On a four-dimensional hyperbolic manifold with finite volume

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "On a four-dimensional hyperbolic manifold with finite volume"

Transcript

1 BULETINUL ACADEMIEI DE ŞTIINŢE A REPUBLICII MOLDOVA. MATEMATICA Numbers 2(72) 3(73), 2013, Pages ISSN On a four-dimensional hyperbolic manifold with finite volume I.S.Gutsul Abstract. In article [1] the authors construct and classify all the hyperbolic spaceforms H n /Γ where Γ is a torsion-free subgroup of minimal index in the congruence two subgroup Γ n 2 for n = 3,4. In the present paper some hyperbolic 3- and 4-manifolds are constructed that are absent in [1]. Mathematics subject classification: 51M10, 53C25. Keywords and phrases: Hyperbolic manifolds, 4-manifolds, volume, 24-cells. In the works [1] and [2] some four-dimensional hyperbolic manifolds with finite volume were constructed. They were obtained by identifying the faces of the regular 24-cells in H 4 with all vertices being on the absolute. The present article is devoted to the construction of a four-dimensional hyperbolic manifold with finite volume by identifying the faces of a four-dimensional hyperbolic polyhedron with all the vertices being on the absolute. This polyhedron is not regular and its construction is non-trivial. 1. The construction of a four-dimensional polyhedron In the four-dimensional space H 4 consider the regular 24-cells R. As it is known this polyhedron has 24 three-dimensional faces, 96 two-dimensional faces, 96 edges, and 24 vertices. The three-dimensional faces of the polyhedron are regular octahedra, two-dimensional faces are regular triangles. Inscribe in the polyhedron R a three-dimensional sphere S 3. Denote its radius by r. If we begin to enlarge the radius r of the sphere S 3, the polyhedron R will increase, but its dihedral angles at the two-dimensional faces will decrease. Continuing the process, we ultimately come to the case when for some r 0 all the vertices of the polyhedron R become infinitely removed, i.e. they get out on the absolute. In this case the three-dimensional faces are regular octahedra with all the vertices being on the absolute. Then the dihedral angles at the two-dimensional faces will be equal to π/2. Indeed, consider a three-dimensional horosphere centered at a vertex of the polyhedron R. Choose the radius of the horosphere such that the horosphere intersects only one-dimensional edges of the polyhedron which go to the center of the horosphere. Then the intersection of the horosphere and the polyhedron R is a cube. But the dihedral angles at the two-dimensional faces of the polyhedron R are equal to the dihedral angles at the edges of the obtained cube. Since the metric on the horosphere is Euclidean, c I. S. Gutsul,

2 ON A FOUR-DIMENSIONAL HYPERBOLIC MANIFOLD WITH FINITE VOLUME 81 the dihedral angles of the cube are equal to π/2, i.e. the dihedral angles at the two-dimensional faces of the polyhedron R are equal to π/2. If we continue to enlarge the radis of the three-dimensional sphere, the vertices of the polyhedron R will get out on the absolute. We obtain a four-dimensional polyhedron R 2 with all the vertices being infinitely removed. The polyhedron R 2 has three-dimensional faces of two kinds: 24 cubes with all the vertices being on the absolute and 24 truncated octahedra with all the vertices being infinitely removed. The polyhedron R 2 has 94 infinitely removed vertices, 288 one-dimensional edges, two-dimensional faces of two kinds: 144 squares with all the vertices being on the absolute and 96 triangles with all the vertices being infinitely removed. Dihedral angles at two-dimensional faces of this polyhedron are of two kinds: dihedral angles at the squares are equal to π/2, dihedral angles at the triangles are equal to π/3, both facts can be easy proved. Label infinitely removed vertices of the polyhedron R 2 by the numbers from 1 to 94. Write all three-dimensional faces of the obtained polyhedron. First write cubes with all the vertices being on the absolute: K 25 (1,7,8,6,30,16,15, 22) K 26 (13,21,91,39,5,1,2,12) K 27 (7,2,10,3,28,17, 19,44) K 28 (3,9,4,8,24,26,49,35) K 29 (4,6,5,11,54,33, 31,40) K 30 (18,17,27,68,92, 14,15,23) K 31 (9,10,12,11,52,48, 42,41) K 32 (13,20,64,38,36, 16,14,93) K 33 (18,19,21,20,67,71,45, 46) K 34 (22,23,25,24,34, 29,94,73) K 35 (50,26,25,96,69,51,28, 27) K 36 (29,30,31,32,75, 95,36,37) K 37 (74,56,35,34,32,76,55, 33) K 38 (37,38,39,40,59, 77,65,58) K 39 (66,46,91,58,57,63,43, 41) K 40 (45,70,51,44,42, 43,60,47) K 41 (47,48,49,50,72,61,53, 56) K 42 (53,62,78,55,54, 52,57,59) K 43 (61,60,86,89,90,62,63, 87) K 44 (66,67,64,65,85, 87,81,80) K 45 (70,71,81,86,83,69,68, 79) K 46 (83,82,88,89,72, 96,73,74) K 47 (78,90,85,77,75,76,88, 84) K 48 (92,94,82,79,80, 93,95,84) The polyhedron R 2 has also 24 truncated octahedra with all the vertices being on the absolute. Write these faces: O 1 (1,2,3,4,5,6,7,8,9,10,11, 12) O 2 (15,16,30,22,23,14,36, 29, 92,93, 95, 94) O 3 (1,7,15,16,13,2, 17,14, 20, 21,19,18) O 4 (7,8,22,15,17,3, 24,23, 25, 26,28,27) O 5 (8,6,30,22,24,4, 31,29, 34, 35,33,32) O 6 (6,1,16,30,36,13,5,31, 37, 38,39,40) O 7 (12,10,42,41,91,2, 44,43,45, 46,21,19) O 8 (10,9,48,42,44,3,49, 47,50,51, 28,26) O 9 (9,11,52,48,49,4,54, 53,55,56, 35,33) O 10 (11,12,41,52,54,57, 91, 5, 39,40,59, 58) O 11 (62,61,60,63,57,53, 47, 43,52,48, 42,41) O 12 (13,21,91,39,38,20, 46, 58,65,66, 67,64)

3 82 I. S. GUTSUL O 13 (17,19,44,28,27,18, 45, 51,69,68, 71,70) O 14 (72,74,73,96,50,56, 34, 25,26,24, 35,49) O 15 (78,76,75,77,59,55, 32, 37,40,54, 33,31) O 16 (18,20,67,71,68,14, 64, 81,80,79, 92,93) O 17 (25,27,69,96,73,83, 68, 23,92,94, 82,79) O 18 (38,37,77,65,64,36, 75, 85,84,80, 93,95) O 19 (45,46,67,71,70,43, 66, 81,86,60, 63,87) O 20 (32,34,74,76,75,29, 73, 88,82,84, 95,94) O 21 (50,51,69,96,83,70, 47, 72,89,86, 60,61) O 22 (55,56,74,76,78,53, 72, 88,90,62, 61,89) O 23 (58,59,77,65,66,57, 78, 85,90,62, 63,87) O 24 (89,88,85,81,83,86, 90, 87,80,84, 79,82) 2. The construction of a four-dimensional hyperbolic manifold Indicate motions ( isometries ) that identify faces of the polyhedron: ϕ 1 : ϕ 2 : ϕ 3 : ϕ 4 : ϕ 5 : ϕ 6 : ϕ 7 : ϕ 8 : ϕ 9 : ϕ 10 : (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) (89, 88, 85, 81, 83, 86, 90, 87, 80, 84, 79, 82); (15, 16, 30, 22, 23, 14, 36, 29, 92, 93, 95, 94) (62, 61, 60, 63, 57, 53, 47, 43, 52, 48, 42, 41); (1, 7, 15, 16, 13, 2, 17, 14, 20, 21, 19, 18) (55, 56, 74, 76, 78, 53, 72, 88, 90, 62, 61, 89); (7, 8, 22, 15, 17, 3, 24, 23, 25, 26, 28, 27) (58, 59, 77, 65, 66, 57, 78, 85, 90, 62, 63, 87); (8, 6, 30, 22, 24, 4, 31, 29, 34, 35, 33, 32) (45, 46, 67, 71, 70, 43, 66, 81, 86, 60, 63, 87); (6, 1, 16, 30, 36, 13, 5, 31, 37, 38, 39, 40) (50, 51, 69, 96, 83, 70, 47, 72, 89, 86, 60, 61); (12, 10, 42, 41, 91, 2, 44, 43, 45, 46, 21, 19) (32, 34, 74, 76, 75, 29, 73, 88, 82, 84, 95, 94); (10, 9, 48, 42, 44, 3, 49, 47, 50, 51, 28, 26) (38, 37, 77, 65, 64, 36, 75, 85, 84, 80, 93, 95); (9, 11, 52, 48, 49, 4, 54, 53, 55, 56, 35, 33) (18, 20, 67, 71, 68, 14, 64, 81, 80, 79, 92, 93); (11, 12, 41, 52, 54, 57, 91, 5, 39, 40, 59, 58) (25, 27, 69, 96, 73, 83, 68, 23, 92, 94, 82, 79);

4 ON A FOUR-DIMENSIONAL HYPERBOLIC MANIFOLD WITH FINITE VOLUME 83 ϕ 11 : ϕ 12 : (13, 21, 91, 39, 38, 20, 46, 58, 65, 66, 67, 64) (72, 74, 73, 96, 50, 56, 34, 25, 26, 24, 35, 49); (17, 19, 44, 28, 27, 18, 45, 51, 69, 68, 71, 70) (78, 76, 75, 77, 59, 55, 32, 37, 40, 54, 33, 31); ϕ 13 : (1, 7, 8,, 6, 30, 16, 15, 22) (66, 46, 91, 58, 57, 63, 43, 41); ϕ 14 : ϕ 15 : ϕ 16 : ϕ 17 : ϕ 18 : ϕ 19 : ϕ 20 : ϕ 21 : ϕ 22 : ϕ 23 : ϕ 24 : (13, 21, 91, 39, 5, 1, 2, 12) (66, 67, 64, 65, 85, 87, 81, 80); (7, 2, 10, 3, 28, 17, 19, 44) (50, 26, 25, 96, 69, 51, 28, 27); (3, 9, 4, 8, 24, 26, 49, 35) (83, 82, 88, 89, 72, 96, 73, 74); (4, 6, 5, 11, 54, 33, 31, 40) (74, 56, 35, 34, 32, 76, 55, 33); (18, 17, 27, 68, 92, 14, 15, 23) (45, 70, 51, 44, 42, 43, 60, 47); (9, 10, 12, 11, 52, 48, 42, 41) (13, 20, 64, 38, 36, 16, 14, 93); (18, 19, 21, 20, 67, 71, 45, 46) (70, 71, 81, 86, 83, 69, 68, 79); (22, 23, 25, 24, 34, 29, 94, 73) (61, 60, 86, 89, 90, 62, 63, 87); (29, 30, 31, 32, 75, 95, 36, 37) (53, 62, 78, 55, 54, 52, 57, 59); (37, 38, 39, 40, 59, 77, 65, 58) (78, 90, 85, 77, 75, 76, 88, 84); (47, 48, 49, 50, 72, 61, 53, 56) (92, 94, 82, 79, 80, 93, 95, 84). Consider cycles of two-dimensional faces of the polyhedron R 2. As the dihedral angles at the quadrangular faces are equal to π/2, in order that the cycles of these faces be inessential each of them must contain four faces. Write cycles of these faces. We will present cycles of faces as follows: write a face, then write the motion that transfers this face into another face, then again a face, again a motion, and so on. (O 1 K 25 )(1,7,8,6) ϕ 13 (O 12 K 39 )(66,46,91,58) ϕ 11 (O 14 K 34 ) (24,34,73,25) ϕ 21 (O 24 K 43 )(89,90,87,86) 1 (O 1 K 25 )(1,7,8.6);

5 84 I. S. GUTSUL (O 3 K 25 )(1,7,15,16) ϕ 13 (O 19 K 39 )(66,46,43,63) 5 (O 5 K 29 ) (31,6,4,33) ϕ 17 (O 22 K 37 )(55,56,74,76) 3 (O 3 K 25 )(1,7,15,16); (O 6 K 25 )(1,6,30,16) ϕ 13 (O 23 K 39 )(66,58,57,63) 4 (O 4 O 27 ) (17,7,3,28) ϕ 15 (O 21 K 35 )(51,50,96,69) 6 (O 6 K 25 )(1,6,30,16); (O 5 K 25 )(8,6,30,22) ϕ 13 (O 1 0 K 39 )(91,58,57,41) ϕ 10 (O 17 K 45 ) (68,79,83,69) 20 (O 19 K 33 )(45,46,67,71) 5 (O 5 K 25 )(8,6,30,22); (O 4 K 25 )(8,7,15,22) ϕ 13 (O 7 K 39 )(91,46,43,41) ϕ 7 (O 20 K 47 ) (75,84,88,76) 23 (O 23 K 38 )(59,58,65,77) 4 (O 4 K 25 )(8,7,15,22); (O 2 K 25 )(15,16,30,22) ϕ 13 (O 11 K 39 )(43,63,57,41) 2 (O 2 K 34 ) (29,22,23,94) ϕ 21 (O 11 K 43 )(62,61,60,63) 2 (O 2 K 25 )(15,16,30,22); (O 1 K 26 )(1,2,12,5) ϕ 14 (O 24 K 44 )(87,81,80,85) 1 O 1 K 28 ) (8,4,9,3) ϕ 16 (O 24 K 46 )(89,88,82,83) 1 (O 1 K 26 )(1,2,12,5); (O 3 K 26 )(1,2,21,13) ϕ 14 (O 19 K 44 )(87,81,67,66) 5 (O 5 K 36 ) (32,29,30,31) ϕ 22 (O 22 K 42 )(55,53,62,78) 3 (O 3 K 26 )(1,2,21,13); (O 6 K 26 )(1,5,39,13) ϕ 14 (O 23 K 44 )(87,85,65,66) 4 (O 4 K 30 ) (27,23,15,17) ϕ 18 (O 21 K 40 )(51,47,60,70) 6 (O 6 K 26 )(1,5,39,13); (O 7 K 26 )(91,21,2,12) ϕ 14 (O 16 K 44 )(64,67,81,80) 9 (O 9 K 42 ) (54,52,53,55) 22 (O 20 K 36 )(75,95,29,32) 7 (O 7 K 26 )(91,21,2,12); (O 12 K 26 )(91,21,13,39) ϕ 14 (O 12 K 44 )(64,67,66,65) ϕ 11 (O 14 K 28 ) (49,35,24,26) ϕ 16 (O 14 K 46 )(73,74,72,96) 11 (O 12 K 26 )(91,21,13,39); (O 10 K 26 )(91,12,5,39) ϕ 14 (O 18 K 44 )(64,80,85,65) 8 (O 8 K 40 ) (44,51,47,42) 18 (O 17 K 30 )(68,27,23,92) 10 (O 10 K 26 )(91,12,5,3); (O 1 K 27 )(2,7,3,10) ϕ 15 (O 14 K 35 )(26,50,96,25) 11 (O 12 K 38 ) (65,38,39,58) ϕ 23 (O 24 K 47 )(88,90,85,84) 1 (O 1 K 27 )(2,7,3,10); (O 3 K 27 )(2,7,17,19) ϕ 15 (O 8 K 35 )(26,50,51,28) ϕ 8 (O 18 K 48 ) (95,84,80,93) 24 (O 22 K 41 )(53,56,72,61) 3 (O 3 K 27 )(2,7,17,19); (O 7 K 27 )(2,10,44,19) ϕ 15 (O 4 K 35 )(26,25,27,28) ϕ 4 (O 23 K 43 ) (62,90,87,63) 21 (O 20 K 34 )(29,34,73,94) 7 (O 7 K 27 )(2,10,44,19); (O 8 K 27 )(28,3,10,44) ϕ 15 (O 17 K 35 )(69,96,25,27) 10 (O 10 K 31 ) (41,52,11,12) ϕ 19 (O 18 K 32 )(93,36,38,64) 8 (O 8 K 27 )(28,3,10,44); (O 13 K 27 )(28,17,19,44) ϕ 15 (O 13 K 35 )(69,51,28,27) ϕ 12 (O 15 K 38 ) (40,37,77,59) ϕ 23 (O 15 K 47 )(77,78,76,75) 12 (O 13 K 27 )(28,17,19,44); (O 8 K 28 )(3,9,49,26) ϕ 16 (O 17 K 46 )(83,82,73,96) 10 (O 10 K 42 ) (57,59,54,52) 22 (O 18 K 36 )(36,37,75,95) 8 (O 8 K 28 )(3,9,49,26); (O 5 K 28 )(4,8,24,35) ϕ 16 (O 22 K 46 )(88,89,72,74) 3 (O 3 K 30 ) (14,18,17,15) ϕ 18 (O 19 K 40 )(43,45,70,60) 5 ;(O 5 K 28 )(4,8,24,35);

6 ON A FOUR-DIMENSIONAL HYPERBOLIC MANIFOLD WITH FINITE VOLUME 85 (O 9 K 28 )(4,9,49,35) ϕ 16 (O 20 K 46 )(88,82,73,74) 7 (O 7 K 40 ) (43,45,44,42) 18 (O 16 K 30 )(14,18,68,92) 9 (O 9 K 28 )(4,9,49,35); (O 4 K 28 )(3,8,24,26) ϕ 16 (O 21 K 46 )(83,89,72,96) 6 (O 6 K 36 ) (36,37,51,30) ϕ 22 (O 23 K 42 )(57,59,78,62) 4 (O 4 K 28 )(3,8,24,26); (O 1 K 29 )(4,6,5,11) ϕ 17 (O 14 K 37 )(74,56,35,34) 11 (O 12 K 33 ) (21,20,67,46) ϕ 20 (O 24 K 45 )(81,86,83,79) 1 (O 1 K 29 )(4,6,5,11); (O 9 K 29 )(4,11,54,33) ϕ 17 (O 20 K 37 )(74,34,32,76) 7 (O 7 K 31 ) (42,10,12,41) ϕ 19 (O 16 K 32 )(14,20,64,93) 9 (O 9 K 29 )(4,11,54,33); (O 6 K 29 )(5,6,31,40) ϕ 17 (O 9 K 37 )(35,56,55,33) ϕ 9 (O 16 K 48 ) (92,79,80,93) 24 (O 21 K 41 )(47,50,72,61) 6 (O 6 K 29 )(5,6,31,40); (O 10 K 29 )(5,11,54,40) ϕ 17 (O 5 K 37 )(35,34,32,33) ϕ 5 (O 19 K 43 ) (60,86,87,63) 21 (O 17 K34)(23,25,73,94) 10 (O 10 K 29 )(5,11,54,40); (O 15 K 29 )(31,40,54,33) ϕ 17 (O 15 K 37 )(55,33,32,76) 12 (O 13 K 33 ) (18,71,45,19) ϕ 20 (O 13 K 45 )(70,69,68,71) ϕ 12 (O 15 K 29 )(31,40,54,33); (O 2 K 30 )(14,15,23,92) ϕ 18 (O 11 K 40 )(43,60,47,42) 2 (O 2 K 36 ) (29,30,36,95) ϕ 22 (O 11 K 42 )(53,62,57,52) 2 (O 2 K 30 )(14,15,23,92); (O 13 K 30 )(17,18,68,27) ϕ 18 (O 13 K 40 )(70,45,44,51) ϕ 12 (O 15 K 36 ) (31,32,75,37) ϕ 22 (O 15 K 42 )(78,55,54,59) 12 (O 13 K 30 )(17,18,68,27); (O 1 K 31 )(9,10,12,11) ϕ 19 (O 12 K 32 )(13,20,64,38) ϕ 11 (O 14 K 41 ) (72,56,49,50) ϕ 24 (O 24 K 48 )(80,84,82,79) 1 (O 1 K 31 )(9,10,12,11); (O 8 K 31 )(9,10,42,48) ϕ 19 (O 3 K 32 )(13,20,14,16) ϕ 3 (O 22 K 47 ) (78,90,88,76) 23 (O 18 K 38 )(37,38,65,77) 8 (O 8 K 31 )(9,10,42,48); (O 9 K 31 )(9,11,52,48) ϕ 19 (O 6 K 32 )(13,38,36,16) ϕ 6 (O 21 K 45 ) (70,86,83,69) 20 (O 16 K 33 )(18,20,67,71) 9 (O 9 K 31 )(9,11,52,48); (O 11 K 31 )(41,42,48,52) ϕ 19 (O 2 K 32 )(93,14,16,36) ϕ 2 (O 11 K 41 ) (48,53,61,47) ϕ 24 (O 2 K 48 )(94,95,93,92) ϕ 2 (O 11 K 31 )(41,42,48,52); (O 3 K 33 )(18,19,21,20) ϕ 20 (O 19 K 45 )(70,71,81,86) 5 (O 5 K 34 ) (24,22,29,34) ϕ 21 (O 22 K 43 )(89,61,62,90) 3 (O 3 K 33 )(18,19,21,20); (O 7 K 33 )(19,21,46,45) ϕ 20 (O 16 K 45 )(71,81,79,68) 9 (O 9 K 41 ) (48,53,56,49) ϕ 24 (O 20 K 48 )(94,95,84,82) 7 (O 7 K 33 )(19,21,46,45); (O 4 K 34 )(22,23,25,24) ϕ 21 (O 21 K 43 )(61,60,86,89) 6 (O 6 K 38 ) (40,39,38,37) ϕ 23 (O 23 K 47 )(77,85,90,78) 4 (O 4 K 34 )(22,23,25,24); (O 10 K 38 )(40,39,58,59) ϕ 23 (O 18 K 47 )(77,85,84,75) 8 (O 8 K 41 ) (48,47,50,49) ϕ 24 (O 17 K 48 )(94,92,79,82) ϕ 10 (O 10 K 38 )(40,39,58,59). The dihedral angles at the triangular faces of the polyhedron are equal to π/3. Therefore a cycle of these faces will be inessential if it contains six faces. Write cycles of these faces:

7 86 I. S. GUTSUL (O 1 O 3 )(1,2,7) ϕ 1 (O 22 O 24 )(89,88,90) 3 (O 3 O 16 ) (18,14,20) 9 (O 1 O 9 )(9,4,11) ϕ 1 (O 16 O 24 )(80,81,79) 9 (O 9 O 22 )(55,53,56) 3 (O 1 O 3 )(1,2,7); (O 1 O 6 )(1,5,6) ϕ 1 (O 21 O 24 )(89,83,86) 6 (O 6 O 18 ) (37,36,38) 8 (O 1 O 8 )(9,3,10) ϕ 1 (O 18 O 24 )(80,85,84) 8 (O 8 O 21 )(51,47,50) 6 (O 1 O 3 )(1,5,6); (O 1 O 5 )(8,6,4) ϕ 1 (O 19 O 24 )(87,86,81) 5 (O 5 O 20 ) (32,34,29) 7 (O 1 O 7 )(12,10,2) ϕ 1 (O 20 O 24 )(82,84,88) 7 (O 7 O 19 )(45,46,43) 5 (O 1 O 5 )(8,6,4); (O 1 O 4 )(8,7,3) ϕ 1 (O 23 O 24 )(87,90,85) 4 (O 4 O 17 ) (27,25,23) 10 (O 1 O 10 )(12,11,5) ϕ 1 (O 17 O 24 )(82,79,83) 10 (O 10 O 23 )(59,58,57) 4 (O 1 O 4 )(8,7,3); (O 2 O 3 )(15,16,14) ϕ 2 (O 11 O 23 )(62,61,53) 3 (O 3 O 7 ) (21,19,2) ϕ 7 (O 2 O 20 (95,94,29) ϕ 2 (O 7 O 11 )(41,42,43) ϕ 7 (O 20 O 22 (76,74,88) 3 (O 2 O 3 )(15,16,14); (O 2 O 4 )(15,22,23) ϕ 2 (O 11 O 23 )(62,63,57) 4 (O 4 O 8 ) (26,28,3) ϕ 8 (O 2 O 18 )(95,93,36) ϕ 2 (O 8 O 11 )(42,48,47) ϕ 8 (O 18 O 23 )(65,77,85) 4 (O 2 O 4 )(15,22,23); (O 2 O 4 )(22,29,30) ϕ 2 (O 11 O 19 )(63,43,60) 5 (O 5 O 9 ) (33,4,35) ϕ 9 (O 2 O 16 )(93,14,92) ϕ 2 (O 9 O 11 )(48,53,52) ϕ 9 (O 16 O 19 )(71,81,67) 5 (O 2 O 4 )(22,29,30); (O 2 O 6 )(16,36,30) ϕ 2 (O 11 O 21 )(61,47,60) 6 (O 6 O 10 ) (40,5,39) ϕ 10 (O 2 O 17 )(94,23,92) ϕ 2 (O 10 O 11 (41,57,52) ϕ 10 (O 17 O 21 )(69,83,96) ϕ 6 (O 2 O 6 )(16,36,30); (O 3 O 6 )(1,16,13) ϕ 3 (O 15 O 22 )(55,76,78) 12 (O 3 O 13 ) (18,19,17) ϕ 3 (O 21 O 22 )(89,61,72) 6 (O 6 O 15 )(37,40,31) 12 (O 13 O 21 )(51,69,70) 6 (O 3 O 6 )(1,16,13); (O 3 O 4 )(15,17,7) ϕ 3 (O 14 O 22 )(74,72,56) 11 (O 3 O 12 ) (21,13,20) ϕ 3 (O 22 O 23 )(62,78,90) 4 (O 4 O 14 )(26,24,25) 11 (O 12 O 23 )(65,66,58) 4 (O 3 O 4 )(15,17,7); (O 4 O 5 )(8,22,24) ϕ 4 (O 15 O 23 )(59,77,78) 12 (O 4 O 13 ) (27,28,17) ϕ 4 (O 19 O 23 )(87,63,66) 5 (O 5 O 15 )(32,33,31) 12 (O 13 O 19 )(45,71,70) 5 (O 4 O 5 )(8,22,24); (O 5 O 14 )(34,35,24) ϕ 5 (O 19 O 21 )(86,60,70) 6 (O 6 O 12 ) (38,39,13) ϕ 11 (O 14 O 21 )(50,96,72) 6 (O 5 O 6 )(6,30,31) ϕ 5 (O 12 O 19 )(46,67,66) ϕ 11 (O 5 O 14 )(34,35,24); (O 7 O 8 )(10,42,44) ϕ 7 (O 14 O 20 )(34,74,73) 11 (O 7 O 12 ) (46,21,91) ϕ 7 (O 18 O 20 )(84,95,75) 8 (O 8 O 14 )(50,26,49) 11 (O 12 O 18 )(38,65,64) 8 (O 7 O 8 )(10,42,44);

8 ON A FOUR-DIMENSIONAL HYPERBOLIC MANIFOLD WITH FINITE VOLUME 87 (O 7 O 10 )(12,41,91) ϕ 7 (O 15 O 20 )(32,76,75) 12 (O 7 O 13 ) (45,19,44) ϕ 7 (O 17 O 20 )(82,94,73) 10 (O 10 O 15 )(59,40,54) 12 (O 13 O 17 )(27,69,68) 10 (O 7 O 10 )(12,41,91); (O 8 O 9 )(9,48,49) ϕ 8 (O 15 O 18 )(37,77,75) 12 (O 8 O 13 ) (51,28,44) ϕ 8 (O 16 O 18 )(80,93,64) 9 (O 9 O 15 )(55,33,54) 12 (O 13 O 16 )(18,71,68) 9 (O 8 O 9 )(9,48,49); (O 9 O 10 )(54,52,11) ϕ 9 (O 12 O 16 )(64,67,20) ϕ 11 (O 9 O 14 ) (49,35,56) ϕ 9 (O 16 O 17 )(68,92,79) 10 (O 10 O 12 )(91,39,58) ϕ 11 (O 14 O 17 )(73,96,25) 10 (O 9 O 10 )(54,52,11). Finally write cycles of one-dimensional edges of the polyhedron R 2 : (1,2) ϕ 14 (87,81) 1 (8,4) ϕ 16 (89,88) 3 (18, 14) ϕ 18 (45,43) ϕ 7 (82,88) 16 (9,4) ϕ 1 (80,81) 14 (12,2) ϕ 7 (32,29) ϕ 22 (55,53) 3 (1,2); (1,5) ϕ 14 (87,85) 1 (8,3) ϕ 16 (89,83) 6 (37, 36) ϕ 22 (59,57) ϕ 10 (82,83) 16 (9,3) ϕ 1 (80,85) 14 (12,5) ϕ 10 (27,23) ϕ 18 (51,47) 6 (1,5); (1,6) ϕ 13 (66,58) ϕ 11 (24,25) ϕ 21 (89,86) 6 (37, 38) ϕ 23 (78,90) 3 (13,20) 19 (9,10) ϕ 1 (80,84) 24 (72,56) ϕ 1 3 (17,7) ϕ 15 (51,50) 6 (1,6); (1,7) ϕ 13 (66,46) ϕ 11 (24,34) ϕ 21 (89,90) 3 (18, 20) ϕ 20 (70,86) 6 (13,38) 19 (9,11) ϕ 1 (80,79) 24 (72,50) ϕ 1 6 (31,6) ϕ 17 (55,56) 3 (1,7); (1,16) ϕ 13 (66,63) 5 (31,33) ϕ 17 (55,76) 12 (18,19) ϕ 20 (70,71) 5 (24,22) ϕ 21 (89,61) 6 (37, 40) ϕ 23 (78,77) 12 (17,28) ϕ 15 (51,69) 6 (1,16); (1,13) ϕ 14 (87,66) 4 (27,17) ϕ 18 (51,70) ϕ 12 (37,31) ϕ 22 (59,78) 4 (8,24) ϕ 16 (89,72) 3 (18, 17) ϕ 18 (45,70) ϕ 1 2 (32,31) ϕ 22 (55,78) 3 (1,13); (2,10) ϕ 15 (26,25) ϕ 4 (62,90) 21 (29,34) ϕ 5(81,86) 20 (21,20) ϕ 11 (74,56) 17 (4,6) ϕ 5 (43,46) 13 (15,7) ϕ 4 (65,58) ϕ 23 (88,84) 1 (2,10); (2,7) ϕ 15 (26,50) ϕ 8 (95,84) 24 (53,56) ϕ 9 (81,79) 20 (21,46) ϕ 11 (74,34) 17 (4,11) ϕ 9 (14,20) 19 (42,10) ϕ 8 (65,38) ϕ 23 (88,90) 1 (2,7); (2,19) ϕ 15 (26,28) ϕ 4 (62,63) 21 (29,94) ϕ 2 (43,41) 13 (15,22) ϕ 4 (65,77) ϕ 23 (88,76) 3 (14, 16) 19 (42,48) ϕ 1 2 (95,93) 24 (53,61) ϕ 1 3 (2,19);

9 88 I. S. GUTSUL (2,21) ϕ 14 (81,67) 5 (29,30) ϕ 22 (53,62) 2 (14, 15) ϕ 18 (43,60) 5 (4,35) ϕ 16 (88,74) 7 (43, 42) 18 (14,92) ϕ 2 (53,52) 22 (29,95) ϕ 1 7 (2,21); (3,7) ϕ 15 (96,50) 11 (39,38) ϕ 23 (85,90) 4 (23, 25) ϕ 21 (60,86) 5 (35,34) 17 (5,11) ϕ 1 (83,79) 20 (67,46) ϕ 1 5 (30,6) ϕ 13 (57,58) 4 (3,7); (3,10) ϕ 15 (96,25) 11 (39,58) ϕ 23 (85,84) 8 (47, 50) ϕ 24 (92,79) 9 (35,56) 17 (5,6) ϕ 1 (83,86) 20 (67,20) ϕ 1 9 (51,11) ϕ 19 (36,38) 8 (3,10); (3,26) ϕ 16 (83,96) 6 (36,30) ϕ 22 (57,62) 2 (23, 15) ϕ 18 (47,60) 6 (5,39) ϕ 14 (85,65) 8 (47, 42) 18 (23,92) ϕ 2 (57,52) 22 (36,95) ϕ 1 8 (3,26); (3,28) ϕ 15 (96,69) 10 (52,41) ϕ 19 (36,93) ϕ 2 (47,48) ϕ 24 (92,94) 10 (39,40) ϕ 23 (85,77) 4 (23, 22) ϕ 21 (60,61) 2 (30,16) ϕ 13 (57,63) 4 (3,28); (4,33) ϕ 17 (74,76) 3 (15,16) ϕ 13 (43,63) 2 (29, 22) ϕ 21 (62,61) 3 (21,19) ϕ 20 (81,71) 9 (53, 48) ϕ 24 (95,94) ϕ 2 (42,41) ϕ 19 (14,93) 9 (4,33); (5,40) ϕ 17 (35,33) ϕ 5 (60,63) 21 (23,94) ϕ 2 (57,41) 13 (30,22) ϕ 5 (67,71) ϕ 20 (83,69) 6 (36, 16) 19 (52,48) ϕ 1 2 (92,93) 24 (47,61) ϕ 1 6 (5,40); (6,8) ϕ 13 (58,91) ϕ 13 (25,73) ϕ 21 (86,87) 5 (34,32) 17 (11,54) ϕ 9 (20,64) 19 (10,12) ϕ 1(84,82) 24 (56,49) ϕ 9(79,68) 20 (46,45) ϕ 1 5 (6,8); (7,8) ϕ 13 (46,91) ϕ 7 (84,75) 23 (58,59) ϕ 10 (79,82) 24 (50,49) ϕ 1 11 (38,64) ϕ 1 19 (11,12) ϕ 10 (25,27) 15 (10,44) ϕ 7 (34,73) ϕ 21 (90,87) 1 (7,8); (8,22) ϕ 13 (91,41) ϕ 7 (75,76) 23 (59,77) ϕ 1 12 (27,28) 15 (44,19) ϕ 7 (73,94) ϕ 21 (87,63) 5 (32, 33) 17 (54,40) ϕ 1 12 (68,69) ϕ 1 20 (45,71) ϕ 1 5 (8,22); (9,49) ϕ 16 (82,73) 7 (45,44) 18 (18,68) ϕ 12 (55,54) 22 (32,75) ϕ 1 7 (12,91) ϕ 14 (80,64) 8 (51, 44) 18 (27,68) ϕ 12 (59,54) 22 (37,75) ϕ 1 8 (9,49); (9,48) ϕ 19 (13,16) ϕ 3 (78,76) 23 (37,77) ϕ 1 12 (51,28) 15 (17,19) ϕ 3 (72,61) ϕ 24 (80,93) 9 (55, 33) 17 (31,40) ϕ 1 12 (70,69) ϕ 20 1 (18,71) 9 (9,48); (12,41) ϕ 19 (64,93) 9 (54,33) ϕ 17 (32,76) 12 (45,19) ϕ 20 (68,71) 9 (49,48) ϕ 24 (82,94) 10 (59,40) ϕ 23 (75,77) 12 (44,28) ϕ 15 (27,69) 10 (12,41);

10 ON A FOUR-DIMENSIONAL HYPERBOLIC MANIFOLD WITH FINITE VOLUME 89 (13,21) ϕ 14 (66,67) ϕ 11 (24,35) ϕ 16 (72,74) 3 (17, 15) ϕ 18 (70,60) 6 (13,39) ϕ 14 (66,65) ϕ 11 (24,26) ϕ 16 (72,96) 6 (31,30) ϕ 22 (78,62) 3 (13,21); (95,75) ϕ 22 (52,54) ϕ 9 (67,64) 14 (21,91) ϕ11 (74,73) 16 (35,49) ϕ 9 (92,68) ϕ 18 (42,44) ϕ 8 (65,64) 14 (39,91) ϕ 11 (96,73) 16 (26,49) ϕ 8 (95,75). As each cycle contains 12 edges, we have shown that cycles of one-dimensional edges are inessential, too. Thus we have shown that identifying the faces of the polyhedron R 2 by the motions ϕ 1, ϕ 2,..., ϕ 24, the cycles both of two-dimensional faces and one-dimensional edges are inessential. Therefore the group Γ generated by the motions ϕ 1, ϕ 2,..., ϕ 24 does not contain elements of finite order, i. e. Γ is torsion-free. Then the quotient space of the space H 4 by the group Γ is a fourdimensional hyperbolic manifold M with finite volume which is not closed. The manifold M has four cusps, i. e. four ends of the form T 3 [0, ), where T 3 is a three-dimensional torus. References [1] Ratcliffe I. G., Tschantz S. T. The Volume Spectrum of Hyperbolic 4-Manifolds. Experimental Math., 2000, 9, [2] Gutsul I. S. Some hyperbolic manifolds. Bul. Acad. Ştiinţe Repub. Moldova, Matematica, 2004, No. 3(46), I. S.Gutsul Institute of Mathematics and Computer Science Academy of Sciences of Moldova 5 Academiei str., Chişinău, MD-2028 Moldova igutsul@math.md Received March 18, 2013

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

( y) Partial Differential Equations

( y) Partial Differential Equations Partial Dierential Equations Linear P.D.Es. contains no owers roducts o the deendent variables / an o its derivatives can occasionall be solved. Consider eamle ( ) a (sometimes written as a ) we can integrate

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

Lecture 13 - Root Space Decomposition II

Lecture 13 - Root Space Decomposition II Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Lecture 15 - Root System Axiomatics

Lecture 15 - Root System Axiomatics Lecture 15 - Root System Axiomatics Nov 1, 01 In this lecture we examine root systems from an axiomatic point of view. 1 Reflections If v R n, then it determines a hyperplane, denoted P v, through the

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Assalamu `alaikum wr. wb.

Assalamu `alaikum wr. wb. LUMP SUM Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. Assalamu `alaikum wr. wb. LUMP SUM Wassalamu alaikum wr. wb. LUMP SUM Lump sum lump sum lump sum. lump sum fixed price lump sum lump

Διαβάστε περισσότερα

Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1

Main source: Discrete-time systems and computer control by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 Main source: "Discrete-time systems and computer control" by Α. ΣΚΟΔΡΑΣ ΨΗΦΙΑΚΟΣ ΕΛΕΓΧΟΣ ΔΙΑΛΕΞΗ 4 ΔΙΑΦΑΝΕΙΑ 1 A Brief History of Sampling Research 1915 - Edmund Taylor Whittaker (1873-1956) devised a

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS

DIRECT PRODUCT AND WREATH PRODUCT OF TRANSFORMATION SEMIGROUPS GANIT J. Bangladesh Math. oc. IN 606-694) 0) -7 DIRECT PRODUCT AND WREATH PRODUCT OF TRANFORMATION EMIGROUP ubrata Majumdar, * Kalyan Kumar Dey and Mohd. Altab Hossain Department of Mathematics University

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Homomorphism in Intuitionistic Fuzzy Automata

Homomorphism in Intuitionistic Fuzzy Automata International Journal of Fuzzy Mathematics Systems. ISSN 2248-9940 Volume 3, Number 1 (2013), pp. 39-45 Research India Publications http://www.ripublication.com/ijfms.htm Homomorphism in Intuitionistic

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Cyclic or elementary abelian Covers of K 4

Cyclic or elementary abelian Covers of K 4 Cyclic or elementary abelian Covers of K 4 Yan-Quan Feng Mathematics, Beijing Jiaotong University Beijing 100044, P.R. China Summer School, Rogla, Slovenian 2011-06 Outline 1 Question 2 Main results 3

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS

MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS MINIMAL CLOSED SETS AND MAXIMAL CLOSED SETS FUMIE NAKAOKA AND NOBUYUKI ODA Received 20 December 2005; Revised 28 May 2006; Accepted 6 August 2006 Some properties of minimal closed sets and maximal closed

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

SOLVING CUBICS AND QUARTICS BY RADICALS

SOLVING CUBICS AND QUARTICS BY RADICALS SOLVING CUBICS AND QUARTICS BY RADICALS The purpose of this handout is to record the classical formulas expressing the roots of degree three and degree four polynomials in terms of radicals. We begin with

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

Strain gauge and rosettes

Strain gauge and rosettes Strain gauge and rosettes Introduction A strain gauge is a device which is used to measure strain (deformation) on an object subjected to forces. Strain can be measured using various types of devices classified

Διαβάστε περισσότερα

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds! MTH U341 urface Integrals, tokes theorem, the divergence theorem To be turned in Wed., Dec. 1. 1. Let be the sphere of radius a, x 2 + y 2 + z 2 a 2. a. Use spherical coordinates (with ρ a) to parametrize.

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions

Coefficient Inequalities for a New Subclass of K-uniformly Convex Functions International Journal of Computational Science and Mathematics. ISSN 0974-89 Volume, Number (00), pp. 67--75 International Research Publication House http://www.irphouse.com Coefficient Inequalities for

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ

Η ΨΥΧΙΑΤΡΙΚΗ - ΨΥΧΟΛΟΓΙΚΗ ΠΡΑΓΜΑΤΟΓΝΩΜΟΣΥΝΗ ΣΤΗΝ ΠΟΙΝΙΚΗ ΔΙΚΗ ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΝΟΜΙΚΗ ΣΧΟΛΗ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΤΟΜΕΑΣ ΙΣΤΟΡΙΑΣ ΦΙΛΟΣΟΦΙΑΣ ΚΑΙ ΚΟΙΝΩΝΙΟΛΟΓΙΑΣ ΤΟΥ ΔΙΚΑΙΟΥ Διπλωματική εργασία στο μάθημα «ΚΟΙΝΩΝΙΟΛΟΓΙΑ ΤΟΥ ΔΙΚΑΙΟΥ»

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

F19MC2 Solutions 9 Complex Analysis

F19MC2 Solutions 9 Complex Analysis F9MC Solutions 9 Complex Analysis. (i) Let f(z) = eaz +z. Then f is ifferentiable except at z = ±i an so by Cauchy s Resiue Theorem e az z = πi[res(f,i)+res(f, i)]. +z C(,) Since + has zeros of orer at

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

14 Lesson 2: The Omega Verb - Present Tense

14 Lesson 2: The Omega Verb - Present Tense Lesson 2: The Omega Verb - Present Tense Day one I. Word Study and Grammar 1. Most Greek verbs end in in the first person singular. 2. The present tense is formed by adding endings to the present stem.

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΤΜΗΜΑ ΝΟΣΗΛΕΥΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ ΨΥΧΟΛΟΓΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΣΕ ΓΥΝΑΙΚΕΣ ΜΕΤΑ ΑΠΟ ΜΑΣΤΕΚΤΟΜΗ ΓΕΩΡΓΙΑ ΤΡΙΣΟΚΚΑ Λευκωσία 2012 ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΕΠΙΣΤΗΜΩΝ

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle

A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles and the Test Body Rectangle Applied Mathematical Sciences Vol. 11 2017 no. 8 361-374 HIKARI Ltd www.m-hikari.com https://doi.org/.12988/ams.2017.7113 A Laplace Type Problem for Lattice with Cell Composed by Four Isoscele Triangles

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Homomorphism of Intuitionistic Fuzzy Groups

Homomorphism of Intuitionistic Fuzzy Groups International Mathematical Forum, Vol. 6, 20, no. 64, 369-378 Homomorphism o Intuitionistic Fuzz Groups P. K. Sharma Department o Mathematics, D..V. College Jalandhar Cit, Punjab, India pksharma@davjalandhar.com

Διαβάστε περισσότερα

Partial Trace and Partial Transpose

Partial Trace and Partial Transpose Partial Trace and Partial Transpose by José Luis Gómez-Muñoz http://homepage.cem.itesm.mx/lgomez/quantum/ jose.luis.gomez@itesm.mx This document is based on suggestions by Anirban Das Introduction This

Διαβάστε περισσότερα

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology.

Some new generalized topologies via hereditary classes. Key Words:hereditary generalized topological space, A κ(h,µ)-sets, κµ -topology. Bol. Soc. Paran. Mat. (3s.) v. 30 2 (2012): 71 77. c SPM ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm doi:10.5269/bspm.v30i2.13793 Some new generalized topologies via hereditary

Διαβάστε περισσότερα

Parametrized Surfaces

Parametrized Surfaces Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD CHAPTER FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD EXERCISE 36 Page 66. Determine the Fourier series for the periodic function: f(x), when x +, when x which is periodic outside this rge of period.

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

Συστήματα Διαχείρισης Βάσεων Δεδομένων

Συστήματα Διαχείρισης Βάσεων Δεδομένων ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Συστήματα Διαχείρισης Βάσεων Δεδομένων Φροντιστήριο 9: Transactions - part 1 Δημήτρης Πλεξουσάκης Τμήμα Επιστήμης Υπολογιστών Tutorial on Undo, Redo and Undo/Redo

Διαβάστε περισσότερα

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple

7 Present PERFECT Simple. 8 Present PERFECT Continuous. 9 Past PERFECT Simple. 10 Past PERFECT Continuous. 11 Future PERFECT Simple A/ Ονόματα και ένα παράδειγμα 1 Present Simple 7 Present PERFECT Simple 2 Present Continuous 8 Present PERFECT Continuous 3 Past Simple (+ used to) 9 Past PERFECT Simple she eats she is eating she ate

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ «ΟΛΟΚΛΗΡΩΜΕΝΗ ΑΝΑΠΤΥΞΗ & ΔΙΑΧΕΙΡΙΣΗ ΤΟΥ ΑΓΡΟΤΙΚΟΥ ΧΩΡΟΥ» ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ «Οικονομετρική διερεύνηση

Διαβάστε περισσότερα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα

Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα [ 1 ] Πανεπιστήµιο Κύπρου Εγχειρίδια Μαθηµατικών και Χταποδάκι στα Κάρβουνα Νίκος Στυλιανόπουλος, Πανεπιστήµιο Κύπρου Λευκωσία, εκέµβριος 2009 [ 2 ] Πανεπιστήµιο Κύπρου Πόσο σηµαντική είναι η απόδειξη

Διαβάστε περισσότερα