of two modes at different DC voltage we plot linear frequencies versus DC voltage. We found that the two modes shows coupling at around DC voltage of 81 V. Thus we obtain 1:1 internal resonance condition near the coupling region. To find the nonlinear response near and below the coupling region we apply the method of multiple scales (MMS). After validating the solution from MMS with numerical solution near the coupling region we analyze the influence of ac voltage and quality factor on the nonlinear response at and near the coupling point. We found that the nonlinear response below the coupling point shows uncoupled response of each modes the response near the coupling region shows different types of coupled response at different quality factors. Acknowledgement This research is supported in part by the Council of Scientific and Industrial Research (CSIR) India ((0696)/15/EMR-II). Appendix A Nonlinear static equations q 1 7 α 1 + (10.84 r 1 α α 1 ) q ( α r 1 α α q N r 1 α 1 ) q1 5 + ( r r 1 α α q r 1 N r 1 α q r 1 α N ) q ( r 1 α q N r r r 1 α r 1 N r 1 α q α q r 1 N ) q ( 38.8 r 1 N 1.33 β s V r r 1 α q r 1 α q r r 1 N β s V 1 ) q 1 + ( 1.30 r 1 N.00 β s V 1.00 β s V 10 r r r 1 α q ) q β s V β s V 10 r 1 = q 5 α 3 α q 4 α 3 α + ( α 3 α 1.85 V g β 3 g α 3 α 1 q V 10 α g V 1 α g α 3 N ) q 3 + (.66 V 1 α g 38.8 α 3 N.66 V 10 α g V 10 α g V 1 α g +3.99V g β 3 g 1.33 V g β g α 3 α 1 q 1 ) q + (.0 V 1 α g α 3 α 1 q V g β 3 g +.0 V g β g α 3 N V 1 α g +1.0 V 10 α g.0 V 10 α g ) q V g β g V g β g In-plane equation coefficients V g β 3 g V 10 α g V 1 α g = 0 m 1i = 5.56 q 1 r q 1 4 r q 1 5 r r 1 q 1.65 q 1 3 r r 1 q q 1 r q 1 4 r q 1 r q 1 3 r r 1 q 1 + r q q q q 1 5

25 5 k 1i = q 1 3 r 1 3 α q r 1 q 1 3 α q 1 5 r 1 3 α β s V 1 q r 1 3 α q q 1 5 N q 1 6 r 1 α q 1 5 r 1 α q 1 3 r 1 3 N β s V β s V 10 r 1 q q 1 4 r 1 N q 1 3 N r 1 q 1 3 N r q q q 1 r 1 N q q q 1 r r 1 q 1 N q 1 3 α q q 1 4 r q 1 5 r r 1 q q 1 3 r r 1 q q 1 r q 1 4 r q 1 r q 1 3 r r 1 q q 1 5 α q q 1 r 1 α q q 1 4 r 1 α q q 1 4 N q 1 6 N r 1 3 N q 1 6 α q 1 7 α q 1 8 α q 1 5 α q 1 r 1 3 α q 1 5 r 1 α q 1 7 r 1 α q 1 4 r 1 3 α β s V 1 q q 1 r 1 3 N q 1 4 r 1 α q 1 5 r 1 N q 1 3 r 1 3 α β s V 1 q q 1 6 r 1 α β s V 10 q q 1 3 r 1 N 57.4 q 1 r 1 3 N β s V 10 r q 1 4 r 1 α q 1 4 α q q 1 6 α q r 1 q 1 N r 1 q 1 α q 7.97 β s V 10 r 1 q q 1 r 1 3 α q q 1 3 r 1 α q q 1 r 1 3 α q r 1 q 1 3 α q q 1 5 r 1 α q q 1 4 r 1 N q 1 4 r 1 α q r 1 q 1 α q n 1i = q 1 r 1 3 α q 1 3 α q 1 r 1 3 α r 1 3 α r 1 q 1 α r 1 q 1 α q 1 4 r 1 α q 1 4 α q 1 3 r 1 3 α q 1 4 r 1 α q 1 6 α r 1 q 1 α r 1 q 1 3 α q 1 5 r 1 α q 1 5 α q 1 3 r 1 α 1 n i = q 1 5 r 1 α q 1 7 α q 1 4 r 1 α r 1 q 1 3 α q 1 4 α q 1 6 α q 1 4 r 1 α q 1 r 1 3 α q 1 4 r 1 3 α q 1 3 r 1 3 α q 1 5 α q 1 r 1 3 α q 1 3 r 1 α q 1 5 r 1 α q 1 6 r 1 α r 1 q 1 α 1

