Electronic Supplementary Information
|
|
- Κωνσταντίνος Αλεξάκης
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Electronic Supplementary Information Stereoselective copper-catalyzed Chan-Lam-Evans N-arylation of glucosamines with arylboronic acids at room temperature Alexandre Bruneau, Jean-Daniel Brion, Mouâd Alami * and Samir Messaoudi * Univ. Paris-Sud, CNRS, BioCIS-UMR 76, LabEx LERMIT, Laboratoire de Chimie Thérapeutique, Faculté de Pharmacie, 5 rue J.-B. Clément, Châtenay-Malabry, France. samir.messaoudi@u-psud.fr, mouad.alami@u-psud.fr, Phone: 33() ; Fax: 33() Contents General experimental methods page 2 General procedure for Copper Catalyzed Coupling of Aminosugar 1a g with Aryl boronic acids page 2 Characterization data of β aryl N glycoside 3a p page 3 6 Characterization data of β aryl N glycoside 4a l page 8 12 General procedure for Palladium catalyzed coupling of thioglycosides with 3g page 12 Characterization data of β aryl N glycoside 5a c page NMR Spectra of β aryl N glycoside 3a p page NMR Spectra of β aryl N glycoside 4a l page 41 NMR Spectra of β-aryl N-glycoside 5a-c page
2 Experimental Section General Experimental Methods The compounds were all identified by usual physical methods, e.g., 1 H NMR, 13 C NMR, IR, MS (ESI). 1 H and 13 C NMR spectra were measured in CDCl 3, C 6 D 6 and Acetone d6 with a Bruker Avance. 1 H chemical shifts are reported in ppm from an internal standard TMS or of residual solvent peak. 13 C chemical shifts are reported in ppm from the residual solvent peak. IR spectra were measured on a Bruker Vector 22 spectrophotometer. MS were recorded on a Micromass spectrometer. Analytical TLC was performed on Merck precoated silica gel 6F plates. Merck silica gel 6 (15 mm) was used for column chromatography. Melting points were recorded on a Büchi B 45 apparatus and are uncorrected. High resolution mass spectra (HR MS) were recorded on a Bruker MicroTOF spectrometer, using ESI with methanol as the carrier solvent. Nominal and exact m/z values are reported in Daltons. Aryl boronic acids are commercially available. Aminosaccharides 1a 1 and 1e, 1 1b, 2 1c, 3 1d, 4 1f 5 were synthesized as according to literature protocols. Aminomannose 1g is not enough stable for its characterization and was used immediately after its preparation. General Procedure for Copper Catalyzed Coupling of Aminosugar 1a g with Aryl boronic acids A 5 ml round bottom flask was charged with Cu(OAc) 2 ( mol%), aminosugar 1 (75 mmol), pyridine (75 mmol, 1 equiv) and CH 2 Cl 2 (1 ml). Arylboronic acid 2 ( equiv) was added in three portions at t = (75 mmol, 1 equiv), 3 h (.431 mmol,.75 equiv) and 7 h (.431 mmol,.75 equiv). The reaction mixture was stirred under pressure of balloon of air. After 24h, the mixture was filtered through celite eluting with ethyl acetate and CH 2 Cl 2. The filtrate was concentrated under vacuum and the residue purified by silica gel column chromatography gave the desired product 3 or 4. 1 C. Badıá, F. Souard, C. Vicent, J. Org. Chem, 12, 77, A. D. Dorsey, J. E. Barbarow, D. Trauner, Org. Lett, 3, 5, G. Zhou, P. Zhang, Y. Pan, J. Guo, Org. Prep. Proc. Int., 5, 37, 65 4 Joseph, R.; Dyer, F. B.; Garner, P. Org. Lett, 13, 15, X. Zheng, J. Morgan, S. K. Pandey, Y. Chen, E. Tracy, H. Baumann, J. R. Missert, C. Batt, J. Jackson, D. A. Bellnier, B. W. Henderson, R. K. Pandey, J. Med. Chem., 9, 52, 46. 2
3 Characterization data of β-aryl N-glycoside 3a-p (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 (phenylamino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3a: R f =.49 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3437, 3349, 49, 1744, 165, 137, 1221, 34 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ 7. (t, J = 7.8 Hz, 2H), 6.83 (t, J = 7.4 Hz, 1H), 6.66 (d, J = 8. Hz, 2H), 5.37 (t, J = 9.4 Hz, 1H), (m, 2H), (m, 2H), 4. (dd, J = 12.2, 5.3 Hz, 1H), 4.9 (dd, J = 12.2, 2.2 Hz, 1H), 3.83 (ddd, J = 9.9, 5.2, 2.2 Hz, 1H), 5 (s, 3H), 4 (s, 3H), 3 (s, 6H). 13 C NMR (75 MHz, Acetone) δ.63(2c=o),.(c=o),.11(c=o), (C), 129.(2CH), (CH), (2CH), 84.1(CH), 74.27(CH), 72.95(CH), 72.22(CH), 69.82(CH), 66(CH 2 ),.68(CH 3 ),.62(3CH 3 ). HR MS(ESI): m/z calculated for C H 25 NO 9 Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 methoxyphenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3b: R f =.42 (CH 2 Cl 2 ; EtOAc, 92:8) ; white solid recrystallized from diisopropyl ether; m.p. = C; [α] D 24 (c, in CHCl 3 ); IR (neat): 3457, 3415, 3246, 1755, 1514, 1366, 1232, 19, 19, 32 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 6.77 (d, J=8.9 Hz, 2H), 6.49 (d, J=8.9 Hz, 2H), (t, J=9.5 Hz, 1H), 5.29 (t, J=9.7 Hz, 1H), 5. (t, J=9.3 Hz, 1H), 4.48 (t, J=9.8 Hz, 1H), 4.32 (dd, J=12.2, 4.7 Hz, 1H), 4.17 (dd, J=.4, 4.3 Hz, 1H), 3.92 (dd, J=12.3, 2.1 Hz, 1H), 3.35 (d, J=6.4 Hz, 3H), (m, 1H), 1.72 (s, 3H), 1.72 (s, 3H), 1.7 (s, 3H), 1.63 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.67(c=o),.34(c=o),.11(c=o), (C=O), (C), (C), 1(2CH), (2CH), 85.72(CH), 74.1(CH), 74(CH), 76(CH), 69.46(CH), 62.35(CH 2 ), 57(CH 3 ), 25(4CH 3 ). HR MS(ESI): m/z calculated for C 21 H 27 NO Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((2 methoxyphenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3c: R f =.6 (CH 2 Cl 2 ; EtOAc, 92:8); colorless oil; [α] D 24 3 (c,.25 in CHCl 3 ); IR (neat): 3445, 3398, 1742, 164, 1521, 1367, 1226, 32 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 6.95 (td, J=7.7, 1.2 Hz, 1H), 6.78 (td, J=8., 1.8 Hz, 2H), 6.49 (d, J=8. Hz, 1H), (m, 2H), 5.26 (t, J=9.9 Hz, 1H), 5.18 (t, J=9.3 Hz, 1H), 4.64 (t, J=9.4 Hz, 1H), 4.28 (dd, J=12.2, 4.8 Hz, 1H), 3.91 (dd, J=12.2, 2.3 Hz, 1H), (m, 4H), 1.71 (s, 3H), 1.69 (s, 3H), 1.68 (s, 3H), 1.6 (s, 3H). 13 C NMR (75 MHz, CDCl 3 ) δ (C=O), (C=O), (C=O), (C=O), 142(C), (C), 1(CH), 119.5(CH), (CH), 1.27(CH), 83.64(CH), 73.29(CH), 72.(CH), 71.32(CH), 68.88(CH), 61.73(CH 2 ), 3
