Technical Report: A Unified Framework for Analysis of Path Selection Based Decode-and-Forward (DF) Cooperation in Wireless Systems
|
|
- Σταματία Παπανδρέου
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Techncal Report: A Unfed Framework for Analyss of ath Selecton Based Decode-and-Forward DF Cooperaton n Wreless Systems Neeraj Varshney Student ember, IEEE and Adtya K. Jagannatham, ember, IEEE I. VALUES OF ARAETERS t AND a, {SR, SD, RD} FOR DIFFERENT FADING CHANNELS The values of parameters t and a, {SR, SD, RD} for varous fadng channels ncludng η µ and κ µ are shown n Table I. II. SILIFICATION OF THE ROBABILITY OF ERROR FOR THE EVENT ϕ IN 6 Usng the result for F γmn x = F γsr x + F γrd x F γsr xf γrd x from Eq5,, the resson for re ϕ n 6 n the man paper can be rewrtten as, re ϕ= = γsd re ϕ, γ SD F γmn f γsd γ SD dγ SD, α γsd γsd re ϕ, γ SD F γsr f γsd γ SD dγ SD + re ϕ, γ SD F γrd f γsd γ SD dγ SD α α γsd γsd re ϕ, γ SD F γsr F γrd f γsd γ SD dγ SD, α α Substtutng the ressons for F γ x, {SD, SR, RD}, f γsd x gven n, 3 respectvely n the man paper and usng re ϕ, γ SD = π dθ 3, yelds π sn π/γ SD sn θ DRAFT
2 Fadng Channel DF fβ t a Raylegh β δ δ δ Nakagam-m, m Generalzed Nakagam Nakagam-q, q Nakagam-n Webull, c Log-Normal, σ Shadowed-Rcan, b, m, Ω κ-µ dstrbuton η-µ dstrbuton Gamma-Gamma, µ, ν, η s β m s p m +n δ Γm c s β +q qδ n Γ+ c.5 b µ +κ µ κ m m β m mβ δ m Γm p, where p = +q β +n β δ 4q δ δ c/ β c bm bm+ω µ + β δ δ Γm Γm +s I q 4 β I n β m s, s >, m m s 4q δ +n β δ δ Γ + c 4.34 πσβ log βµ σ µ µ κ δ µ + πµ µ + h µ βµ Γµ H µ δ µ +, n c/ m β.5ω b F m, ; β b m+bω I µ µ +κ β δ µ h β δ I µ +η µ κ +κ β δ µ H β For format : < η <, h = +η, H 4 = η For format : < η <, h =, H η = η k= ζ k ν, µβ ν+k + k= ζ k µ, νβ µ+k where ζ k a, b = δ +n δ c c µ σ µ, µ η 4 η πab a+k η a+k snbaπk!γaγbγab+k+ f ν < µ then t gg = ν/ and t gg = ζ ν, µ f ν > µ then t gg = µ/ and t gg = ζ µ, ν TABLE I m m δ m Γm s p m Γm +q qδ n Γ+ c c δ 4.34 πσ µ σ m.5 b bm bm+ω µ +κ µ µ κ δ µ Γµ πµ µ h µ Γµ Γµ +.5δ µ, t gg a gg VALUES OF ARAETERS t AND a, {SR, SD, RD} FOR DIFFERENT FADING CHANNELS. the bound for re ϕ as, re ϕ π + π a RD a SD t RD + α t RD+ a SR a SD t SR +α t SR+ η tsd + η a SR a RD a η SD t SR +t RD +α t SR+t RD + tsr + η trd + η tsd + tsd + γ t RD+t SD + SD tsr + trd + η η γ t SR+t SD + SD sn π/γ SD sn θ sn π/γ SD sn θ γ τ SD sn π/γ SD sn θ dγ SD dγ SD dγ SD where τ = t SD + t SR + t RD +. The resson above can be smplfed usng the dentty x n µx = n!µ n 3.36-, 4 followed by gnorng the negatve term n the resultng resson to yeld the bound n 8 n the man paper as, re ϕ a SRa SD Γt SR + t SD + ζt SR + t SD + t SR + α t SR+ sn π/ t SR +t SD + η tsr + η tsd + dθ,