26 6 n 3i = q 1 3 r 1 α q 1 4 r 1 α q 1 r 1 α r 1 q 1 3 α q 1 5 r 1 α q 1 6 α r 1 q 1 α q 1 3 α r 1 3 α q 1 4 r 1 α q 1 r 1 3 α r 1 q 1 α 511.4q 1 3 r 1 3 α q 1 r 1 3 α 75.44q 1 4 α q 1 5 α n 4i = q 1 4 α q 10.84q 1 3 r 1 3 α q q 1 4 r 1 α q q 1 4 r 1 α q q 1 3 r 1 α q q 1 5 r 1 α q q 1 3 r 1 α q r 1 q 1 α q q 1 r 1 3 α q r 1 q 1 α q r 1 q 1 α q q 1 r 1 3 α q q 1 3 α q r 1 3 α q q 1 5 α q q 1 6 α q n 5i =.0 β s r β s r 1 q β s r 1 q β s q 1 3 n 6i = 3.70 β s q β s β s q β s q 1 n 7i = 1041.q 1 3 r 1 α q 1 r 1 3 α 75.44q 1 5 r 1 α q 1 r 1 3 α q 1 6 r 1 α q 1 4 r 1 α q 1 6 α q 1 4 α q 1 3 r 1 3 α q 1 7 α r 1 q 1 3 α q 1 4 r 1 α 511.4q 1 4 r 1 3 α 75.44q 1 5 α q 1 5 r 1 α q 1 r 1 α n 8i = q 1 6 r 1 α q q 1 4 r 1 α q q 1 r 1 3 α q q 1 3 r 1 α q q 1 5 r 1 α q q 1 3 r 1 3 α q r 1 q 1 α q q 1 r 1 3 α q q 1 4 α q q 1 4 r 1 3 α q q 1 6 α q q 1 5 α q q 1 3 r 1 α q q 1 5 r 1 α q q 1 7 α q q 1 4 r 1 α q n 9i = 3.98 β s r 1 q β s q β s r 1 q β s r 1 q β s r 1 3 q β s q β s r β s r 1 q 1 n 10i = 3.0 β s q 1.49 β s r 1 q β s r 1 q β s r β s q β s q β s q β s r 1 q 1 n 11i = 8.49 q 1 6 c q 1 4 r 1 c r 1 q 1 c q 1 r 1 3 c r 1 q 1 c q 1 r 1 3 c q 1 3 r 1 c q 1 5 c q 1 3 r 1 c q 1 3 c r 1 q 1 c q 1 4 c q 1 5 r 1 c 1.65 q 1 3 r 1 3 c 1 + r 1 3 c q 1 4 r 1 c 1 k 1i λ 1 = m 1i t 6 = n 6i m 1i t 1 = n 1i m 1i t 7 = n 7i m 1i t = n i m 1i t 8 = n 8i m 1i t 3 = n 3i m 1i t 9 = n 9i m 1i t 4 = n 4i m 1i t 10 = n 10i m 1i t 5 = n 5i m 1i t 11 = n 11i m 1i

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

Forced Pendulum Numerical approach

Forced Pendulum Numerical approach Numerical approach UiO April 8, 2014 Physical problem and equation We have a pendulum of length l, with mass m. The pendulum is subject to gravitation as well as both a forcing and linear resistance force.

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

10.7 Performance of Second-Order System (Unit Step Response)

10.7 Performance of Second-Order System (Unit Step Response) Lecture Notes on Control Systems/D. Ghose/0 57 0.7 Performance of Second-Order System (Unit Step Response) Consider the second order system a ÿ + a ẏ + a 0 y = b 0 r So, Y (s) R(s) = b 0 a s + a s + a

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.

DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E. DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Derivation of Optical-Bloch Equations

Derivation of Optical-Bloch Equations Appendix C Derivation of Optical-Bloch Equations In this appendix the optical-bloch equations that give the populations and coherences for an idealized three-level Λ system, Fig. 3. on page 47, will be

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

D Alembert s Solution to the Wave Equation

D Alembert s Solution to the Wave Equation D Alembert s Solution to the Wave Equation MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 2018 Objectives In this lesson we will learn: a change of variable technique

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Written Examination. Antennas and Propagation (AA ) April 26, 2017. Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

linear motions: surge, sway, and heave rotations: roll, pitch, and yaw

linear motions: surge, sway, and heave rotations: roll, pitch, and yaw heave yaw when the ship is treated as a rigid body, it has six degrees of freedom: three linear motions and three rotations as indicated in the figure at the left: body-fixed axes pitch, v roll, u sway

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Haddow s Experiment:

Haddow s Experiment: schematic drawing of Haddow's experimental set-up moving piston non-contacting motion sensor beams of spring steel m position varies to adjust frequencies blocks of solid steel m shaker Haddow s Experiment:

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw

Macromechanics of a Laminate. Textbook: Mechanics of Composite Materials Author: Autar Kaw Macromechanics of a Laminate Tetboo: Mechanics of Composite Materials Author: Autar Kaw Figure 4.1 Fiber Direction θ z CHAPTER OJECTIVES Understand the code for laminate stacing sequence Develop relationships