4 54.85(CH 3 ), 19.95(4CH 3 ). HR MS(ESI): m/z calculated for C 21 H 27 NO Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((3 methoxyphenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3d: R f =. (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3469, 34, 3164, 1756, 163, 1525, 1497, 1434, 1377, 1367, 1212, 1162, 34 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 3 (t, J=8.1 Hz, 1H), 6.38 (dd, J=8.2 Hz, 1.7, 1H), 6. (t, J=2.2 Hz, 1H), 6. (dd, J=8., Hz, 1H), 5.47 (t, J=9.5 Hz, 1H), 5.27 (t, J=9.7 Hz, 1H), (m, 1H), 5 (d, J=5.3 Hz, 2H), 4.29 (dd, J=12.2, 4.8 Hz, 1H), 3.91 (dd, J=12.2, 2.2 Hz, 1H), 3.34 (s, 3H), (m, 1H), 1.73 (s, 3H), 1.71 (s, 6H), 9 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.15(c=o), (C=O), (C=O), (C=O), 169(C), (C), (CH), (CH), 4.74(CH), 1.19(CH), 83.85(CH), 73.22(CH), 72.31(CH), 71.35(CH), 68.65(CH), 69(CH 2 ), 54.41(CH 3 ), 19.88(2CH 3 ), 19.83(2CH 3 ). HR MS(ESI): m/z calculated for C 21 H 27 NO Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((3,4,5 trimethoxyphenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3e: R f = 9 (CH 2 Cl 2 ; EtOAc, 92:8) ; red solid ; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 3426, 3378, 34, 1741, 15, 1366, 1212, 1127, 3 cm 1. 1 H NMR ( MHz, Acetone) δ 6.16 (s, 2H), 5.39 (dd, J = 19.7,.2 Hz, 2H), 5.14 (t, J = 9.4 Hz, 1H), 1 (dd, J = 11.1, 8.2 Hz, 1H), 4.96 (d, J = 9.2 Hz, 1H), (m, 1H), (m, 2H), 3.77 (s, 6H), 3.62 (s, 3H), 1 (s, 3H), 1.99 (s,3h), 1.97 (s, 3H), 1.97 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.69(c=o), 179(C=O),.32(C=O),.11(C=O), (2C), (C), 133(C), 93.46(2CH), 84.22(CH), 74.24(CH), 7(CH), 74(CH), 69.88(CH), 63.27(CH 2 ), 6.64(CH 3 ), 56.(2CH 3 ),.71(CH 3 ),.62(2CH 3 ), 28(CH 3 ). HR MS(ESI): m/z calculated for C 23 H 31 NO 12 Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 (benzo[d][1,3]dioxol 5 ylamino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3f: R f =.39 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c,1; in CHCl 3 ); IR (neat): 3339, 3296, 1753, 1742, 1492, 1367, 12, 11, 35 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ 8 (d, J = 8.3 Hz, 1H), 6.25 (d, J = 2.2 Hz, 1H), 5.93 (dd, J = 8.3, 2.2 Hz, 1H), 5.46 (t, J = 9.4 Hz, 1H), 5.34 (dd, J = 6.2, 1.2 Hz, 2H), 5.25 (t, J = 9.7 Hz, 1H), 4 (t, J = 9.2 Hz, 1H), 4
5 (m, 1H), (m, 2H), 3.91 (dd, J = 12.2, 2.1 Hz, 1H), (m, 1H), 1.74 (s, 3H), 1.71 (s, 6H), 1.61 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ (C=O), (C=O), (C=O), (C=O), (C), (C), 1.22(C), 8.42(CH), 7.29(CH),.49(CH 2 ), 97.79(CH), 84.91(CH), 73.26(CH), 72.33(CH), 71.(CH), 68.73(CH), 61.65(CH 2 ), 19.85(4CH 3 ). HR MS(ESI): m/z calculated for C 21 H 25 NO 11 Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 iodophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3g: AcO O H AcO N AcO OAc I R f =.68 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 3482, 3448, 3418, 17, 1593, 1513, 1487, 1429, 1366, 1315, 1292, 1245, 1212, 62, 33 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ 7.37 (d, J = 8.8 Hz, 2H), 6 (d, J = 8.8 Hz, 2H), 5.44 (t, J = 9.5 Hz, 1H), 5.23 (t, J = 9.7 Hz, 1H), (m, 1H), (m, 3H), 3.91 (dd, J = 12.2, 2.2 Hz, 1H), 3.13 (ddd, J = 1, 4.9, 2.3 Hz, 1H), 1.71 (s, 3H), 1.71 (s, 3H), 1.68 (s, 3H), 8 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.49(c=o), (C=O), (C=O), (C=O), (C), (2CH), 116(2CH), 83.78(CH), 81.44(C), 73.42(CH), 72.75(CH), 71.61(CH), 69.3(CH), 61.97(CH 2 ),.23(2CH 3 ),.19(2CH 3 ). HR MS(ESI): m/z calculated for C H 24 NO 9 NaI obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 bromophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3h: R f =.6 (CH 2 Cl 2 ; EtOAc, 92:8) ; white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3469, 3369, 1745, 1597, 12, 35 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ 7.18 (d, J = 8.8 Hz, 2H), 6.15 (d, J = 8.8 Hz, 2H), 5.44 (t, J = 9.5 Hz, 1H), 5.22 (t, J = 9.7 Hz, 1H), (t, J = 9.1 Hz, 1H), 4.17 (m, 3H), 3.9 (dd, J = 12.2, 2.2 Hz, 1H), (m, 1H), 1.7 (s, 3H), 1.7 (s, 3H), 1.67 (s, 3H), 7 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.49(c=o), (C=O), (C=O), 169.(C=O), (C), (2CH), 115(2CH), 119(C), 83.96(CH), 73.43(CH), 72.77(CH), 71.62(CH), 69.5(CH), 61.99(CH 2 ),.23(2CH 3 ),.19(2CH 3 ). HR MS(ESI): m/z calculated for C H 24 NO 9 NaBr obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 chlorophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3i: R f = 3 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3487, 3391, 3286, 1741, 16, 1512, 1492, 1368, 1213, 88, 5
6 31, 3 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ = 7.14 (d, J=8.8 Hz, 2H), 9 (d, J=8.8 Hz, 2H), 5.36 (t, J=9.5 Hz, 1H), 9 (t, J=9.9 Hz, 1H), 1 (t, J=9.1 Hz, 1H), (m, 2H), 4.29 (dd, J=12.2, 5.4 Hz, 1H), 4.8 (dd, J=12.2, 2.2 Hz, 1H), (m, 1H), 5 (s, 3H), 4 (s, 6H), 3 (s, 3H). 13 C NMR (75 MHz, CDCl 3 ) δ (C=O), 174(C=O), (C=O), (C=O), 142(C), (2CH), (C), (2CH), 84.37(CH), 72.83(CH), 72.45(CH), 71.16(CH), 68.79(CH), 62.12(CH 2 ),.72(CH 3 ),.68(CH 3 ), 28(2CH 3 ). HR MS(ESI): m/z calculated for C H 25 NO 9 Cl obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 fluorophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3j: AcO AcO AcO O OAc H N F R f = 3 (CH 2 Cl 2 ; EtOAc, 92:8) ; light brown solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3469,3355,31,1753,17,1511,1366,1215,33 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ 6.79 (t, J = 8.7 Hz, 2H), (m, 2H), 5.48 (t, J = 9.5 Hz, 1H), 5.24 (t, J = 9.7 Hz, 1H), (m, 1H), (m, 2H), 4. (dd, J = 12.2, 5.2 Hz, 1H), 3.96 (dd, J = 12.2, 2.3 Hz, 1H), 3. (ddd, J = 1, 5.2, 2.3 Hz, 1H), 1.74 (s, 3H), 1.7 (s, 3H), 1.64 (s, 3H), 1.6 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ 175 (C=O), (C=O), (C=O), 169. (C=O), (d, J = Hz,C), (d, J = 1.2 Hz,C), (d, J = 7.9 Hz,CH), 113 (d, J = 24. Hz, CH), (CH), (CH), (CH), (CH), (CH), (CH 2 ), (4CH 3 ). 19 F NMR (188 MHz, C 6 D 6 ) δ = HR MS(ESI): m/z calculated for C H 24 NO 9 NaF obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((3 chlorophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3k: R f = 8 (CH 2 Cl 2 ; EtOAc, 92:8) ; light brown solid recrystallized from diisopropyl ether; m.p. = C ; [α] D 24 7 (c, in CHCl 3 ); IR (neat): 3365, 33, 1736, 16, 15, 1484, 1432, 1366, 17, 92, 62, 32 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ (m, 2H), 6.65 (d, J = 1.7 Hz, 1H), 6.24 (dt, J = 6.7, 2.4 Hz, 1H), 5.43 (t, J = 9.5 Hz, 1H), 5. (t, J = 9.7 Hz, 1H), 3 (t, J = 9.3 Hz, 1H), 4.7 (d, J = 9.7 Hz, 1H), 4.37 (t, J = 9.4 Hz, 1H), 4.23 (dd, J = 12.2, 5.6 Hz, 1H), 3.93 (dd, J = 12.2, 2.1 Hz, 1H), 3.14 (ddd, J = 1,, 2.1 Hz, 1H), 1.76 (s, 3H), 1.73 (s, 6H), 1.6 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.18(c=o), (C=O), (C=O), (C=O), (C), (C), 135(CH), 119.5(CH), (CH), (CH), 83.29(CH), 75(CH), 72.39(CH), 71.21(CH), 68.7(CH), 61.72(CH 2 ), 19.91(CH 3 ), 19.84(CH 3 ), 19.79(2CH 3 ). HR MS(ESI): m/z calculated for C H 24 NO 9 NaCl 4.37 obtained 4.35 (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((3 nitrophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3m: 6
7 R f =.47 (CH 2 Cl 2 ; EtOAc, 92:8); yellow solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3459, 27, 1787, 1756, 1532, 137, 1247, 38 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ (m, 1H), 7.39 (t, J = 2.2 Hz, 1H), 6.64 (t, J = 8.1 Hz, 1H), 6.22 (dd, J = 8.1, 1.7 Hz, 1H), 5. (t, J = 9.5 Hz, 1H), (m, 1H), 4.96 (t, J = 9.3 Hz, 1H), 4.62 (d, J = 9.2 Hz, 1H), 4.27 (t, J = 9.2 Hz, 1H), 4.15 (dd, J = 12.3, 5.6 Hz, 1H), 3.96 (dd, J = 12.3, 2.1 Hz, 1H), 3.11 (m, 1H), 1.76 (s, 3H), 1.71 (s, 3H), 1.71 (s, 3H), 9 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ.21(c=o), (C=O), (C=O), 168.(C=O), (C), (C), (CH), 1.44(CH), (CH), 7.95(CH), 82.91(CH), 72.(CH), 77(CH), 71.21(CH), 68.5(CH), 68(CH 2 ), 19.81(CH 3 ), 19.75(CH 3 ). HR MS(ESI): m/z calculated for C H 24 N 2 O 11 Na obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 (trifluoromethyl)phenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3n: R f =.71 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D 24 7 (c, in CHCl 3 ); IR (neat): 3476, 3264, 1744, 1617, 1533, 1382, 1332, 12, 18, 66 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ = 7.33 (d, J=8.5 Hz, 2H), 6.24 (d, J=8.5 Hz, 2H), 5.45 (t, J=9.5 Hz, 1H), 5.23 (t, J=9.7 Hz, 1H), 4.99 (t, J=9.3 Hz, 1H), 4.65 (d, J=9.5 Hz, 1H), 4.35 (t, J=9.3 Hz, 1H), 4.28 (dd, J=12.3, 4.9 Hz, 1H), 3.93 (dd, J=12.3, 2.3 Hz, 1H), 3. 9 (m, 1H), 1.72 (s, 3H), 1.71 (s, 3H), 1.68 (s, 3H), 8 (s, 3H). 13 C NMR (75 MHz, Acetone) δ =.79 (C=O),.7 (C=O),.48 (C=O),.25 (C=O), (C), (d, J=269.3 Hz, CF 3 ), (d, J=3.6 Hz, 2C C CF 3 ), 1.94 (d, J=32.4 Hz, C CF 3 ), (2CH), (CH), (CH), (CH), (CH), (CH), (CH 2 ),.78 (4CH 3 ). 19 F NMR (188 MHz, C 6 D 6 ) δ = HR MS(ESI): m/z calculated for C 21 H 24 NO 9 NaF obtained (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 (naphthalen 2 ylamino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3o: R f =.68 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3448, 3284, 1741, 1633, 164, 1532, 1434, 1366, 1227, 34 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 7.64 (dd, J=16.4, 8.2 Hz, 2H), 7.48 (d, J=8.8 Hz, 1H), 7.33 (t, J=7.6 Hz, 1H), 7.19 (d, J=7.1 Hz, 1H), 6.89 (s, 1H), 6.62 (dd, J=8.7, 2.1 Hz, 1H), 2 (t, J=9.5 Hz, 1H), 5.29 (t, J=9.7 Hz, 1H), 5.13 (t, J=9.1 Hz, 1H), 4.62 (d, J=6.6 Hz, 2H), 4.29 (dd, J=12.2, 5.1 Hz, 1H), 3.93 (d, J=12.2 Hz, 1H), (m, 1H), 1.73 (s, 6H), 1.69 (s, 3H), 1.61 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.64(2c=o),.31(c=o),.13(c=o), (C), 135.9(C), (CH), (C), (CH), 122(2CH), (CH), (CH), 8.21(CH), 84.3(CH), 74.32(CH), 73.13(CH), 72.25(CH), 69.87(CH), 63.13(CH 2 ),.7(2CH 3 ),.64(2CH 3 ). HR MS(ESI): m/z calculated for C 24 H 27 NO 9 Na obtained
8 (2R,3R,4S,5R,6R) 2 (acetoxymethyl) 6 ((6 methoxynaphthalen 2 yl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 3p: R f = 8 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3478, 87, 1755, 1611, 1225, 32 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ = 4 (d, J=9. Hz, 1H), 7.47 (d, J=8.8 Hz, 1H), 7.24 (dd, J=8.9 Hz,, 1H), 6.95 (d, J=2.4 Hz, 1H), 6.89 (d, J= Hz, 1H), 6.72 (dd, J=8.7, 2.3 Hz, 1H), 4 (t, J=9.5 Hz, 1H), 5.29 (t, J=9.7 Hz, 1H), (m, 1H), (m, 2H), (m, 1H), 3.96 (dd, J=12.2, 2.2 Hz, 1H), 3.45 (s, 3H), (m, 1H), 1.74 (s, 3H), 1.74 (s, 3H), 1.7 (s, 3H), 1.64 (s, 3H). 13 C NMR (75 MHz, C 6 D 6 ) δ 176(C=O), 173(C=O), (C=O), (C=O), 15(C), (C), 1.68(C), 1.12(C), (2CH), (CH), (CH), 9.34(CH), 1(CH), 84.61(CH), 73.65(CH), 72.79(CH), 71.82(CH), 69.29(CH), 62.18(CH 2 ), 54.86(CH 3 ),.29(2CH 3 ),.23(2CH 3 ). HR MS(ESI): m/z calculated for C 25 H NO obtained Characterization data of β-aryl N-glycoside 4a-l (2R,3S,4S,5R,6R) 2 (acetoxymethyl) 6 (phenylamino)tetrahydro 2H pyran 3,4,5 triyl triacetate 4a: R f =. (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3469, 3393, 1738, 165, 1522, 151, 1368, 125, 1212, 85, 5, 11 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 9 (t, J=7.9 Hz, 2H), 6.78 (t, J=7.3 Hz, 1H), 4 (d, J=7.6 Hz, 2H), (m, 2H), 5. (dd, J=.3, 3.5 Hz, 1H), (m, 2H), (m, 2H), 3.41 (t, J=6.8 Hz, 1H), 1.75 (s, 3H), 1.7 (s, 3H), 1.62 (s, 3H), 1.61 (s, 3H). 13 C NMR (75 MHz, CDCl 3 ) δ 174(C=O), (C=O), (2C=O), 144(C), (2CH), 119.7(CH), 117(2CH), 84.39(CH), 71.41(CH), 78(CH), 69.6(CH), 67.49(CH), 68(CH 2 ), 19.99(2CH 3 ), 19.83(CH 3 ), 19.78(CH 3 ). HR MS(ESI): m/z calculated for C H 25 NO 9 Na obtained (2R,3S,4S,5R,6R) 2 (acetoxymethyl) 6 (naphthalen 2 ylamino)tetrahydro 2H pyran 3,4,5 triyl triacetate 4b: R f =.72 (CH 2 Cl 2 ; EtOAc, 92:8); white solid ; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 1748, 16, 1369, 1226, 5, cm 1. 1 H NMR ( MHz, Acetone) δ (m, 2H), 7.64 (d, J = 8. Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), (m, 3H), 5.83 (d, J = 8.3 Hz, 1H), 5.48 (d, J = 3.3 Hz, 1H), (m, 3H), 4.41 (t, J = 6.6 Hz, 1H), (m, 2H), 2.14 (s, 3H), 1.99 (s, 3H), 1.96 (s, 3H), 1.95 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.92(c=o),.76(c=o), 174(C=O),.23(C=O), 8
9 144.66(C), 135.9(C), (CH), (C), (C), (2CH), (CH), (CH), 8.(CH), 84.36(CH), 72.43(CH), 77(CH), 69.73(CH), 68.75(CH), 62.45(CH 2 ),.75(CH 3 ),.62(2CH 3 ), 27(CH 3 ). HR MS(ESI): m/z calculated for C 24 H 27 NO 9 Na obtained (2R,3S,4S,5R,6R) 2 (acetoxymethyl) 6 ((4 chlorophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 4c: R f = (CH 2 Cl 2 ; EtOAc, 92:8); brown solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c, in CHCl 3 ); IR (neat): 3479, 3359,, 35, 1745, 1494, 1369, 1222, 81, 57 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ 5 (d, J = 8.8 Hz, 2H), 6.29 (d, J = 8.9 Hz, 2H), 4 (dd, J = 3.4,.9 Hz, 1H), 5.43 (dd, J =.3, 8.8 Hz, 1H), 5.27 (dd, J =.3, 3.5 Hz, 1H), 4.67 (d, J = 9.9 Hz, 1H), 4.45 (dd, J = 9.8, 9. Hz, 1H), (m, 2H), 3.43 (td, J = 6.6,.9 Hz, 1H), 1.75 (s, 3H), 1.73 (s, 3H), 1.62 (s, 6H). 13 C NMR (75 MHz, C 6 D 6 ) δ.86(c=o),.11(c=o), (C=O), (C=O), (C), (2CH), (C), 115(2CH), 84.44(CH), 71.62(CH), 75(CH), 69.25(CH), 67.82(CH), 63(CH 2 ),.31(CH 3 ),.27(CH 3 ),.18(CH 3 ),.11(CH 3 ). HR MS(ESI): m/z calculated for C H 24 NO 9 NaCl 4.37 obtained 4.35 (2R,3R,4S,5R,6S) 2 (acetoxymethyl) 6 (((2R,3R,4S,5R,6R) 4,5 diacetoxy 2 (acetoxymethyl) 6 (phenylamino)tetrahydro 2H pyran 3 yl)oxy)tetrahydro 2H pyran 3,4,5 triyl triacetate 4d: R f =.21 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether, CH 2 Cl 2, 95:5; m.p. = C; [α] D 24 (c, in CHCl 3 ); IR (neat): 3465, 1746, 167, 1376, 12, 1225, 36 cm 1. 1 H NMR ( MHz, Acetone) δ 7.15 (dd, J = 8.4, 7.4 Hz, 2H), 6.81 (d, J = 7.7 Hz, 2H), 6.74 (t, J = 7.3 Hz, 1H), 5 (d, J = 9.3 Hz, 1H), (m, 1H), 5.23 (ddd, J = 9.4, 5.6, 3.9 Hz, 1H), 6 (td, J = 9.4, 4.2 Hz, 2H), (m, 1H), 4.87 (dd, J = 7.1, 3.5 Hz, 2H), 4.48 (dd, J = 11.9, 1.8 Hz, 1H), 4.39 (dd, J = 12.4, 4.4 Hz, 1H), 4.17 (dd, J = 11.9, 5.8 Hz, 1H), 4.9 (dd, J = 12.4, 2.3 Hz, 1H), (m, 2H), (m, 1H), 6 (s, 3H), 5 (s, 6H), 4 (s, 3H), 1.98 (s, 3H), 1.98 (s, 3H), 1.93 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.78(2c=o),.71(c=o),.(c=o),.17(c=o), 169.9(C=O), (C=O), (C), (2CH), (C), (2CH), 1.(CH), 83.88(CH), 77.92(CH), 74.7(CH), 74.4(CH), 73.71(CH), 72.47(CH), 72.44(CH), 72.42(CH), 69.2(CH), 63.35(CH 2 ), 66(CH 2 ),.79(CH 3 ),.75(2CH 3 ),.67(CH 3 ), 28(2CH 3 ), 21(CH 3 ). HR MS(ESI): m/z calculated for C 32 H 41 NO 17 Na obtained (2R,3R,4S,5S,6S) 2 (acetoxymethyl) 6 ((4 chlorophenyl)amino)tetrahydro 2H pyran 3,4,5 triyl triacetate 4e: 9
10 Compound 4e is contaminated with a small amount of unknow byproduct. This compound is not enough stable for more purifications and it degrade during its successive purifications. R f =.48 (CH 2 Cl 2 ; EtOAc, 92:8); colorless oil; IR (neat): 3436, 3399, 17, 162, 1516, 1494, 1368, 1245, 1213, 91, 48 cm 1. 1 H NMR ( MHz, C 6 D 6 ) δ = 7.14 (d, J=8.9, 2H), 6.82 (d, J=8.9, 2H), 5.86 (d, J=15, 1H), (d, J=3, 1H), 5. (m, 1H), (m, 2H), 4. (dd, J=12.2, 4.7, 1H), 4.8 (m, 2H), 2.16 (s, 3H), 4 (s, 3H), 1 (s, 3H), 1.87 (s, 3H). 13 C NMR (75 MHz, Acetone) δ (C=O),.68(C=O),.32(C=O),.19(C=O), 144(C), (2CH), (C), (2CH), 81.42(CH), 73.63(CH), 72.69(CH), 73(CH), 67.12(CH), 63.44(CH 2 ),.93(CH 3 ),.69(CH 3 ),.64(CH 3 ), 24(CH 3 ). HR MS(ESI): m/z calculated for C H 24 NO 9 NaCl 4.37 obtained 4.41 (2R,3R,4S,5R,6S) 2 (acetoxymethyl) 6 (((2R,3R,4S,5R,6R) 4,5 diacetoxy 2 (acetoxymethyl) 6 ((4 chlorophenyl)amino)tetrahydro 2H pyran 3 yl)oxy)tetrahydro 2H pyran 3,4,5 triyl triacetate 4f: R f =.34 (CH 2 Cl 2 ; EtOAc, 92:8); white solid recrystallized from diisopropyl ether, CH 2 Cl 2, 95:5; m.p. = C ; [α] D 24 5 (c, in CHCl 3 ); IR (neat): 3432, 3269, 38, 1757, 1739, 1495, 1367, 1231, 1213, 37 cm 1. 1 H NMR ( MHz, Acetone) δ 7.15 (d, J = 8.9 Hz, 2H), 6.82 (d, J = 8.9 Hz, 2H), 5.76 (d, J = 9.3 Hz, 1H), (m, 2H), 4 (td, J = 9.3, Hz, 2H), 4.92 (d, J = 9.3 Hz, 1H), (m, 2H), 4.48 (dd, J = 11.9, 1.7 Hz, 1H), 4.38 (dd, J = 12.4, 4.4 Hz, 1H), 4.15 (dd, J = 11.9, 5.8 Hz, 1H), 4.7 (dd, J = 12.4, 2.3 Hz, 1H), (m, 3H), 4 (s, 3H), 3 (s, 3H), 2 (s, 6H), 1.97 (s, 3H), 1.96 (s, 3H), 1.92 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.79(c=o),.7(c=o),.68(c=o),.(c=o),.18(c=o), 169.9(C=O), (C=O), (C), (2CH), 123.(C), 113(2CH), 1.31(CH), 83.71(CH), 77.82(CH), 74.12(CH), 74.6(CH), 73.7(CH), 72.47(CH), 72.41(CH), 72.(CH), 69.2(CH), 63.31(CH 2 ), 65(CH 2 ),.77(2CH 3 ),.71(CH 3 ),.67(CH 3 ), 28(2CH 3 ), 21(CH 3 ). HR MS(ESI): m/z calculated for C 32 H NO 17 NaCl obtained (2R,3S,4R,5R,6R) 5 acetamido 2 (acetoxymethyl) 6 (phenylamino)tetrahydro 2H pyran 3,4 diyl diacetate 4g: AcO AcO AcO O H N NHAc R f =.18 (CH 2 Cl 2 ; EtOAc, 92:8); white solid ; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 3485, 32, 1743, 166, 165, 15, 1368, 1229, 42 cm 1. 1 H NMR ( MHz, Acetone) δ 7.25 (d, J = 8.6 Hz, 1H), 7.13 (t, J = Hz, 2H), (m, 3H), 5.81 (d, J = 7.6 Hz, 1H), 5. (dd, J =.4, 9.3 Hz, 1H), (m, 1H), 4.89 (dd, J = 9.4, 7.7 Hz, 1H), 4.24 (dd, J = 12.1, Hz, 1H), (m, 2H), 3.97 (ddd, J = 1,, Hz, 1H), (s, 3H), 1.99 (s, 3H), 1.98 (s, 3H), 1.87 (s, 3H). 13 C NMR (75 MHz, Acetone) δ (C=O),.84(C=O),.67(C=O),.13(C=O), (C), (2CH), (C), 116(2CH), 86.16(CH), 74.15(CH), 72.72(CH), 7.31(CH), 63.26(CH), 54.47(CH 2 ), 22.96(CH 3 ),.68(3CH 3 ). HR MS(ESI): m/z calculated for C H 26 N 2 O 8 Na obtained
11 (2R,3S,4R,5R,6R) 5 acetamido 2 (acetoxymethyl) 6 ((4 chlorophenyl)amino)tetrahydro 2H pyran 3,4 diyl diacetate 4h: AcO AcO AcO O H N NHAc Cl R f =.14 (CH 2 Cl 2 ; EtOAc, 92:8); white solid ; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 349, 3471, 3453, 325, 3234, 3116, 1696, 1369, 1247, 31 cm 1. 1 H NMR ( MHz, Acetone) δ 7.29 (d, J = 8.7 Hz, 1H), 7.14 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.9 Hz, 2H), 3 (d, J = 7.7 Hz, 1H), 5.29 (dd, J =.3, 9.4 Hz, 1H), 4.99 (t, J = 9.7 Hz, 1H), 4.91 (dd, J = 9.3, 7.8 Hz, 1H), 4.23 (dd, J = 12.1, Hz, 1H), (m, 2H), 3.98 (ddd, J = 1,, 2.4 Hz, 1H), (s, 3H), 1.99 (s, 3H), 1.97 (s, 3H), 1.86 (s, 3H). 13 C NMR (75 MHz, Acetone) δ (C=O),.83(C=O),.67(C=O),.12(C=O), (C), (2CH), (C), (2CH), 85.91(CH), 74.9(CH), 72.81(CH), 7.22(CH), 63.21(CH), 54.44(CH 2 ), 22.95(CH 3 ),.67(3CH 3 ). HR MS(ESI): m/z calculated for C H 25 N 2 O 8 NaCl obtained (2R,3R,4S,5R,6R) 2 ((3 chlorophenyl)amino) 6 ((pivaloyloxy)methyl)tetrahydro 2H pyran 3,4,5 triyl tris(2,2 dimethylpropanoate) 4i: R f =.45 (cyclohexane; EtOAc, 9:1); white solid ; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 339, 3342, 3275, 3179, 1743, 1724, 16, 1524, 14, 1399, 1368, 1279, 1144, 34 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ 7 (t, J = 8. Hz, 1H), 6.79 (dd, J = 7.9, 1.1 Hz, 1H), 6.64 (t, J = Hz, 1H), 2 (dd, J = 8.2, Hz, 1H), 5.48 (t, J = 9.4 Hz, 1H), 5.15 (m, 2H), (m, 2H), 4. (dd, J = 12.1, 1.7 Hz, 1H), 4.5 (dd, J = 12.2, 6.8 Hz, 1H), 3.88 (ddd, J = 9.8, 6.7, 1.7 Hz, 1H), 1. (s, 9H), 1.18 (s, 9H), 1.13 (s, 9H), 1.11 (s, 9H). 13 C NMR (75 MHz, CDCl 3 ) δ 179.(C=O), (C=O), 177.(C=O), (C=O), 147(C), (C), 1.44(CH), 124(CH), (CH), (CH), 84.63(CH), 73.(CH), 72.24(CH), 71.15(CH), 68.52(CH), 62.6(CH 2 ), 39.(C), 38.98(2C), 38.89(C), 27.(5CH 3 ), 27.23(4CH 3 ), 27.15(3CH 3 ). HR MS(ESI): m/z calculated for C 32 H 48 NO 9 NaCl obtained (2R,3R,4S,5R,6R) 2 ((4 chlorophenyl)amino) 6 ((pivaloyloxy)methyl)tetrahydro 2H pyran 3,4,5 triyl tris(2,2 dimethylpropanoate) 4j: R f =.39 (cyclohexane; EtOAc, 9:1); white solid ; m.p. = C ; [α] D (c,1, in CHCl 3 ); IR (neat): 3464, 3392, 1739, 1723, 163, 1514, 1478, 1398, 1367, 12, 1266, 11, 1147, 79, 32, 5 cm 1. 1 H NMR ( MHz, CDCl 3 ) δ 7.12 (d, J = 8.6 Hz, 2H), 9 (d, J = 8.7 Hz, 2H), 5.48 (t, J = 9.4 Hz, 1H), (m, 2H), (m, 2H), 4. (dd, J = 12.1, 1.4 Hz, 1H), 4.5 (dd, J = 12.1, 6.8 Hz, 1H), 3.85 (ddd, J = 9.4, 6.6, 1.4 Hz, 1H), 1. (s, 9H), 1.18 (s, 9H), 1.13 (s, 9H), 1.11 (s, 9H). 13 C NMR (75 MHz, CDCl 3 ) δ (C=O), (C=O), (C=O), (C=O), (C), (2CH), (C), (2CH), 85.(CH), 73.36(CH), 72.28(CH), 71.18(CH), 68.53(CH), 69(CH 2 ), 39.(C), 11
12 38.98(2C), 38.89(C), 27.27(5CH 3 ), 27.23(4CH 3 ), 27.15(3CH 3 ). HR MS(ESI): m/z calculated for C 32 H 48 NO 9 Cl obtained (2R,3R,4S,5R,6R) 3,4,5 tris(benzyloxy) 6 ((benzyloxy)methyl) N (4 bromophenyl)tetrahydro 2H pyran 2 amine 4k: R f =.39 (cyclohexane; EtOAc, 9:1); white solid recrystallized from diisopropyl ether, CH 2 Cl 2, 95:5; m.p. = C ; [α] D (c,.25 in CHCl 3 ); IR (neat): 31, 3381, 3319, 3288, 3218, 3196,3168, 62, 16, 1365, 62 cm 1. 1 H NMR ( MHz, Acetone) δ (m, 22H), 6.79 (d, J = 8.9 Hz, 2H), 5.88 (d, J = 9.4 Hz, 1H), (m, 6H), 4.68 (d, J = 11.1 Hz, 1H), 6 (d, J = 1 Hz, 1H), (d, J = 11.9 Hz, 1H), (m, 6H). 13 C NMR (75 MHz, Acetone) δ (C), 146(C), (C), (C), (C), 131(2CH), 129.7(8CH), (2CH), (2CH), (4CH), (2CH), (2CH), 112(2CH), 1.28(C), 86.89(CH), 85.44(CH), 82.84(CH), 79.38(CH), 71(CH), 73(CH 2 ), 75.33(CH 2 ), 75.25(CH 2 ), 73.76(CH 2 ), 7.12(CH 2 ). HR MS(ESI): m/z calculated for C H NO 5 NaBr obtained (2R,3R,4S,5R,6R) 3,4,5 tris(benzyloxy) 6 ((benzyloxy)methyl) N (4 methoxyphenyl)tetrahydro 2Hpyran 2 amine 4l: R f =.31 (cyclohexane; EtOAc, 9:1) ; white solid recrystallized from diisopropyl ether, CH 2 Cl 2, 95:5; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 3478, 3458, 33, 3284, 1513, 1453, 1353, 1246, 1133, 6, 27 cm 1. 1 H NMR ( MHz, Acetone) δ (m, H), (m, 2H), (m, 2H), 5. (d, J = 9.6 Hz, 1H), (m, 5H), (m, 2H), 6 (d, J = 1 Hz, 1H), 1 (d, J = 1 Hz, 1H), (m, 8H), 3.52 (t, J = 8.7 Hz, 1H). 13 C NMR (75 MHz, Acetone) δ (C), 148(C), 1.14(C), 146(C), (C), (C), 129.4(8CH), 128.(2CH), (2CH), (4CH), (2CH), (2CH), 118(2CH), (2CH), 86.97(CH), 86.89(CH), (CH), 79.48(CH), 76.48(CH), 7(CH 2 ), 75.(CH 2 ), 75.19(CH 2 ), 73.76(CH 2 ), 7.22(CH 2 ), 55.79(CH 3 ). HR MS(ESI): m/z calculated for C 41 H 39 NO 6 Na obtained General procedure for Palladium catalyzed coupling of thioglycosides with 3g: Typical procedure: A flame dried resealable Schlenk tube was charged with Pd(OAc) 2 (5 mol %), Xantphos ( mol%), thiosugar (.375 mmol), 3g (.25 mmol), and Et 3 N (.25 mmol). The Schlenk tube was capped with a rubber septum, evacuated and backfilled with argon; then, dioxane ( ml) was added through the septum. The septum was replaced with a teflon screwcap. The Schlenk tube was sealed, and the mixture was stirred at C for 1 h. The resulting suspension was cooled to room temperature and filtered through celite eluting with ethyl acetate. The filtrate was concentrated and purification of the residue by silica gel column chromatography gave the desired product 5a c. 12
13 Characterization data of β-aryl N-glycoside 5a-c (2S,3S,4R,5S,6R) 2 (acetoxymethyl) 6 ((4 (((2R,3R,4S,5R,6R) 3,4,5 triacetoxy 6 (acetoxymethyl)tetrahydro 2H pyran 2 yl)amino)phenyl)thio)tetrahydro 2H pyran 3,4,5 triyl triacetate 5a: R f =.16 (cyclohexane; EtOAc, 6:4); white solid recrystallized from diisopropyl ether; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 345, 315, 1755, 1746, 1739, 1599, 1514, 1366, 1212, 34 cm 1. 1 H NMR ( MHz, Acetone) δ 7.41 (d, J = 8.7 Hz, 2H), 6.88 (d, J = 8.7 Hz, 2H), (d, J = 9.2 Hz, 1H), 5.44 (t, J = 9.4 Hz, 1H), 5.33 (t, J = 8.6 Hz, 1H), 5.23 (t, J = 9.3 Hz, 1H), 5. (d, J = 1 Hz, 1H), 4 (d, J = 7.8 Hz, 1H), 4.99 (t, J = 9.1 Hz, 1H), (m, 2H), (m, 5H), 3.99 (ddd, J =.2,, 2.7 Hz, 1H), 2. (s, 3H), 8 (s, 3H), 7 (s, 3H), 5 (s, 3H), 3 (s, 6H), 2 (s, 3H), 1.97 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.69(c=o),.65(c=o), 177(C=O),.(C=O),.24(C=O),.(C=O), (C=O), (C=O), (C), (2CH), 119.(C), (2CH), 86.28(CH), 83.55(CH), 76.18(CH), 74.61(CH), 74.24(CH), 74(CH), 72.14(CH), 7.91(CH), 69.76(CH), 69.25(CH), 66(CH 2 ), 62.88(CH 2 ),.76(2CH 3 ),.68(2CH 3 ),.62(CH 3 ), 27(2CH 3 ), 23(CH 3 ). HR MS(ESI): m/z calculated for C 34 H 43 NO 18 NaS 8.99 obtained (2R,3R,4S,5R,6R) 2 ((4 (((2R,3S,4S,5R,6S) 3 acetamido 4,5 diacetoxy 6 (acetoxymethyl)tetrahydro 2H pyran 2 yl)thio)phenyl)amino) 6 (acetoxymethyl)tetrahydro 2H pyran 3,4,5 triyl triacetate 5b: R f =.16 (cyclohexane ; EtOAc, 6:4); white solid recrystallized from diisopropyl ether; m.p. = C; [α] D (c,.375 in CHCl 3 ); IR (neat): 3493, 3318, 3278, 1743, 165, 16, 1553, 1512, 1435, 1367, 1294, 1213, 83, 31 cm 1. 1 H NMR ( MHz, Acetone) δ 7.38 (d, J = 8.6 Hz, 2H), 7.22 (d, J = 9.2 Hz, 1H), 6.81 (d, J = 8.6 Hz, 2H), 5.89 (d, J = 9.4 Hz, 1H), 5.39 (t, J = 9.4 Hz, 1H), 5.25 (t, J = 9.8 Hz, 1H), 5.17 (t, J = 9.2 Hz, 1H), (m, 2H), (m, 2H), (m, 5H), 3.88 (dd, J = 19.7, 1 Hz, 1H), 3.76 (ddd, J = 9.7, 5.2, 2.3 Hz, 1H), 1 (s, 6H), 1.99 (s, 3H), 1.98 (s, 3H), 1.96 (s, 6H), 1.91 (s, 3H), 1.87 (s, 3H). 13 C NMR (75 MHz, Acetone) δ.68(2c=o), 177(C=O), 171(C=O),.(C=O),.(C=O), (C=O), 169.9(C=O), 147.(C), (2CH), 1.85(C), (2CH), 87.49(CH), 83.62(CH), 76.(CH), 74.75(CH), 74.23(CH), 72(CH), 72.14(CH), 69.75(2CH), 69(CH), 64(CH 2 ), 53.92(CH 2 ), 23.12(CH 3 ),.77(CH 3 ),.68(2CH 3 ),.62(4CH 3 ). HR MS(ESI): m/z calculated for C 34 H 44 N 2 O 17 NaS obtained (2S,3S,4R,5S,6R) 2 (acetoxymethyl) 6 (((2S,3S,4R,5S,6R) 4,5 diacetoxy 2 (acetoxymethyl) 6 ((4 (((2R,3R,4S,5R,6R) 3,4,5 triacetoxy 6 (acetoxymethyl)tetrahydro 2H pyran 2 yl)amino)phenyl)thio)tetrahydro 2H pyran 3 yl)oxy)tetrahydro 2H pyran 3,4,5 triyl triacetate 5c: 13
14 R f =.18 (cyclohexane ; EtOAc, 6:4) ; white solid recrystallized from diisopropyl ether; m.p. = C ; [α] D (c, in CHCl 3 ); IR (neat): 3449, 3315, 3289, 1756, 1749, 1366, 1229, 1212, 35 cm 1. 1 H NMR ( MHz, Acetone) δ 7.39 (d, J = 8.6 Hz, 2H), 6.87 (d, J = 8.7 Hz, 2H), 1 (d, J = 9.3 Hz, 1H), 5.45 (t, J = 9.4 Hz, 1H), (m, 1H), 7 (ddd, J = 14.4, 9.6, 4.6 Hz, 1H), (m, 2H), 4.61 (d, J = 11.3 Hz, 1H), 4.41 (dd, J = 12.4, 4.3 Hz, 1H), (m, 2H), (m, 1H), 3.84 (d, J = Hz, 1H), 2. (s, 1H), 9 (s, 1H), 7 (s, 1H), 6 (s, 2H), 5 (s, 1H), 3 (s, 1H), 2 (s, 1H), 1 (s, 1H), 1.96 (s, 1H). 13 C NMR (75 MHz, Acetone) δ.78(c=o),.7(c=o),.69(c=o), 175(C=O),.(C=O),.13(C=O), (C=O), (C=O), (C=O), (C=O), (C=O), (C), 139(2CH), 122(C), (2CH), 1.25(2CH), 85.69(CH), 83.51(CH), 77.32(CH), 77.23(CH), 74.34(CH), 74.24(CH), 73.71(CH), 75(CH), 72.42(CH), 72.13(CH), 79(CH), 69.77(CH), 68.94(CH), 69(CH 2 ), 62.97(CH 2 ), 62.42(CH 2 ),.93(CH 3 ),.7(4CH 3 ),.64(3CH 3 ), 27(3CH 3 ). HR MS(ESI): m/z calculated for C 46 H 59 NO 26 NaS obtained
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 AcO AcO AcO O OAc H N 5b AcHN S O OAc OAc OAc AcO AcO AcO O OAc H N 5b AcHN S O OAc OAc OAc
44 H N O OAc AcO AcO AcO S O AcO OAc O OAc O AcO OAc OAc OAc 5c H N O OAc AcO AcO AcO S O AcO OAc O OAc O AcO OAc OAc OAc 5c Electronic Supplementary Material (ESI) for Chemical Communications
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes
Supporting Information
Supporting Information for Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction Chun-Huan Jiang, Xiantao Lei,
Electronic Supplementary Information
Electronic Supplementary Information Unprecedented Carbon-Carbon Bond Cleavage in Nucleophilic Aziridine Ring Opening Reaction, Efficient Ring Transformation of Aziridines to Imidazolidin-4-ones Jin-Yuan
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones
Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is the Partner Organisations 2016 Supporting information Copper-Catalyzed Oxidative Dehydrogenative - Bond Formation
Supporting Information
Electronic Supplementary Material (ESI) for rganic Chemistry Frontiers. This journal is the Partner rganisations 2018 Palladium-catalyzed direct approach to α-cf 3 aryl ketones from arylboronic acids Bo
Supporting Information
Supporting Information Ceric Ammonium Nitrate (CAN) catalyzed efficient one-pot three component aza-diels-alder reactions for a facile synthesis of tetrahydropyranoquinoline derivatives Ravinder Goud Puligoundla
Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran
1 Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran Munawar Hussain, a Rasheed Ahmad Khera, a Nguyen Thai Hung, a Peter Langer* a,b a Institut für Chemie, Universität Rostock,
Supporting Information
Supporting Information for AgOTf-catalyzed one-pot reactions of 2-alkynylbenzaldoximes with α,β-unsaturated carbonyl compounds Qiuping Ding 1, Dan Wang 1, Puying Luo* 2, Meiling Liu 1, Shouzhi Pu* 3 and
Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3
Supporting Information Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3 Shohei Shimokawa, Yuhsuke Kawagoe, Katsuhiko Moriyama, Hideo Togo* Graduate
Supporting Information
Supporting Information Lewis acid catalyzed ring-opening reactions of methylenecyclopropanes with diphenylphosphine oxide in the presence of sulfur or selenium Min Shi,* Min Jiang and Le-Ping Liu State
First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of
Supporting Information File 1 for First DMAP-mediated direct conversion of Morita Baylis Hillman alcohols into γ-ketoallylphosphonates: Synthesis of γ-aminoallylphosphonates Marwa Ayadi 1,2, Haitham Elleuch
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting information for Metal-free Oxidative Coupling of Amines with Sodium Sulfinates:
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.
Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section
Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces
Highly enantioselective cascade synthesis of spiropyrazolones Alex Zea a, Andrea-Nekane R. Alba a, Andrea Mazzanti b, Albert Moyano a and Ramon Rios a,c * Supporting Information NMR spectra and HPLC traces
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl
Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl Philippe Pierrat, Philippe Gros* and Yves Fort Synthèse Organométallique
Supporting Information
Supporting Information Copper/Silver Cocatalyzed Oxidative Coupling of Vinylarenes with ICH 2 CF 3 or ICH 2 CHF 2 Leading to β-cf 3 /CHF 2 -Substituted Ketones Niannian Yi, Hao Zhang, Chonghui Xu, Wei
Supporting Information
Supporting Information Montmorillonite KSF-Catalyzed One-pot, Three-component, Aza-Diels- Alder Reactions of Methylenecyclopropanes With Arylaldehydes and Aromatic Amines Li-Xiong Shao and Min Shi* General
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process
Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process Jincan Zhao 1, Hong Fang 1, Jianlin Han* 1,2 and Yi Pan* 1
The Free Internet Journal for Organic Chemistry
The Free Internet Journal for Organic Chemistry Paper Archive for Organic Chemistry Arkivoc 2018, part iii, S1-S6 Synthesis of dihydropyranones and dihydropyrano[2,3- d][1,3]dioxine-diones by cyclization
Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006
Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2006 1 A Facile Way to Synthesize 2H-Chromenes: Reconsideration of the Reaction Mechanism between Salicylic Aldehyde and
Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes
Supporting Information for Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes Changkun Li and Jianbo Wang* Beijing National Laboratory
Supporting information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting information Copper-catalysed intramolecular O-arylation: a simple
Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2014 Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using
ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.
ESI for A simple and efficient protocol for the palladium-catalyzed ligand-free Suzuki reaction at room temperature in aqueous DMF Chun Liu,* Qijian i, Fanying Bao and Jieshan Qiu State Key Laboratory
Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2016 Enantioselective Organocatalytic Michael Addition of Isorhodanines to α,
Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2014 Supplementary information Copper-Catalyzed xidative Coupling of Acids with Alkanes Involving Dehydrogenation:
Supporting Information
S1 Supporting Information Synthesis of 2-Arylated Hydroxytyrosol Derivatives via Suzuki-Myaura Cross-Coupling Roberta Bernini, a Sandro Cacchi, b* Giancarlo Fabrizi, b* Eleonora Filisti b a Dipartimento
Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines
Direct Palladium-Catalyzed Arylations of Aryl Bromides with 2/9-Substituted Pyrimido[5,4-b]indolizines Min Jiang, Ting Li, Linghua Meng, Chunhao Yang,* Yuyuan Xie*, and Jian Ding State Key Laboratory of
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2
Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines
Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A new Entry to N-Carbamate Protected Arylamines Bing Zhou,* Juanjuan Du, Yaxi Yang,* Huijin Feng, Yuanchao Li Shanghai Institute of Materia Medica,
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Synthesis of 3-omosubstituted Pyrroles via Palladium- Catalyzed Intermolecular Oxidative Cyclization
Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction
Electronic Supplementary Material (ESI) for Green Chemistry. This journal is The Royal Society of Chemistry 2015 SUPPRTIG IFRMATI Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst-
Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2015 Electronic Supplementary Information Rhodium-Catalyzed Oxidative Decarbonylative Heck-type
Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 205 Vilsmeier aack reagent-promoted formyloxylation of α-chloro-arylacetamides by formamide Jiann-Jyh
Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 S1 Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic
The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2018 The,-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H Carbonylation using
Divergent synthesis of various iminocyclitols from D-ribose
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 205 Divergent synthesis of various iminocyclitols from D-ribose Ramu Petakamsetty,
Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information
Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols Dr. Xiao un Tang and Prof. Qing un Chen* Key Laboratory of Organofluorine Chemistry,
Supporting Information for
Supporting Information for An atom-economic route to densely functionalized thiophenes via base-catalyzed rearrangement of 5-propargyl-2H-thiopyran-4(3H)-ones Chunlin Tang a, Jian Qin b, Xingqi Li *a a
Aminofluorination of Fluorinated Alkenes
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2018 Synthesis of ɑ CF 3 and ɑ CF 2 H Amines via Aminofluorination of Fluorinated Alkenes Ling Yang,
Supporting Information
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2018 Supporting Information Silver or Cerium-Promoted Free Radical Cascade Difunctionalization
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic
Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long
gem-dichloroalkenes for the Construction of 3-Arylchromones
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2015 Pd(OAc)2/S=PPh3 Accelerated Activation of gem-dichloroalkenes for the Construction of 3-Arylchromones
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Anhydrous solvents were transferred by
Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled
Supporting Information for: Room Temperature Highly Diastereoselective Zn-Mediated Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled Stereoselectivity Reversal
Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*
Facile construction of the functionalized 4H-chromene via tandem benzylation and cyclization Jinmin Fan and Zhiyong Wang* Hefei National Laboratory for Physical Science at Microscale, Joint- Lab of Green
Supporting Information. Experimental section
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2014 Supporting Information Experimental section General. Proton nuclear magnetic resonance ( 1
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.
Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%. S1 Supplementary Figure S2. Single X-ray structure 5a at probability ellipsoids of 20%. S2 H 15 Ph Ac Ac I AcH Ph Ac
Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via
Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles
Supporting Information for Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles Angélica de Fátima S. Barreto*, Veronica Alves dos Santos, and Carlos
Supporting Information
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2017 Supporting Information 1. General experimental methods (S2). 2. Table 1: Initial studies (S2-S4).
Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation
This journal is The Royal Society of Chemistry 212 Supporting Information for Synthesis of Fused -Heterocycles via Tandem C-H Activation Ge Meng, Hong-Ying iu, Gui-Rong Qu, John S. Fossey, Jian-Ping Li,*
Supporting Information
Supporting Information Wiley-VC 007 9 Weinheim, Germany ew ear Infrared Dyes and Fluorophores Based on Diketopyrrolopyrroles Dipl.-Chem. Georg M. Fischer, Dipl.-Chem. Andreas P. Ehlers, Prof. Dr. Andreas
Electronic Supplementary Information (ESI)
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry Electronic Supplementary Information (ESI) For Iron-Catalysed xidative Amidation of Alcohols with Amines Silvia Gaspa, a Andrea
Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate
upporting Information Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate Jing-Yu Wu, Zhi-Bin Luo, Li-Xin Dai and Xue-Long Hou* a tate Key Laboratory of Organometallic
and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol
FeCl 3 6H 2 O-Catalyzed Disproportionation of Allylic Alcohols and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol Jialiang Wang, Wen Huang, Zhengxing Zhang, Xu
Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 204 Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng
Supporting Information
Supporting Information Wiley-VCH 2014 69451 Weinheim, Germany Copper-Catalyzed Coupling of Oxime Acetates with Sodium Sulfinates: An Efficient Synthesis of Sulfone Derivatives** Xiaodong Tang, Liangbin
Supporting information
Electronic upplementary Material (EI) for New Journal of Chemistry. This journal is The Royal ociety of Chemistry and the Centre National de la Recherche cientifique 7 upporting information Lipase catalyzed,-addition
Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination
Electronic Supplementary Material (ESI) for Chemical Science. This journal is The Royal Society of Chemistry 2016 Supporting Information Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine
Supporting Information for
Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College
Supplementary information
Electronic Supplementary Material (ESI) for MedChemComm. This journal is The Royal Society of Chemistry 2015 Supplementary information Synthesis of carboxyimidamide-substituted benzo[c][1,2,5]oxadiazoles
Supporting Information
Supporting Information Rhodium-catalyzed Intramolecular Dehydrogenative Aryl Aryl Coupling Using Air as Terminal Oxidant Hannah Baars, 1,2 Yuto Unoh, 1 Takeshi Okada, 1 Koji Hirano, 1 Tetsuya Satoh,* 1,3
Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2
Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with β-nitroalkenes Jing Zheng, Dahai Wang, and Sunliang Cui* College of Pharmaceutical Sciences, Zhejiang University,
Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors
Supporting Information Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors Frédéric Pin, a Frédéric Buron, a Fabienne Saab, a Lionel Colliandre,
multicomponent synthesis of 5-amino-4-
Supporting Informartion for Molecular iodine-catalyzed one-pot multicomponent synthesis of 5-amino-4- (arylselanyl)-1h-pyrazoles Camila S. Pires 1, Daniela H. de Oliveira 1, Maria R. B. Pontel 1, Jean
Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type
Supporting Information for Rhodium-Catalyzed β-selective Oxidative Heck-Type Coupling of Vinyl Acetate via C-H Activation Hui-Jun Zhang,* Weidong Lin, Feng Su, and Ting-Bin Wen* Department of Chemistry,
Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones
Supporting Information for Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones Shuai Mao, Ya-Ru Gao, Xue-Qing Zhu, Dong-Dong Guo, Yong-Qiang Wang* Key
Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds
Electronic upplementary Material (EI) for rganic & Biomolecular Chemistry. This journal is The Royal ociety of Chemistry 2017 Laboratoire de Méthodologie et ynthèse de Produit aturels. Université du Québec
Experimental procedure
Supporting Information for Direct electrophilic N-trifluoromethylthiolation of amines with trifluoromethanesulfenamide Sébastien Alazet 1,2, Kevin Ollivier 1 and Thierry Billard* 1,2 Address: 1 Institute
Supplementary Material
Supplementary Material Control experiments S2 Characterization data for the products S2-S7 References S8 MR spectra for the products S9-S28 S1 Control experiments 2a (99.5 mg, 0.5 mmol), I 2 (50.8 mg,
Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane
Supporting Information Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane Chang-Hee Lee,, Soo-Min Lee,, Byul-Hana Min, Dong-Su Kim, Chul-Ho
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction
Supporting Information ne-pot Approach to Chiral Chromenes via Enantioselective rganocatalytic Domino xa-michael-aldol Reaction Hao Li, Jian Wang, Timiyin E-Nunu, Liansuo Zu, Wei Jiang, Shaohua Wei, *
Supporting Information
Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information
Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans Liang Yun, Shi Tang, Xu-Dong Zhang, Li-Qiu Mao, Ye-Xiang Xie and Jin-Heng Li* Key Laboratory
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component
Supporting Information for
Supporting Information for A ovel Synthesis of luorinated Pyrazoles via Gold(I)-Catalyzed Tandem Aminofluorination of Alkynes in the Presence of Selectfluor Jianqiang Qian, Yunkui Liu,* Jie Zhu, Bo Jiang,
Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008
Palladium(0)-catalyzed direct cross-coupling reaction of allylic alcohols with aryland alkenylboronic acids Hirokazu Tsukamoto, Tomomi Uchiyama, Takamichi Suzuki and Yoshinori Kondo Graduate School of
Electronic Supplementary Information
Electronic Supplementary Information NbCl 3 -catalyzed [2+2+2] intermolecular cycloaddition of alkynes and alkenes to 1,3-cyclohexadiene derivatives Yasushi Obora,* Keisuke Takeshita and Yasutaka Ishii*
Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks
Electronic Supplementary Material (ESI) for ChemComm. This journal is The Royal Society of Chemistry 2016 Aluminium-mediated Aromatic C Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene
Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions
This journal is The Royal Society of Chemistry 213 Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions Wenjing Cui, a Bao Zhaorigetu,* a Meilin Jia, a and Wulan
Supporting Information
Supporting Information Metal-catalyzed Stereoselective and Protecting-group-free Synthesis of 1,2-cis-Glycosides Using 4,6-Dimethoxy-1,3,5-triazin-2-yl Glycosides as Glycosyl Donors Tomonari Tanaka,* 1
Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement
Electronic Supplementary Material (ESI) for Organic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Supporting Information Synthesis of novel 1,2,3-triazolyl derivatives of
Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System
Supporting Information for Highly Selective Hydroiodation of Alkynes Using Iodine-Hydrophosphine Binary System Shin-ichi Kawaguchi and Akiya Ogawa * Department of Applied Chemistry, Graduate School of
Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides
Supporting Information for Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds in Aromatic Amides Feifan Wang, Qiyan Hu, Chao Shu, Zhiyang Lin, Dewen Min, Tianchao Shi and Wu Zhang* Key Laboratory
SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...
SUPPORTING INFORMATION Table of contents 1. General.... S1 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc... S2 3. General procedure for the synthesis of compounds
Pd Catalyzed Carbonylation for the Construction of Tertiary and
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2014 Pd Catalyzed Carbonylation for the Construction of Tertiary and Quaternary
Supporting Information
Supporting Information An Approach to 3,6-Disubstituted 2,5-Dioxybenzoquinones via Two Sequential Suzuki Couplings. Three-step Synthesis of Leucomelone Xianwen Gan, Wei Jiang, Wei Wang,,,* Lihong Hu,,*
Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds
Supporting Information for Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds Zhongxue Fang, a Yongquan Ning, a Pengbing Mi, a Peiqiu Liao, a Xihe Bi* a,b a Department of Chemistry,
Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles
Electronic Supplementary Material (ESI) for rganic and Biomolecular Chemistry SUPPRTIG IFRMATI Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles Anahit Pews-Davtyan and Matthias Beller* Leibniz-Institut
Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol
Supporting Information for: Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol Yu-Fang Zhang, Diao Chen, Wen-Wen
Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via ( )-Riboflavin-Mediated Electron Transfer
Supporting Information Vitamin Catalysis: Direct, Photocatalytic Synthesis of Benzocoumarins via ( )-Riboflavin-Mediated Electron Transfer Tobias Morack, Jan B. Metternich and Ryan Gilmour* Organisch-Chemisches
Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles
Electronic Supplementary Material (ESI) for rganic & Biomolecular Chemistry. This journal is The Royal Society of Chemistry 2017 Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde hydrazones leading
Supporting information
Supporting information Synthesis of Aryl Sulfides: Metal-Free C H Sulfenylation of Electron-Rich Arenes Thomas Hostier, a Vincent Ferey, b Gino Ricci, c Domingo Gomez Pardo a and Janine Cossy*, a a Laboratoire
Supporting Information
Supporting Information Metal-Free Direct Intramolecular Carbotrifluoromethylation of Alkenes to Functionalized Trifluoromethyl Azaheterocycles Lei Li, Min Deng, Sheng-Cai Zheng, Ya-Ping Xiong, Li-Jiao
Supplementary Material
Supplementary Material Chiral N-aryl tert-butanesulfinamide-olefin ligands for rhodium-catalyzed asymmetric 1,4-addition Shuai Yuan, Qingle Zeng,* Jiajun Wang, Lihong Zhou State Key Laboratory of Geohazard
Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes
1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química,
Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4
Cent. Eur. J. Chem. 9(5) 2011 S164-S175 DI: 10.2478/s11532-011-0082-y Central European Journal of Chemistry Supplement: Intramolecular to acyl migration in conformationally mobile 1 -acyl-1- benzyl-3,4
Supporting Information
1 upporting Information Rhodium(III)-Catalyzed rtho Halogenations of N-Acylsulfoximines and ynthetic Applications toward Functionalized ulfoximine Derivatives Ying Cheng, Wanrong Dong, Kanniyappan Parthasarathy,