3 + a trd + RDa SD Γt RD + t SD + ζt RD + t SD + t RD + α t RD+ sn π/ η η tsd + t RD +t SD +. III. SILIFICATION OF THE ROBABILITY OF ERROR FOR THE EVENT ϕ IN Usng the result for f γmn x = f γsr x + f γrd x F γsr xf γrd x f γsr xf γrd x from Eq5,, the resson for re ϕ n n the man paper can be rewrtten as, re ϕ = π = π + π π sn π/γ mn γ mn = sn F γsd αγ mn f γmn γ mn dγ mn dθ, θ sn π/γ mn sn F γsd αγ mn f γsr γ mn dγ mn θ sn π/γ mn sn θ sn π/γ mn sn θ sn π/γ mn sn θ F γsd αγ mn f γrd γ mn dγ mn F γsd αγ mn F γsr γ mn f γrd γ mn dγ mn F γsd αγ mn f γsr γ mn F γrd γ mn dγ mn dθ. 3 Usng the ressons for F γ x, f γ x, {SD, SR, RD} gven n, 3 respectvely n the man paper, the above resson can be smplfed as, re ϕ π π + a SDa RD α t SD+ t SD + a SD a SR α t SD+ t SD + a SDa SR a RD α t SD+ η t SD + t SR + a SDa SR a RD α t SD+ t SD + t RD + η tsd + η η η tsd + η tsd + η tsd + η trd + tsr + tsr + trd + η γ t SD+t SR + mn γ t SD+t RD + mn tsr + trd + η sn π/γ mn sn θ sn π/γ mn sn θ dγ mn γmn τ sn π/γ mn sn dγ mn θ dγ mn γ τ mn sn π/γ mn sn θ The resson above can be further smplfed usng the dentty x n µx = n!µ n 3.36-, 4 followed by gnorng the negatve term n the resultng resson to yeld the dγ mn dθ.
4 bound n n the man paper as, re ϕ a SRa SD Γt SR + t SD + ζt SR + t SD + α t SD+ t SD + sn π/ t SR +t SD + η + a RDa SD Γt RD + t SD + ζt RD + t SD + α t SD+ t SD + sn π/ t RD +t SD + tsr + η η tsd + trd + η tsd +. 4 IV. IO-OSTBC BASED COOERATION WITH ATH SELECTION The ressons for the SER and dversty order n the IO-OSTBC based cooperatve system can be readly obtaned by substtutng Ns N Ns R c m d m SD SD a SD =, t N s N d m SD! δsd SD = N s N d m SD, Ns N Ns R c m r m SR SR a SR =, t SR = N s N r m SR, N s N r m SR! and δ SR Nr R c m Nr N RD d m RD, a RD = trd = N r N d m RD, N r N d m RD! δ RD n equatons 4, 5 gven n the man paper respectvely as, e Θ Ns N ζn s N d m SD +N s N r m SR r m SR η η NsNd m SD sn π/ NsN dm SD +N sn rm SR ΓN s N r m SR +N s N d m SD N s N r m SR α N sn r + αnsndmsd m SR N s N d m SD + Θ Nr N ζn s N d m SD +N r N d m RD d m RD η η Ns N d m SD sn π/ N sn d m SD +N r N d m RD ΓN r N d m RD +N s N d m SD + αnsndmsd, 5 N r N d m RD α N rn d m RD N s N d m SD d ath,ostbc =N s N d m SD + mn{n s N r m SR, N r N d m RD }, 6 where Θ = a SD a SR = N sn d m SD!N sn rm SR! Θ = a SD a RD = N s N d m SD!N r N d m RD! N s R c m SD δ SD N s R c m SD δsd Ns N d m SD Ns N d m SD N s R c m SR δsr Nr N d m N r R c m RD RD. δrd Ns N r m SR and Further, the optmal power for ths system can be obtaned by usng the polynomal equaton gven below C t SR+ C t RD+ =, 7
5 where C and C are gven as, C = ζn sn d m SD +N r N d m RD ΓN s N d m SD +N r N d m RD N r N d m RD η N rn d m RD sn π/ NrN dm RD Nr R c m Nr N RD d m RD, N r N d m RD! δ RD C = ζn sn d m SD + N s N r m SR ΓN s N d m SD + N s N r m SR N s N r m SR η N sn r m SR sn π/ N sn r m SR Ns N Ns R c m r m SR SR. N s N r m SR! δ SR V. GENERALIZED ANALYSIS FOR JOINT TRANSIT-RECEIVE ANTENNA AND ATH SELECTION JTRAS and Smlar to the IO-OSTBC based cooperaton, usng the values a SD = N sn d m SD /δsd m SDN s N d Γm SD + N sn d m SD!, t SD = m SD N d N s, a SR = N sn r m SR /δsr m SRN s N r Γm SR + NsNr m SR!, t SR = m SR N s N r, a RD = N rn d m RD /δrd m RDN r N d Γm RD + N rn d m RD!, t RD = m RD N d N r, derved n the man paper for the JTRAS based system, the closed form ressons for the asymptotc SER and dversty order n JTRAS based cooperaton are gven by, e Θ ζn s N d m SD +N s N r m SR sn π/ NsN dm SD +N sn rm SR ΓN s N r m SR +N s N d m SD η + Θ ζn s N d m SD +N r N d m RD sn π/ NsN dm SD +N rn d m RD ΓN r N d m RD +N s N d m SD NsNrm SR η Ns N d m SD N s N r m SR α NsNrm SR η + αn sn d m SD N s N d m SD Nr N d m RD η NsNd m SD N r N d m RD α N rn d m RD + αnsndmsd N s N d m SD, 8 d ath,jtras =N s N d m SD + mn{n s N r m SR, N r N d m RD }, 9
6 Ns where Θ = a SD a SR = N rn d m SD /δsd m SD NsN dm SR /δsr m SR N snr Γm SD + N sn d and Θ m SD!Γm SR + NsNr m SR! = a SD a RD = N s N r Nd m SD/δSD m SD N sn dmrd /δrd m RD N rn d Γm SD + N sn d m SD!Γm RD + N rn d. oreover, the optmal power for the JTRAS m RD! system can be obtaned by usng the equaton 7, where C and C are defned as, C = ζn sn d m SD +N r N d m RD ΓN s N d m SD +N r N d m RD N r N d m RD η NrN dm RD sn π/ N rn d m RD N r N d m RD /δrd m RDN r N d Γm RD + NrN d m RD!, C = ζn sn d m SD + N s N r m SR ΓN s N d m SD + N s N r m SR N s N r m SR η NsNrm SR sn π/ N sn r m SR N s N r m SR /δsr m SRN s N r Γm SR + NsNr m SR!. VI. ADDITIONAL SIULATION RESULTS In order to demonstrate the system performance for hgher order SK modulaton schemes, we consder a path selecton based SISO system n whch each lnk erence Nakagam-m fadng wth severty parameters m SR = m RD =, m SD = and average channel gans δsr =, δ SD = δ RD =.. From Fg., t can be observed that the monte-carlo results obtaned for the hgher order SK modulaton closely match wth the asymptotc SER approxmaton n 4 gven n man paper, whch clearly valdates that the analytcal framework developed n ths work s applcable for a general -SK modulaton. It can also be noted that the system performance sgnfcantly degrades as the order or the number of constellaton ponts ncreases. However, the system acheves the dentcal dversty order of t SD +mn{t SR +t RD }+ = m SD +mn{m SR, m RD } = 3 for each modulaton scheme. 6SK SER 3 4SK or QSK 8SK 4 5 SISO, =.773, =.87 Optmal SISO, =.5, =.5 Equal Asymptotc Bound Optmal, Analytcal Asymptotc Bound Equal, Analytcal SNRdB Fg.. SER erformance of path selecton based SISO system correspondng to the transmsson of QSK or 4-SK, 8-SK, and 6-SK modulated symbols.
7 On the other hand, Fg shows that the value of cooperaton threshold α also affects the system performance. It can be clearly seen n Fg. that the end-to-end system performance sgnfcantly mproves as the cooperaton threshold α ncreases. Therefore, one can note that n addton to power allocaton, the value of cooperaton threshold α also plays a key role, whch can also be optmzed to enhance the end-to-end performance of the path selecton scheme. SER 3 4 α=.,.5, 5 SISO, =.5, =.5 Equal Asymptotc Bound Equal, Analytcal SNRdB Fg.. SER erformance of path selecton based SISO system for dfferent values of cooperaton threshold α. REFERENCES. D. Yacoub, The κ-µ dstrbuton and the η-µ dstrbuton, IEEE Antennas and ropagaton agazne, vol. 49, no., pp. 68 8, 7. N. Varshney, V. Krshna, and A. Jagannatham, Capacty analyss for path selecton based DF IO-STBC cooperatve wreless systems, IEEE Communcatons Letters, vol. 8, no., pp , 4. 3 K. R. Lu, Cooperatve communcatons and networkng. Cambrdge Unversty ress, 9. 4 A. Jeffrey and D. Zwllnger, Table of ntegrals, seres, and products. Access Onlne va Elsever, 7.
α & β spatial orbitals in
The atrx Hartree-Fock equatons The most common method of solvng the Hartree-Fock equatons f the spatal btals s to expand them n terms of known functons, { χ µ } µ= consder the spn-unrestrcted case. We
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 2015 ιδάσκων : Α. Μουχτάρης εύτερη Σειρά Ασκήσεων Λύσεις Ασκηση 1. 1. Consder the gven expresson for R 1/2 : R 1/2
EE512: Error Control Coding
EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3
One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF
One and two partcle densty matrces for sngle determnant HF wavefunctons One partcle densty matrx Gven the Hartree-Fock wavefuncton ψ (,,3,!, = Âϕ (ϕ (ϕ (3!ϕ ( 3 The electronc energy s ψ H ψ = ϕ ( f ( ϕ
5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,
4 Chnese Journal of Appled Probablty and Statstcs Vol.6 No. Apr. Haar,, 6,, 34 E-,,, 34 Haar.., D-, A- Q-,. :, Haar,. : O.6..,..,.. Herzberg & Traves 994, Oyet & Wens, Oyet Tan & Herzberg 6, 7. Haar Haar.,
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t ();
Multi-dimensional Central Limit Theorem
Mult-dmensonal Central Lmt heorem Outlne () () () t as () + () + + () () () Consder a sequence of ndependent random proceses t, t, dentcal to some ( t). Assume t 0. Defne the sum process t t t t () t tme
Generalized Fibonacci-Like Polynomial and its. Determinantal Identities
Int. J. Contemp. Math. Scences, Vol. 7, 01, no. 9, 1415-140 Generalzed Fbonacc-Le Polynomal and ts Determnantal Identtes V. K. Gupta 1, Yashwant K. Panwar and Ompraash Shwal 3 1 Department of Mathematcs,
Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee
Appendi to On the stability of a compressible aisymmetric rotating flow in a pipe By Z. Rusak & J. H. Lee Journal of Fluid Mechanics, vol. 5 4, pp. 5 4 This material has not been copy-edited or typeset
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ «ΚΛΑ ΕΜΑ ΟΜΑ ΑΣ ΚΑΤΑ ΠΕΡΙΠΤΩΣΗ ΜΕΣΩ ΤΑΞΙΝΟΜΗΣΗΣ ΠΟΛΛΑΠΛΩΝ ΕΤΙΚΕΤΩΝ» (Instance-Based Ensemble
Power allocation under per-antenna power constraints in multiuser MIMO systems
33 0 Vol.33 No. 0 0 0 Journal on Councatons October 0 do:0.3969/.ssn.000-436x.0.0.009 IO 009 IO IO N94 A 000-436X(0)0-007-06 Power allocaton under er-antenna ower constrants n ultuser IO systes HAN Sheng-qan,
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS
CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
Approximation of distance between locations on earth given by latitude and longitude
Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth
Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution
Journal of Statstcal Theory and Applcatons, Vol. 4, No. 3 September 5, 4-56 Concomtants of Dual Generalzed Order Statstcs from Bvarate Burr III Dstrbuton Haseeb Athar, Nayabuddn and Zuber Akhter Department
8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.
8.1 The Nature of Heteroskedastcty 8. Usng the Least Squares Estmator 8.3 The Generalzed Least Squares Estmator 8.4 Detectng Heteroskedastcty E( y) = β+β 1 x e = y E( y ) = y β β x 1 y = β+β x + e 1 Fgure
A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,
Bayes, Bayes mult-armed bandt problem Bayes A Sequental Expermental Desgn based on Bayesan Statstcs for Onlne Automatc Tunng Re SUDA, Ths paper proposes to use Bayesan statstcs for software automatc tunng
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..
Supplemental Material (not for publication) Persistent vs. Permanent Income Shocks in the Buffer-Stock Model Jeppe Druedahl Thomas H. Jørgensen May, A Additional Figures and Tables Figure A.: Wealth and
A Class of Orthohomological Triangles
A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ
ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙΔΡΑΣΗ Μ.Β ΣΤΙΣ ΙΔΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ (ΔΙΑΦΟΡΙΚΗ) Probablty Densty Functon
Math221: HW# 1 solutions
Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin
Derivation for Input of Factor Graph Representation
Dervaton for Input of actor Graph Representaton Sum-Product Prmal Based on the orgnal LP formulaton b x θ x + b θ,x, s.t., b, b,, N, x \ b x = b we defne V as the node set allocated to the th core. { V
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit
Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ
ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ ΓΕΝΙΚΕΣ ΠΑΡΑΤΗΡΗΣΕΙΣ ΕΠΙ ΡΑΣΗ Μ.Β ΣΤΙΣ Ι ΙΟΤΗΤΕΣ ΠΟΛΥΜΕΡΩΝ ΜΑΘΗΜΑΤΙΚΗ ΠΕΡΙΓΡΑΦΗ ΤΗΣ ΚΑΤΑΝΟΜΗΣ ΜΟΡΙΑΚΟΥ ΒΑΡΟΥΣ ΣΥΝΑΡΤΗΣΗ ΠΙΘΑΝΟΤΗΤΟΣ ( ΙΑΦΟΡΙΚΗ) Probablty Densty Functon
Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment
1 2 2 GPS (SOM) Proposal of Termnal Self Locaton Estmaton Method to Consder Wreless Sensor Network Envronment Shohe OHNO, 1 Naotosh ADACHI 2 and Yasuhsa TAKIZAWA 2 Recently, large scale wreless sensor
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).
Vol. 4 ( 214 ) No. 4 J. of Math. (PRC) 1,2, 1 (1., 472) (2., 714) :.,.,,,..,. : ; ; ; MR(21) : 9B2 : : A : 255-7797(214)4-759-7 1,,,,, [1 ].,, [4 6],, Frank-Wolfe, Frank-Wolfe [7],.,,.,,,., UE,, UE. O-D,,,,,
Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet
Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckret SVCL-TR 007-0 v Aprl 007 Duals of the QCQP and SDP Sparse SVM Anton B. Chan, Nuno Vasconcelos, and Gert R.
LECTURE 4 : ARMA PROCESSES
LECTURE 4 : ARMA PROCESSES Movng-Average Processes The MA(q) process, s defned by (53) y(t) =µ ε(t)+µ 1 ε(t 1) + +µ q ε(t q) =µ(l)ε(t), where µ(l) =µ +µ 1 L+ +µ q L q and where ε(t) s whte nose An MA model
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Finite Field Problems: Solutions
Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The
5.4 The Poisson Distribution.
The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable
Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population
Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Varance of Trat n an Inbred Populaton Revew of Mean Trat Value n Inbred Populatons We showed n the last lecture that for a populaton
Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.
Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action
Constant Elasticity of Substitution in Applied General Equilibrium
Constant Elastct of Substtuton n Appled General Equlbru The choce of nput levels that nze the cost of producton for an set of nput prces and a fed level of producton can be epressed as n sty.. f Ltng for
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion
Symplectcty of the Störmer-Verlet algorthm for couplng between the shallow water equatons and horzontal vehcle moton by H. Alem Ardakan & T. J. Brdges Department of Mathematcs, Unversty of Surrey, Guldford
Neutralino contributions to Dark Matter, LHC and future Linear Collider searches
Neutralno contrbutons to Dark Matter, LHC and future Lnear Collder searches G.J. Gounars Unversty of Thessalonk, Collaboraton wth J. Layssac, P.I. Porfyrads, F.M. Renard and wth Th. Dakonds for the γz
1 Complete Set of Grassmann States
Physcs 610 Homework 8 Solutons 1 Complete Set of Grassmann States For Θ, Θ, Θ, Θ each ndependent n-member sets of Grassmann varables, and usng the summaton conventon ΘΘ Θ Θ Θ Θ, prove the dentty e ΘΘ dθ
CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD
CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.
8.324 Relativistic Quantum Field Theory II
Lecture 8.3 Relatvstc Quantum Feld Theory II Fall 00 8.3 Relatvstc Quantum Feld Theory II MIT OpenCourseWare Lecture Notes Hon Lu, Fall 00 Lecture 5.: RENORMALIZATION GROUP FLOW Consder the bare acton
MathCity.org Merging man and maths
MathCity.org Merging man and maths Exercise 10. (s) Page Textbook of Algebra and Trigonometry for Class XI Available online @, Version:.0 Question # 1 Find the values of sin, and tan when: 1 π (i) (ii)
Every set of first-order formulas is equivalent to an independent set
Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent
Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, XXXX XXXX Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013
Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Generalized Linear Model [GLM]
Generalzed Lnear Model [GLM]. ก. ก Emal: nkom@kku.ac.th A Lttle Hstory Multple lnear regresson normal dstrbuton & dentty lnk (Legendre, Guass: early 19th century). ANOVA normal dstrbuton & dentty lnk (Fsher:
Overview. Transition Semantics. Configurations and the transition relation. Executions and computation
Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition
Problem Set 3: Solutions
CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
1 String with massive end-points
1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε
Partial Trace and Partial Transpose
Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University
A Study on Predctve Control Usng a Short-Term Predcton Method Based on Chaos Theory (Predctve Control of Nonlnear Systems Usng Plural Predcted Dsturbance Values) Noryasu MASUMOTO, Waseda Unversty, 3-4-1
Potential Dividers. 46 minutes. 46 marks. Page 1 of 11
Potential Dividers 46 minutes 46 marks Page 1 of 11 Q1. In the circuit shown in the figure below, the battery, of negligible internal resistance, has an emf of 30 V. The pd across the lamp is 6.0 V and
Solution Series 9. i=1 x i and i=1 x i.
Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x
DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.
DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec
[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]
OTROL. COISSION OF OTORIZATION AND ENERGETICS IN AGRICULTURE 0, Vol. 6, No. 5, 87 98 -,,, 008,.,., e-mal: mosgv@ukr.net. -,... -. :, -,. [],,.,,.., []. - (Danoss, Rexroth, Char-Lynn. [,, 5]),. -,.. [6]..,
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1
Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test
Second Order Partial Differential Equations
Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y
Non polynomial spline solutions for special linear tenth-order boundary value problems
ISSN 746-7233 England UK World Journal of Modellng and Smulaton Vol. 7 20 No. pp. 40-5 Non polynomal splne solutons for specal lnear tenth-order boundary value problems J. Rashdna R. Jallan 2 K. Farajeyan
Written Examination. Antennas and Propagation (AA ) April 26, 2017.
Written Examination Antennas and Propagation (AA. 6-7) April 6, 7. Problem ( points) Let us consider a wire antenna as in Fig. characterized by a z-oriented linear filamentary current I(z) = I cos(kz)ẑ
Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay
Jont Spectrum Sensng and Resource Allocaton for OFDM-based Transmsson wth a Cogntve Relay S. Eman Mahmood 1 K.P. Subbalakshm 1 R. Chandramoul 1 Bahman Abolhassan 1 Department of Electrcal and Computer
Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.
Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
4.6 Autoregressive Moving Average Model ARMA(1,1)
84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this
2 Lagrangian and Green functions in d dimensions
Renormalzaton of φ scalar feld theory December 6 Pdf fle generated on February 7, 8. TODO Examne ε n the two-pont functon cf Sterman. Lagrangan and Green functons n d dmensons In these notes, we ll use
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ
ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΛΟΓΙΣΤΙΚΗ ΚΑΙ ΦΟΡΟΛΟΓΙΑ Ο.Ε. ΕΙΣΗΓΗΤΡΙΑ ΚΑΘΗΓΗΤΡΙΑ: κ. ΟΥΡΑΝΟΥ ΕΡΜΙΟΝΗ ΣΠΟΥΔΑΣΤΡΙΕΣ: ΔΕΜΕΤΖΟΥ ΑΓΛΑΪΑ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ
ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ Πρόγραμμα Μεταπτυχιακών Σπουδών «Ολοκληρωμένη Ανάπτυξη & Διαχείριση Αγροτικού Χώρου» ΜΕΤΑΠΤΥΧΙΑΚΗ ΔΙΑΤΡΙΒΗ «Η συμβολή των Τοπικών Προϊόντων
CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital
C RAM 3002 C RAROC Rsk-Adjusted Return on Captal C C RAM Rsk-Adjusted erformance Measure C RAM RAM Bootstrap RAM C RAROC RAM Bootstrap F830.9 A CAM 2 CAM 3 Value at Rsk RAROC Rsk-Adjusted Return on Captal
Statistical Inference I Locally most powerful tests
Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided
C.S. 430 Assignment 6, Sample Solutions
C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order
SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018
Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals
Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction
() () Study on e-adhesion control by monitoring excessive angular momentum in electric railway traction Takafumi Hara, Student Member, Takafumi Koseki, Member, Yutaka Tsukinokizawa, Non-member Abstract
Areas and Lengths in Polar Coordinates
Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the
An Inventory of Continuous Distributions
Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >
Elements of Information Theory
Elements of Information Theory Model of Digital Communications System A Logarithmic Measure for Information Mutual Information Units of Information Self-Information News... Example Information Measure
Aerodynamics & Aeroelasticity: Eigenvalue analysis
Εθνικό Μετσόβιο Πολυτεχνείο Natonal Techncal Unversty of Athens Aerodynamcs & Aeroelastcty: Egenvalue analyss Σπύρος Βουτσινάς / Spyros Voutsnas Άδεια Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Appendix S1 1. ( z) α βc. dβ β δ β
Appendix S1 1 Proof of Lemma 1. Taking first and second partial derivatives of the expected profit function, as expressed in Eq. (7), with respect to l: Π Π ( z, λ, l) l θ + s ( s + h ) g ( t) dt λ Ω(
Queensland University of Technology Transport Data Analysis and Modeling Methodologies
Queensland University of Technology Transport Data Analysis and Modeling Methodologies Lab Session #7 Example 5.2 (with 3SLS Extensions) Seemingly Unrelated Regression Estimation and 3SLS A survey of 206
Lecture 34 Bootstrap confidence intervals
Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α
Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O
Q1. (a) Explain the meaning of the terms mean bond enthalpy and standard enthalpy of formation. Mean bond enthalpy... Standard enthalpy of formation... (5) (b) Some mean bond enthalpies are given below.
ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ
ΠΑΝΕΠΙΣΤΗΜΙΟ ΠΑΤΡΩΝ ΠΟΛΥΤΕΧΝΙΚΗ ΣΧΟΛΗ ΤΜΗΜΑ ΠΟΛΙΤΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ ΔΙΔΑΚΤΟΡΙΚΗ
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
DuPont Suva 95 Refrigerant
Technical Information T-95 ENG DuPont Suva refrigerants Thermodynamic Properties of DuPont Suva 95 Refrigerant (R-508B) The DuPont Oval Logo, The miracles of science, and Suva, are trademarks or registered
On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space
Flomat 9:0 (05), 4 47 DOI 0.98/FI504Z ublshed by Faculty of Scences and Mathematcs, Unversty of Nš, Serba valable at: htt://www.mf.n.ac.rs/flomat On Integrablty Condtons of Dervaton Equatons n a Subsace
A summation formula ramified with hypergeometric function and involving recurrence relation
South Asian Journal of Mathematics 017, Vol. 7 ( 1): 1 4 www.sajm-online.com ISSN 51-151 RESEARCH ARTICLE A summation formula ramified with hypergeometric function and involving recurrence relation Salahuddin