Διαβάστε περισσότερα

EE101: Resonance in RLC circuits

EE101: Resonance in RLC circuits EE11: Resonance in RLC circuits M. B. Patil mbatil@ee.iitb.ac.in www.ee.iitb.ac.in/~sequel Deartment of Electrical Engineering Indian Institute of Technology Bombay I V R V L V C I = I m = R + jωl + 1/jωC

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

Problem 7.19 Ignoring reflection at the air soil boundary, if the amplitude of a 3-GHz incident wave is 10 V/m at the surface of a wet soil medium, at what depth will it be down to 1 mv/m? Wet soil is

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2 ECE 634 Spring 6 Prof. David R. Jackson ECE Dept. Notes Fields in a Source-Free Region Example: Radiation from an aperture y PEC E t x Aperture Assume the following choice of vector potentials: A F = =

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

Differential equations

Differential equations Differential equations Differential equations: An equation inoling one dependent ariable and its deriaties w. r. t one or more independent ariables is called a differential equation. Order of differential

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ

ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΤΟΜΕΑΣ ΟΜΟΣΤΑΤΙΚΗΣ ΣΥΓΚΡΙΣΗ ΑΝΑΛΥΤΙΚΩΝ ΚΑΙ ΑΡΙΘΜΗΤΙΚΩΝ ΜΕΘΟ ΩΝ ΓΙΑ ΤΗ ΦΟΙΤΗΤΡΙΑ: Γ.ΦΕΒΡΑΝΟΓΛΟΥ ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: Χ.ΓΑΝΤΕΣ ΑΘΗΝΑ, ΟΚΤΩΒΡΙΟΣ 2000

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.25 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 2.25 Hoework Proble Solution Dr. Christopher S. Baird University of Massachusetts Lowell PROBLEM: Two conducting planes at zero potential eet along the z axis, aking an angle β between the, as

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά

Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική και µη γραµµική συµπεριφορά ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΙΑΤΜΗΜΑΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥ ΩΝ ΟΜΟΣΤΑΤΙΚΟΣ ΣΧΕ ΙΑΣΜΟΣ ΚΑΙ ΑΝΑΛΥΣΗ ΚΑΤΑΣΚΕΥΩΝ Εφαρµογή µεθόδων δυναµικής ανάλυσης σε κατασκευές µε γραµµική

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Capacitors - Capacitance, Charge and Potential Difference

Capacitors - Capacitance, Charge and Potential Difference Capacitors - Capacitance, Charge and Potential Difference Capacitors store electric charge. This ability to store electric charge is known as capacitance. A simple capacitor consists of 2 parallel metal

Διαβάστε περισσότερα

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου

Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης. Απόστολος Σ. Παπαγεωργίου Μονοβάθμια Συστήματα: Εξίσωση Κίνησης, Διατύπωση του Προβλήματος και Μέθοδοι Επίλυσης VISCOUSLY DAMPED 1-DOF SYSTEM Μονοβάθμια Συστήματα με Ιξώδη Απόσβεση Equation of Motion (Εξίσωση Κίνησης): Complete

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

Risk! " #$%&'() *!'+,'''## -. / # $

Risk!  #$%&'() *!'+,'''## -. / # $ Risk! " #$%&'(!'+,'''## -. / 0! " # $ +/ #%&''&(+(( &'',$ #-&''&$ #(./0&'',$( ( (! #( &''/$ #$ 3 #4&'',$ #- &'',$ #5&''6(&''&7&'',$ / ( /8 9 :&' " 4; < # $ 3 " ( #$ = = #$ #$ ( 3 - > # $ 3 = = " 3 3, 6?3

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11 Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Introduction to Theory of. Elasticity. Kengo Nakajima Summer

Introduction to Theory of. Elasticity. Kengo Nakajima Summer Introduction to Theor of lasticit Summer Kengo Nakajima Technical & Scientific Computing I (48-7) Seminar on Computer Science (48-4) elast Theor of lasticit Target Stress Governing quations elast 3 Theor

Διαβάστε περισσότερα

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method

Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Study of In-vehicle Sound Field Creation by Simultaneous Equation Method Kensaku FUJII Isao WAKABAYASI Tadashi UJINO Shigeki KATO Abstract FUJITSU TEN Limited has developed "TOYOTA remium Sound System"

Διαβάστε περισσότερα

Exercises to Statistics of Material Fatigue No. 5

Exercises to Statistics of Material Fatigue No. 5 Prof. Dr. Christine Müller Dipl.-Math. Christoph Kustosz Eercises to Statistics of Material Fatigue No. 5 E. 9 (5 a Show, that a Fisher information matri for a two dimensional parameter θ (θ,θ 2 R 2, can

Διαβάστε περισσότερα

Finite difference method for 2-D heat equation

Finite difference method for 2-D heat equation Finite difference method for 2-D heat equation Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 http://math.tifrbng.res.in/~praveen

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα