Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL)
|
|
- Διόνυσος Ράγκος
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Αλγοριθμική & Δομές Δεδομένων- Γλώσσα Προγραμματισμού Ι (PASCAL) Βασικές έννοιες αλγορίθμων
2 Εισαγωγή Αρχικά εξηγείται ο όρος αλγόριθμος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληροί κάθε αλγόριθμος. Στη συνέχεια, η σπουδαιότητα των αλγορίθμων συνδυάζεται με την εξέλιξη της επιστήμης της Πληροφορικής. Η περιγραφή και αναπαράσταση των αλγορίθμων δίνεται αναλυτικά με χρήση των μεθόδων αναπαράστασης ελεύθερου κειμένου, διαγραμμάτων ροής, φυσικής γλώσσας και κωδικοποίησης με πρόγραμμα. Τα προγράμματα παρουσιάζονται με τη μορφή ψευδογλώσσας, που ορίζεται και τυποποιείται σε ένα σύνολο εντολών και προγραμματιστικών ακολουθιακών ενοτήτων. Στη συνέχεια, δίνονται παραδείγματα όπου εξετάζονται οι διάφορες συνιστώσες ενός αλγόριθμου, δηλαδή οι απαραίτητες εντολές που στηρίζουν το 'κτίσιμο' ενός αλγόριθμου. Συγκεκριμένα, παρουσιάζονται η δομή ακολουθίας, η δομή της επιλογής, οι επαναληπτικές διαδικασίες, οι διαδικασίες πολλαπλών επιλογών και οι εμφωλιασμένες διαδικασίες. Για κάθε τύπο συνιστώσας δίνονται αναλυτικά παραδείγματα σε φυσική γλώσσα, σε ακολουθία διαδοχικών βημάτων και σε μορφή διαγραμμάτων ροής. Στο τέλος του κεφαλαίου παρουσιάζεται η ανάπτυξη και η αλγοριθμική προσέγγιση για την επίλυση ενός συνθετότερου προβλήματος, του προβλήματος του πολλαπλασιασμού αλά ρωσικά, όπου γίνεται χρήση και συνδυασμός αλγοριθμικών συνιστωσών. 2
3 Διδακτικοί στόχοι Στόχοι του κεφαλαίου αυτού είναι οι σπουδαστές: να διατυπώνουν την έννοια του αλγορίθμου, να αιτιολογούν τη σπουδαιότητα των αλγορίθμων, να τεκμηριώνουν την αναγκαιότητα της αλγοριθμικής προσέγγισης κατά τη διαδικασία επίλυσης προβλημάτων, να εφαρμόζουν τυποποιημένη επίλυση με αλγοριθμικές διαδικασίες, να μπορούν να σχεδιάζουν αλγόριθμους με χρήση συγκεκριμένων τεχνικών. 3
4 Προερωτήσεις Γνωρίζεις τι είναι αλγοριθμική προσέγγιση; Ξέρεις ότι ήδη έχεις χρησιμοποιήσει πολλούς αλγορίθμους; Γνωρίζεις, αν ο πολλαπλασιασμός δύο αριθμών μπορεί να γίνει με άλλο τρόπο; Τι θα κάνεις για να βρεις το άθροισμα ; 4
5 Τι είναι αλγόριθμος Ο όρος αλγόριθμος, χρησιμοποιείται για να δηλώσει μεθόδους που εφαρμόζονται για την επίλυση προβλημάτων. Ένας πιο αυστηρός ορισμός της έννοιας αυτής είναι ο εξής: Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. 5
6 Κριτήρια αλγόριθμου(1) Κάθε αλγόριθμος απαραίτητα ικανοποιεί τα επόμενα κριτήρια: Είσοδος (input). Καμία, μία ή περισσότερες τιμές δεδομένων πρέπει να δίνονται ως είσοδοι στον αλγόριθμο. Η περίπτωση που δεν δίνονται τιμές δεδομένων εμφανίζεται, όταν ο αλγόριθμος δημιουργεί και επεξεργάζεται κάποιες πρωτογενείς τιμές με τη βοήθεια συναρτήσεων παραγωγής τυχαίων αριθμών ή με τη βοήθεια άλλων απλών εντολών. Έξοδος (output). Ο αλγόριθμος πρέπει να δημιουργεί τουλάχιστον μία τιμή δεδομένων ως αποτέλεσμα προς το χρήστη ή προς έναν άλλο αλγόριθμο. 6
7 Κριτήρια αλγόριθμου(2) Καθοριστικότητα (definiteness). Κάθε εντολή πρέπει να καθορίζεται χωρίς καμία αμφιβολία για τον τρόπο εκτέλεσής της. Λόγου χάριν, μία εντολή διαίρεσης πρέπει να θεωρεί και την περίπτωση, όπου ο διαιρέτης λαμβάνει μηδενική τιμή. Περατότητα (finiteness). Ο αλγόριθμος να τελειώνει μετά από πεπερασμένα βήματα εκτέλεσης των εντολών του. Μία διαδικασία που δεν τελειώνει μετά από ένα συγκεκριμένο αριθμό βημάτων δεν αποτελεί αλγόριθμο, αλλά λέγεται απλά υπολογιστική διαδικασία (computational procedure). Αποτελεσματικότητα (effectiveness). Κάθε μεμονωμένη εντολή του αλγορίθμου να είναι απλή. Αυτό σημαίνει ότι μία εντολή δεν αρκεί να έχει ορισθεί, αλλά πρέπει να είναι και εκτελέσιμη. 7
8 Παράδειγμα (1) Η έννοια του αλγόριθμου δεν συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής. Ας θεωρήσουμε, για παράδειγμα, ότι θέλουμε να γευματίσουμε και επομένως πρέπει να εκτελέσουμε τις επόμενες ενέργειες: να συγκεντρώσουμε τα υλικά, να προετοιμάσουμε τα σκεύη μαγειρικής, να παρασκευάσουμε το φαγητό, να ετοιμάσουμε τη σαλάτα, να στρώσουμε το τραπέζι, να γευματίσουμε, να καθαρίσουμε το τραπέζι, και να πλύνουμε τα πιάτα και τα κουζινικά. 8
9 Σπουδαιότητα αλγορίθμων(1) Η έννοια του αλγόριθμου είναι θεμελιώδης για την επιστήμη της Πληροφορικής. Η μελέτη των αλγορίθμων είναι πολύ ενδιαφέρουσα, γιατί είναι η πρώτη ύλη για τη μελέτη και εμβάθυνση, αν όχι σε όλες, τουλάχιστον σε πάρα πολλές γνωστικές περιοχές της επιστήμης αυτής. Η Πληροφορική, λοιπόν, μπορεί να ορισθεί ως η επιστήμη που μελετά τους αλγορίθμους από τις ακόλουθες σκοπιές: Υλικού (hardware). Η ταχύτητα εκτέλεσης ενός αλγορίθμου επηρεάζεται από τις διάφορες τεχνολογίες υλικού, δηλαδή από τον τρόπο που είναι δομημένα σε μία ενιαία αρχιτεκτονική τα διάφορα συστατικά του υπολογιστή (δηλαδή ανάλογα με το αν ο υπολογιστής έχει κρυφή μνήμη και πόση, ανάλογα με την ταχύτητα της κύριας και δευτερεύουσας μνήμης κοκ.). Γλωσσών Προγραμματισμού (programming languages). Το είδος της γλώσσας προγραμματισμού που χρησιμοποιείται (δηλαδή, χαμηλότερου ή υψηλότερου επιπέδου) αλλάζει τη δομή και τον αριθμό των εντολών ενός αλγορίθμου. Γενικά μία γλώσσα που είναι χαμηλότερου επιπέδου (όπως η assembly ή η γλώσσα C) είναι ταχύτερη από μία άλλη γλώσσα που είναι υψηλοτέρου επιπέδου (όπως η Basic ή Pascal). Ακόμη, σημειώνεται ότι διαφορές συναντώνται μεταξύ των γλωσσών σε σχέση με το πότε εμφανίσθηκαν. Για παράδειγμα, παλαιότερα μερικές γλώσσες προγραμματισμού δεν υποστήριζαν την αναδρομή (έννοια που θα εξετάσουμε σε βάθος αργότερα). 9
10 Σπουδαιότητα αλγορίθμων(2) Θεωρητική (theoretical). Το ερώτημα που συχνά τίθεται είναι, αν πράγματι υπάρχει ή όχι κάποιος αποδοτικός αλγόριθμος για την επίλυση ενός προβλήματος. Η εξέταση αυτού του ερωτήματος είναι δύσκολο να σχολιασθεί στα πλαίσια του μαθήματος αυτού, επειδή απαιτεί μεγάλη θεωρητική κατάρτιση. Ωστόσο η προσέγγιση αυτή είναι ιδιαίτερα σημαντική, γιατί προσδιορίζει τα όρια της λύσης που θα βρεθεί σε σχέση με ένα συγκεκριμένο πρόβλημα. Αναλυτική (analytical). Μελετώνται οι υπολογιστικοί πόροι (computer resources) που απαιτούνται από έναν αλγόριθμο, όπως για παράδειγμα το μέγεθος της κύριας και της δευτερεύουσας μνήμης, ο χρόνος για λειτουργίες CPU και για λειτουργίες εισόδου/εξόδου κ.λπ. 10
11 Περιγραφή και αναπαράσταση αλγορίθμων(1) Στη βιβλιογραφία συναντώνται διάφοροι τρόποι αναπαράστασης ενός αλγορίθμου: με ελεύθερο κείμενο (free text), που αποτελεί τον πιο ανεπεξέργαστο και αδόμητο τρόπο παρουσίασης αλγορίθμου. Έτσι εγκυμονεί τον κίνδυνο ότι μπορεί εύκολα να οδηγήσει σε μη εκτελέσιμη παρουσίαση παραβιάζοντας το τελευταίο χαρακτηριστικό των αλγορίθμων, δηλαδή την αποτελεσματικότητα. με διαγραμματικές τεχνικές, (diagramming techniques), που συνιστούν ένα γραφικό τρόπο παρουσίασης του αλγορίθμου. Από τις διάφορες διαγραμματικές τεχνικές που έχουν επινοηθεί, η πιο παλιά και η πιο γνωστή ίσως, είναι το διάγραμμα ροής (flow chart). Ωστόσο η χρήση διαγραμμάτων ροής για την παρουσίαση αλγορίθμων δεν αποτελεί την καλύτερη λύση, γι'αυτό και εμφανίζονται όλο και σπανιότερα στη βιβλιογραφία και στην πράξη. 11
12 Περιγραφή και αναπαράσταση αλγορίθμων(2) με φυσική γλώσσα (natural language) κατά βήματα. Στην περίπτωση αυτή χρειάζεται προσοχή, γιατί μπορεί να παραβιασθεί το τρίτο βασικό χαρακτηριστικό ενός αλγορίθμου, όπως προσδιορίσθηκε προηγουμένως, δηλαδή το κριτήριο του καθορισμού. με κωδικοποίηση (coding), δηλαδή με ένα πρόγραμμα γραμμένο είτε σε μία ψευδογλώσσα είτε σε κάποια γλώσσα προγραμματισμού που όταν εκτελεσθεί θα δώσει τα ίδια αποτελέσματα με τον αλγόριθμο. 12
13 Σταθερές- Μεταβλητές Σταθερές (constants). Με τον όρο αυτό αναφερόμαστε σε προκαθορισμένες τιμές που παραμένουν αμετάβλητες σε όλη τη διάρκεια της εκτέλεσης ενός αλγορίθμου. Οι σταθερές διακρίνονται σε: αριθμητικές, π.χ. 123, +5, -1,25 αλφαριθμητικές π.χ. "Τιμή", "Κατάσταση αποτελεσμάτων" λογικές που είναι ακριβώς δύο, Αληθής και Ψευδής Μεταβλητές (variables). Μια μεταβλητή είναι ένα γλωσσικό αντικείμενο, που χρησιμοποιείται για να παραστήσει ένα στοιχείο δεδομένου. Στη μεταβλητή εκχωρείται μια τιμή, η οποία μπορεί να αλλάζει κατά τη διάρκεια εκτέλεσης του αλγορίθμου. Ανάλογα με το είδος της τιμής που μπορούν να λάβουν, οι μεταβλητές διακρίνονται σε αριθμητικές, αλφαριθμητικές και λογικές. 13
14 Τελεστές- Εκφράσεις Τελεστές (operators). Πρόκειται για τα γνωστά σύμβολα που χρησιμοποιούνται στις διάφορες πράξεις. Οι τελεστές διακρίνονται σε αριθμητικούς, λογικούς και συγκριτικούς. Εκφράσεις (expressions). Οι εκφράσεις διαμορφώνονται από τους τελεστέους (operands), που είναι σταθερές και μεταβλητές και από τους τελεστές. Η διεργασία αποτίμησης μιας έκφρασης συνίσταται στην απόδοση τιμών στις μεταβλητές και στην εκτέλεση των πράξεων. Η τελική τιμή μιας έκφρασης εξαρτάται από την ιεραρχία των πράξεων και τη χρήση των παρενθέσεων. Μια έκφραση μπορεί να αποτελείται από μια μόνο μεταβλητή ή σταθερά μέχρι μια πολύπλοκη μαθηματική παράσταση. 14
15 Σύμβολα διαγράμματος ροής(1) Ένα διάγραμμα ροής αποτελείται από ένα σύνολο γεωμετρικών σχημάτων, όπου το καθένα δηλώνει μία συγκεκριμένη ενέργεια ή λειτουργία. Τα γεωμετρικά σχήματα ενώνονται μεταξύ τους με βέλη, που δηλώνουν τη σειρά εκτέλεσης των ενεργειών αυτών. Τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα είναι τα εξής: έλλειψη, που δηλώνει την αρχή και το τέλος του κάθε αλγορίθμου ρόμβος, που δηλώνει μία ερώτηση με δύο ή περισσότερες εξόδους για απάντηση. 15
16 Σύμβολα διαγράμματος ροής(2) ορθογώνιο, που δηλώνει την εκτέλεση μίας ή περισσότερων πράξεων, και πλάγιο παραλληλόγραμμο, που δηλώνει είσοδο ή έξοδο στοιχείων. Πολλές φορές το σχήμα αυτό μπορεί να διαφοροποιείται προκειμένου να προσδιορίζεται και το είδος της συσκευής απ' όπου γίνεται η είσοδος ή η έξοδος. συγκεκριμένα σχέδια για τις επαναληπτικές δομές ΓΙΑ ΑΠΟ ΜΕΧΡΙ, ΟΣΟ ΕΠΑΝΕΛΑΒΕ και ΕΠΑΝΕΛΑΒΕ ΜΕΧΡΙΣ ΟΤΟΥ 16
17 Σύμβολα διαγράμματος ροής(3) 17
18 Ψευδοκώδικας Ένας αλγόριθμος μπορεί να περιγραφεί με διάφορους τρόπους, όπως φυσική γλώσσα, ψευδοκώδικα, διαγράμματα ροής, γλώσσα προγραμματισμού κτλ. Η φυσική γλώσσα είναι μεν εύκολη λύση για τον άνθρωπο που σχεδιάζει τον αλγόριθμο αλλά είναι πολλές φορές αμφίσημη και απέχει από τη λογική των γλωσσών προγραμματισμού που τελικά θα χρησιμοποιηθούν. Οι γλώσσες προγραμματισμού στο άλλο άκρο είναι πολύ συγκεκριμένες, εμπλέκουν συνήθως τεχνικές λεπτομέρειες καθιστώντας δυσκολότερη την κατανόηση του σκεπτικού της επίλυσης του προβλήματος. Συνήθως χρησιμοποιείται ψευδοκώδικας (pseudocode) δηλαδή ένας κώδικας που στηρίζεται σε απλές λειτουργίες κοινές σε όλους τους υπολογιστές και όλες τις γλώσσες προγραμματισμού χωρίς όμως να υπεισέρχεται σε τεχνικές λεπτομέρειες. 18
19 Γενικές οδηγίες Αρχή και τέλος 1: Αλγόριθμος Παράδειγμα 2: Διάφορες εντολές 3: Τέλος Παράδειγμα Κάθε αλγόριθμος που γράφουμε σε ψευδογλώσσα θα ξεκινάει με τη λέξη Αλγόριθμος και στη συνέχεια το όνομα του αλγορίθμου όπως στη γραμμή 1 του αλγορίθμου 1. Ακολουθούν οι διάφορες εντολές και στο τέλος γράφεται η λέξη Τέλος ακολουθούμενη πάλι από το όνομα του αλγορίθμου. 19
20 Γενικά-Μορφή Ψευδοκώδικα Η γενική μορφή ενός αλγορίθμου σε ψευδοκώδικα είναι η ακόλουθη: πρόγραμμα όνομα σταθερές δήλωση σταθερών μεταβλητές δήλωση μεταβλητών αρχή εντολές τέλος_προγράμματος όνομα 20
21 Δεσμευμένες Λέξεις Με έντονα γράμματα αναπαριστάνουμε τις δεσμευμένες λέξεις της ψευδογλώσσας. Δεσμευμένες ονομάζονται οι λέξεις που χρησιμοποιούνται με καθορισμένο τρόπο για να επιτελούν συγκεκριμένες λειτουργίες της ψευδογλώσσας. Τις λέξεις αυτές δεν μπορούμε να τις χρησιμοποιήσουμε για τίποτε άλλο παρά μόνο γι αυτό που έχουν δηλωθεί από την ψευδογλώσσα. 21
22 Περιορισμοί Ονομάτων Τα ονόματα του προγράμματος (και των υποπρογραμμάτων), των μεταβλητών και των σταθερών πρέπει να υπακούουν στους ακόλουθους περιορισμούς: Να αρχίζουν μόνο με γράμμα. Να περιέχουν μόνο γράμματα, αριθμούς και το χαρακτήρα της κάτω παύλας (κανένα άλλο χαρακτήρα). Να είναι μία συνεχόμενη λέξη (χωρίς κενά). Να είναι διαφορετικά από τα ονόματα των δεσμευμένων λέξεων. Να είναι διαφορετικά μεταξύ τους (δηλαδή να μην ταυτίζεται το όνομα του προγράμματος με τα ονόματα των σταθερών ή μεταβλητών ή και των σταθερών και μεταβλητών μεταξύ τους. 22
23 Σταθερές(1) Οι σταθερές είναι ποσότητες οι οποίες διατηρούν αμετάβλητο το περιεχόμενό τους σε όλη τη διάρκεια εκτέλεσης του αλγόριθμου. Υπάρχουν δύο (2) είδη σταθερών: 1. οι σταθερές τιμές 2. οι ονοματισμένες σταθερές Οι σταθερές τιμές μπορεί να ανήκουν σε έναν από τους ακόλουθους τύπους: ακέραιες π.χ. 3, 5, 10, 0 κ.λ.π. πραγματικές π.χ. 3.5, -6, 4, 5.8 κ.λ.π. αλφαριθμητικές ή χαρακτήρες π.χ. αποτέλεσμα, μέσος όρος, κ κ.λ.π. λογικές π.χ. ΑΛΗΘΗΣ και ΨΕΥΔΗΣ 23
24 Σταθερές(2) Οι ονοματισμένες σταθερές είναι ονόματα στα οποία αποδίδουμε σταθερές τιμές. Αυτό γίνεται για να εξασφαλίσουμε μεγαλύτερη κατανοησιμότητα στον αλγόριθμο χρησιμοποιώντας ονόματα αντί για τιμές. Η δήλωση μιας σταθεράς γίνεται στο τμήμα δήλωσης σταθερών του ψευδοκώδικα ως εξής: σταθερές όνομα = τιμή π.χ. σταθερές π = 3.14 (ονοματισμένη σταθερά πραγματικού τύπου) φπα = 0.23 (ονοματισμένη σταθερά πραγματικού τύπου) κ = 5 (ονοματισμένη σταθερά ακέραιου τύπου) μαθητής = Δημήτρης (ονοματισμένη σταθερά τύπου χαρακτήρα) επιτυχία = αληθής (ονοματισμένη σταθερά λογικού τύπου) Στις ονοματισμένες σταθερές δεν γίνεται ρητή δήλωση του τύπου τους, αλλά ο τύπος τους προσδιορίζεται αυτόματα από το περιεχόμενο που τους εκχωρούμε αρχικά κατά τη δήλωσή τους. 24
25 Μεταβλητές Οι μεταβλητές είναι θέσεις μνήμης στις οποίες: α) εισάγουμε δεδομένα από το πληκτρολόγιο β) καταχωρούμε αποτελέσματα Τύποι Μεταβλητών Μια μεταβλητή ανάλογα με το περιεχόμενο που παίρνει μπορεί να ανήκει σε έναν από τους ακόλουθους τύπους: ακέραιες: όταν το περιεχόμενό της είναι ένας ακέραιος αριθμός πραγματικές: όταν το περιεχόμενό της είναι ένας πραγματικός αριθμός χαρακτήρες: όταν το περιεχόμενό της είναι ένας ή περισσότεροι χαρακτήρες λογικές: όταν το περιεχόμενό της είναι είτε η τιμή αληθής (true) είτε η τιμή ψευδής (false) 25
26 Μεταβλητές-Δήλωση Η δήλωση μιας μεταβλητής γίνεται στο τμήμα δήλωσης μεταβλητών του ψευδοκώδικα ως εξής: μεταβλητές τύπος: όνομα μεταβλητής π.χ. μεταβλητές ακέραιες: x, y πραγματικές: μέσος_όρος, βαθμός χαρακτήρες: όνομα λογικές: επιτυχία, αποτυχία, found Παρατηρήσεις Γενικά ως ονόματα μεταβλητών και ονοματισμένων σταθερών πρέπει να επιλέγονται κατάλληλες λέξεις που να περιγράφουν το περιεχόμενο της σταθεράς ή της μεταβλητής π.χ. το όνομα βαθμός είναι προτιμότερο από το όνομα x για να δηλώσει μια μεταβλητή στην οποί θα εισάγουμε ένα βαθμό ή το όνομα φπα είναι προτιμότερο από το όνομα y για να δηλώσουμε μια ονοματισμένη σταθερά στην οποία θα εισάγουμε ως περιεχόμενο ένα ποσοστό φπα. Τέλος όλες οι μεταβλητές που χρησιμοποιούμε σε ένα ψευδοκώδικα είναι υποχρεωτικό να δηλώνονται στην αρχή του και συγκεκριμένα στο τμήμα δήλωσης μεταβλητών. 26
27 Μεθοδολογία Γραφής Αλγορίθμου σε Ψευδοκώδικα Για να γράψουμε έναν αλγόριθμο σε μορφή ψευδοκώδικα ακολουθούμε κατά σειρά τα εξής βήματα: Πρώτα εισάγουμε όλα τα δεδομένα που απαιτούνται στον αλγόριθμο Μετά υπολογίζουμε όλα τα ζητούμενα Τέλος εμφανίζουμε τα αντίστοιχα αποτελέσματα Καθένα από τα τρία βήματα υλοποιείται στον ψευδοκώδικα με συγκεκριμένη εντολή. Οι εντολές αυτές περιγράφονται ακολούθως. 27
28 Εντολή Εισόδου Δεδομένων Η εισαγωγή δεδομένων σε έναν αλγόριθμο γίνεται με την εντολή διάβασε. Η εντολή διάβασε έχει την ακόλουθη σύνταξη: Σύνταξη Λειτουργία διάβασε μεταβλητή διάβασε μεταβλητή1, μεταβλητή 2, μεταβλητή 3 Επιτρέπει την εισαγωγή μια τιμής (αριθμού, χαρακτήρα, κ.λ.π.) από το πληκτρολόγιο και την αποθήκευσή της σε μια μεταβλητή (θέση μνήμης) Επιτρέπει την εισαγωγή πολλών τιμών (αριθμού, χαρακτήρα, κ.λ.π.) από το πληκτρολόγιο και την αποθήκευσή τους σε πολλές μεταβλητές (θέσεις μνήμης) 28
29 Εντολή Υπολογισμού Η εντολή με την οποία υπολογίζουμε τα ζητούμενα ονομάζεται εντολή καταχώρησης (ή εκχώρησης) και αναπαριστάνεται με το σύμβολο. Η εντολή αυτή χρησιμοποιείται για την αποθήκευση (καταχώρηση) σε μια μεταβλητή είτε: μιας σταθερής τιμής (μεταβλητή τιμή) της τιμής μιας άλλης μεταβλητής (μεταβλητή μεταβλητή) του αποτελέσματος μιας παράστασης (μεταβλητή παράσταση) 29
30 Εντολή Εμφάνισης Αποτελεσμάτων Σύνταξη και Μηνυμάτων Η εμφάνιση αποτελεσμάτων και μηνυμάτων (σχολίων) στην οθόνη του Η/Υ γίνεται με την εντολή γράψε ή εμφάνισε. Η εντολή γράψε έχει την ακόλουθη σύνταξη: Λειτουργία γράψε μεταβλητή γράψε μεταβλητή1, μεταβλητή2, μεταβλητή3, Εμφανίζεται στην οθόνη το περιεχόμενο της μεταβλητής Εμφανίζεται στην οθόνη το περιεχόμενο όλων των μεταβλητών γράψε σχόλιο γράψε σχόλιο, μεταβλητή ή γράψε σχόλιο, μεταβλητή1, μεταβλητή2, Εμφανίζεται στην οθόνη ένα σχόλιο. Σχόλιο ονομάζεται μια ακολουθία χαρακτήρων μέσα σε (απλές) αποστρόφους την οποία ο Η/Υ εμφανίζει στην οθόνη όπως ακριβώς είναι γραμμένη. Συνήθως γράφουμε ένα σχόλιο προκειμένου να δώσουμε διευκρινήσεις. Εμφανίζεται στην οθόνη ένα σχόλιο ακολουθούμενο από το περιεχόμενο μιας ή περισσότερων μεταβλητών. Το σχόλιο αυτό συνήθως εξηγεί το περιεχόμενο των μεταβλητών που εμφανίζουμε.
31 Μεθοδολογία Γραφής Αλγορίθμου σε Ψευδοκώδικα με τις Αντίστοιχες Εντολές Σύμφωνα με αυτά που αναφέραμε προηγουμένως τα βήματα της μεθοδολογίας του ψευδοκώδικα υλοποιούνται με τις ακόλουθες εντολές: 1. Το βήμα της εισαγωγής δεδομένων υλοποιείται στον ψευδοκώδικα με την εντολή διάβασε 2. Το βήμα του υπολογισμού των ζητουμένων υλοποιείται στον ψευδοκώδικα με την εντολή καταχώρησης (για κάθε ζητούμενο) 3. Το βήμα της εμφάνισης αποτελεσμάτων και σχολίων υλοποιείται στον ψευδοκώδικα με την εντολή γράψε 31
32 Αριθμητικοί Τελεστές Οι αριθμητικοί τελεστές που χρησιμοποιούνται στον ψευδοκώδικα είναι οι ακόλουθοι (στον πίνακα με τους αριθμητικούς τελεστές εμφανίζεται και η προτεραιότητά τους): Προτεραιότητα Τελεστής 1 ^ 2 * / div mod Παρατηρήσεις 1. Οι παραστάσεις που βρίσκονται σε παρένθεση προηγούνται όλων 2. Όταν έχουμε τελεστές της ίδιας προτεραιότητας η σειρά εκτέλεσης των πράξεων είναι από αριστερά προς τα δεξιά 3. Ο τελεστής div υπολογίζει το ακέραιο πηλίκο της διαίρεσης 2 ακεραίων ενώ ο τελεστής / υπολογίζει το πραγματικό πηλίκο της διαίρεσης 2 πραγματικών ή ακεραίων 4. Ο τελεστής mod υπολογίζει το ακέραιο υπόλοιπο της διαίρεσης 2 ακεραίων 32
33 Παραδείγματα εφαρμογής αριθμητικών τελεστών 3 div 2 = 1 3 / 2 = mod 2 = 1 5 div 6 = 0 5 mod 6 = 5 5 / 6 = ^2 div 6 = 4 5^2 mod 6 = 1 1 div 2 = 0 1 mod 2 = 1 1 / 2 = div 3 mod 2 = 1 5 div (3 mod 2) = 5 5 mod 3^2 div 2 = 2 3 * 2 / 4 1 =
34 Αριθμητικές Συναρτήσεις Οι πιο βασικές αριθμητικές συναρτήσεις που μπορούμε να χρησιμοποιήσουμε στον ψευδοκώδικα είναι οι ακόλουθες: Συνάρτηση Ερμηνεία Παράδειγμα Α_Τ Απόλυτη τιμή Α_Τ(x) είναι ισοδύναμο με x Τ_Ρ Τετραγωνική ρίζα Τ_Ρ(x) είναι ισοδύναμο με x Α_Μ Ακέραιο μέρος Α_Μ(3,2) είναι ίσο με 3 ΗΜ Ημίτονο ΗΜ(90) είναι ίσο με 1 ΣΥΝ Συνημίτονο ΣΥΝ(90) είναι ίσο με 0 ΕΦ Εφαπτομένη ΕΦ(10) είναι ίσο με 0.17 ΛΟΓ Λογάριθμος ΛΟΓ(10) είναι ίσο με 1 34
35 Παράδειγμα(2) Δημιουργήστε σε Ελεύθερο Κείμενο Φυσική Γλώσσα με βήματα Διάγραμμα Ροής και Ψευδοκώδικα έναν αλγόριθμο που θα υπολογίζει τον μέσο όρο τριών αριθμών. 46
36 Λύση(1) Ελεύθερο Κείμενο Πάρε τρεις τυχαίους αριθμούς. Πρόσθεσέ τους, διαίρεσε το άθροισμα με το πλήθος τους και εμφάνισε το αποτέλεσμα. 47
37 Λύση(2) Φυσική Γλώσσα με βήματα 1. Πάρε τρεις τυχαίους αριθμούς. 2. Πρόσθεσέ τους. 3. Διαίρεσε το άθροισμα με το πλήθος τους. 4. Εμφάνισε το αποτέλεσμα. 48
38 Λύση(3) Διάγραμμα Ροής αρχή Πάρε 3 αριθμούς Πρόσθεσέ τους Διαίρεσε το άθροισμα με το πλήθος τους Εμφάνισε το αποτέλεσμα τέλος 49
39 Ψευδοκώδικας πρόγραμμα μέσος_όρος μεταβλητές πραγματικές: β1, β2, β3, μο αρχή γράψε Δώσε τρεις αριθμούς διάβασε β1, β2, β3 μο (β1 + β2 + β3)/3 γράψε Ο μέσος όρος είναι:, μο τέλος_προγράμματος μέσος_όρος 50
40 Ερωτήσεις - Θέματα για συζήτηση 1. Τι είναι αλγόριθμος; Ποια τα βασικά χαρακτηριστικά ενός αλγορίθμου; 2. Ποιους τρόπους γνωρίζετε για την αναπαράσταση ενός αλγορίθμου; Δώστε µία σύντομη περιγραφή για τον καθένα. 3. Τι είναι πρόβλημα; Ποιες είναι οι κατηγορίες που χωρίζονται τα προβλήματα ανάλογα µε τη δυνατότητα επίλυσης τους; 4. Σε ποιες κατηγορίες χωρίζονται τα προβλήματα ανάλογα µε το βαθμό δόμησής τους; 5. Ποια είναι τα στάδια αντιμετώπισης ενός προβλήματος; 6. Σε ποιες κατηγορίες χωρίζονται τα προβλήματα ανάλογα µε το είδος επίλυσής τους; 51
41 Τέλος Κεφαλαίου
Πρόβλημα 29 / σελίδα 28
Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους
Διαβάστε περισσότερα2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός
Διαβάστε περισσότεραΕισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο
Εισαγωγή - Βασικές έννοιες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Αλγόριθμος Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων
Διαβάστε περισσότερα1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα.
1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα. ΑΠΑΝΤΗΣΗ Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο. Επικοινωνία:
Επικοινωνία: spzygouris@gmail.com Να δοθεί ο ορισμός του Αλγορίθμου. Αλγόριθμος, σύμφωνα με το βιβλίο, είναι μια πεπερασμένη σειρά ενεργειών (όχι άπειρες), αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο
Διαβάστε περισσότεραΚεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )
Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ. Τι είναι αλγόριθμος
ΑΛΓΟΡΙΘΜΟΙ Στο σηµείωµα αυτό αρχικά εξηγείται η έννοια αλγόριθµος και παραθέτονται τα σπουδαιότερα κριτήρια που πρέπει να πληρεί κάθε αλγόριθµος. Στη συνέχεια, η σπουδαιότητα των αλγορίθµων συνδυάζεται
Διαβάστε περισσότεραΜάριος Αγγελίδης Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1
Ενότητα 1 Ενότητες βιβλίου: 2.1, 2.3, 6.1 (εκτός ύλης αλλά χρειάζεται για την συνέχεια) Ώρες διδασκαλίας: 1 Τι είναι αλγόριθμος Σύμφωνα με το σχολικό βιβλίο: Ορισμός: Μια πεπερασμένη σειρά ενεργειών, αυστηρά
Διαβάστε περισσότεραΑνάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΟ 2 2.4 Βασικές συνιστώσες/εντολές ενός αλγορίθμου 2.4.1 Δομή ακολουθίας ΚΕΦΑΛΑΙΟ 7 7.1 7.9 Σταθερές (constants): Προκαθορισμένες τιμές που παραμένουν
Διαβάστε περισσότεραΑρχές Προγραμματισμού Η/Υ Μέθοδοι παρουσίασης του αλγόριθμου και Βασικές έννοιες
Αρχές Προγραμματισμού Η/Υ Μέθοδοι παρουσίασης του αλγόριθμου και Βασικές έννοιες Βελώνης Γεώργιος Καθηγητής Πληροφορικής ΠΕ20 Περιεχόμενα Μέθοδοι Παρουσίασης του αλγόριθμου Εισαγωγή Φραστική μέθοδος Ψευδοκώδικας
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ
ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ 1. Έστω ότι ο καθηγητής σας δίνει δύο αριθμούς και σας ζητάει να του πείτε πόσο είναι το άθροισμά τους. Διατυπώστε
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
1 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός συγκεκριμένου προβλήματος. Κάθε
Διαβάστε περισσότεραΒασικές Έννοιες Αλγορίθμων. Βασικές Εντολές Αλγορίθμων (Κεφ. 2ο Παρ. 2.4)
Βασικές Έννοιες Αλγορίθμων Βασικές Εντολές Αλγορίθμων (Κεφ. 2ο Παρ. 2.4) Δομές εντολών Υπάρχουν διάφορα είδη εντολών όπως, ανάθεσης ή εκχώρησης τιμής, εισόδου εξόδου, κ.ά., αλλά γενικά χωρίζονται σε τρείς
Διαβάστε περισσότεραΠληροφορική ΙΙ. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα
Πληροφορική ΙΙ Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Πληροφορική ΙΙ», 2015-2016 Μάθημα 1: Εισαγωγή στους Αλγόριθμους Αλγόριθμος είναι μια πεπερασμένη
Διαβάστε περισσότεραΑνάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον
Γ Λυκείου Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον ΜΕΡΟΣ I. ΑΛΓΟΡΙΘΜΟΣ ΦΥΣΙΚΕΣ & ΤΕΧΝΗΤΕΣ ΓΛΩΣΣΕΣ ΑΚΟΛΟΥΘΙΑ Περιεχόμενα Κεφάλαιο 2: 2.1-2.3 2.4.1 Κεφάλαιο6: 6.3 Κεφάλαιο 7: όλο Κατηφόρης Παναγιώτης
Διαβάστε περισσότεραΑλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:
Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα
Διαβάστε περισσότεραΚεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )
Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη
Διαβάστε περισσότερα1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα.
1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα. ΑΠΑΝΤΗΣΗ Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος
Διαβάστε περισσότεραΘεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις ένα τυχαίο πρόβλημα;
ΑΛΓΟΡΙΘΜΙΚΗ & ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΕΦΑΛΑΙΟ 1 ΚΕΦΑΛΑΙΟ 1 ΕΙΣΑΓΩΓΗ 1.1. Η Έννοια Πρόβλημα Προερωτήσεις Θεωρείς σημαντικό το γεγονός να μιλάς και να γράφεις πολύ καλά τη φυσική γλώσσα στην προσπάθειά σου να επιλύσεις
Διαβάστε περισσότεραΑνάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. ΚΕΦΑΛΑΙΟ 2 Βασικές Έννοιες Αλγορίθμων
Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΟ 2 Βασικές Έννοιες Αλγορίθμων 2.1 Τι είναι αλγόριθμος Ο όρος προέρχεται από μετάφραση του βιβλίο του Αμπού Αμπντουλάχ Μοχάμεντ Ιμπν Μούζα Αλ Χουαρίζμι
Διαβάστε περισσότεραεπιµέλεια Θοδωρής Πιερράτος
Βασικές έννοιες προγραµµατισµού Η ύλη που αναπτύσσεται σε αυτό το κεφάλαιο είναι συναφής µε την ύλη που αναπτύσσεται στο 2 ο κεφάλαιο. Όπου υπάρχουν διαφορές αναφέρονται ρητά. Προσέξτε ιδιαίτερα, πάντως,
Διαβάστε περισσότεραΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ ΤΥΠΟΙ ΔΕΔΟΜΕΝΩΝ ΣΤΑΘΕΡΕΣ ΜΕΤΑΒΛΗΤΕΣ
ΓΛΩΣΣΑ ΑΛΦΑΒΗΤΟ Κεφαλαία και μικρά γράμματα ελληνικού αλφαβήτου: Α Ω και α ω Κεφαλαία και μικρά γράμματα λατινικού αλφαβήτου: A Z και a z Αριθμητικά ψηφία: 0 9 Ειδικοί χαρακτήρες: + - * / =. ( ),! & κενός
Διαβάστε περισσότεραΑνάπτυξη εφαρμογών/ Βασικές γνώσεις/ πρώτο θέμα ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ
ΕΡΩΤΗΣΕΙΣ ΣΥΝΤΟΜΗΣ ΑΠΑΝΤΗΣΗΣ 1. Ερωτήσεις -θέματα στη σελίδες 21, 49, 160 του σχολικού βιβλίου Μαθητή 2. Τεστ αυτοαξιολόγησης σελίδες 16, 27, 68 του τετραδίου του Μαθητή 3. Ν' αναφέρετε ονομαστικά τους
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ο. αποτέλεσµα προς το χρήστη ή προς έναν άλλο αλγόριθµο. 7 ο ΓΕΛ Καλλιθέας Οδηγός Α.Ε.Π.Π.
ΚΕΦΑΛΑΙΟ 2 ο 1. Τι είναι αλγόριθµος; Η θεωρία των αλγορίθµων έχει µεγάλη παράδοση και η ηλικία ορισµένων από αυτών είναι µερικών χιλιάδων χρόνων, όπως του Ευκλείδη για τον υπολογισµό του ΜΚ δύο αριθµών
Διαβάστε περισσότεραΘεωρητικές Ασκήσεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο Μέρος
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο Μέρος Θέμα 1 Δίνονται τα παρακάτω τμήματα αλγορίθμου Α. βαλίτσα Αληθής εισιτήριο Αληθής ταξίδι βαλίτσα και εισιτήριο Τι τιμή θα έχει η λογική μεταβλητή
Διαβάστε περισσότεραΗ διαδικασία επίλυσης ενός προβλήματος αποτελείται από μία πεπερασμένη ακολουθία βημάτων, καθένα από τα οποία μας οδηγεί πιο κοντά στη λύση.
ΑΛΓΟΡΙΘΜΟΣ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ 2 ο ΚΕΦΑΛΑΙΟ Η διαδικασία επίλυσης ενός προβλήματος αποτελείται από μία πεπερασμένη ακολουθία βημάτων, καθένα από τα οποία μας οδηγεί πιο κοντά στη λύση. «ΑΛΓΟΡΙΘΜΟΣ ΕΙΝΑΙ ΜΙΑ
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ
ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Η έννοια του αλγορίθμου συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής (ΕΞΕΤΑΣΕΙΣ 2003, 2007) 2. Ο αλγόριθμος μπορεί
Διαβάστε περισσότεραΒασικές έννοιες προγραμματισμού
Βασικές έννοιες προγραμματισμού Αλφάβητο Γράμματα Κεφαλαία Ελληνικά ( Α Ω ) Πεζά Ελληνικά ( α ω ) Κεφαλαία Λατινικά ( A Z ) Πεζά Ελληνικά ( a z) Ψηφία 0-9 Ειδικοί χαρακτήρες ( +, -, *,/, =,.,,!, κενό )
Διαβάστε περισσότεραΠρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.
Κεφάλαιο 2 - Πρόβλημα 2.1.1. Η έννοια του προβλήματος Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2.1.2. Κατηγορίες προβλημάτων
Διαβάστε περισσότεραΑΕΠΠ Ερωτήσεις θεωρίας
ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος
Διαβάστε περισσότερα! Δεν μπορούν να λυθούν όλα τα προβλήματα κάνοντας χρήση του παρ/λου προγ/σμου ΑΡΧΗ ΝΑΙ Διάβα σε a Εκτύπ ωσε a > a 0 ΟΧΙ ΤΕΛΟΣ Σύμβολα διαγράμματος ροής 1 Ακέραιος τύπος 14 0-67 2 Πραγματικός τύπος
Διαβάστε περισσότεραΣου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά.
AeppAcademy.com facebook.com/aeppacademy Γεια. Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. Καλή Ανάγνωση & Καλή Επιτυχία
Διαβάστε περισσότεραΟρισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου
Ορισµοί κεφαλαίου Αλγόριθµος είναι µια πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και εκτελέσιµων σε πεπερασµένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήµατος. Σηµαντικά σηµεία κεφαλαίου Κριτήρια
Διαβάστε περισσότεραΕρωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2
Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος
Διαβάστε περισσότεραΕΡΩΤΗΣΕΙΣ ΔΙΑΦΟΡΩΝ ΤΥΠΩΝ ΣΤΟ ΚΕΦΑΛΑΙΟ 2.2
1. 1-Σ, 2-Σ, 3-Λ, 4-Σ, 5-Σ 2. 1-α, 2-α, 3-β, 4-β, 5-α, 6-α, 7-α, 8-β, 9-β, 10-β 3. Τι ονομάζουμε αλγόριθμο; Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο
Διαβάστε περισσότεραΕνδεικτικές Ερωτήσεις Θεωρίας
Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο
Διαβάστε περισσότεραΟ αλγόριθμος πρέπει να τηρεί κάποια κριτήρια
Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Είσοδος:
Διαβάστε περισσότεραεπιµέλεια Θοδωρής Πιερράτος
Τι είναι αλγόριθµος Βασικές έννοιες αλγορίθµων Ο όρος αλγόριθµος χρησιµοποιείται για να δηλώσει µεθόδους που εφαρµόζονται για την επίλυση προβληµάτων. Ωστόσο, ένας πιο αυστηρός ορισµός της έννοιας αυτής
Διαβάστε περισσότεραΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΣΧΕΔΙΟ ΜΑΘΗΜΑΤΟΣ ΜΑΘΗΜΑ ΤΑΞΗ ΚΕΦΑΛΑΙΟ 2 ο ΕΙΣΗΓΗΤΗΣ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ : Γ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ : ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ : ΚΑΖΑΝΤΖΗΣ ΧΡΗΣΤΟΣ 1. Γενικός
Διαβάστε περισσότεραΦυσικές και τεχνητές γλώσσες. Το αλφάβητο της ΓΛΩΣΣΑΣ, Τύποι Δεδομένων. Σταθερές, Μεταβλητές, Τελεστές, Συναρτήσεις, Δομή Προγράμματος
Φυσικές και τεχνητές γλώσσες. Το αλφάβητο της ΓΛΩΣΣΑΣ, Τύποι Δεδομένων. Σταθερές, Μεταβλητές, Τελεστές, Συναρτήσεις, Δομή Προγράμματος Ενότητες βιβλίου: 6.3, 7.1-7.6, 7.10, 8.1 Ώρες διδασκαλίας: 2 Φυσικές
Διαβάστε περισσότερα7.1 Αλφάβητο. 7.2 Τύποι δεδομένων. 7.3 Σταθερές. 7.4 Μεταβλητές. 7.5 Αριθμητικοί τελεστές. 7.6 Συναρτήσεις. 7.7 Αριθμητικές εκφράσεις. 7.
7.1 Αλφάβητο. 7.2 Τύποι δεδομένων. 7.3 Σταθερές. 7.4 Μεταβλητές. 7.5 Αριθμητικοί τελεστές. 7.6 Συναρτήσεις. 7.7 Αριθμητικές εκφράσεις. 7.8 Εντολή εκχώρησης. 7.1 7.9 Εντολές εισόδου εξόδου. 7.10 Δομή προγράμματος.
Διαβάστε περισσότεραΕπιµέλεια Θοδωρής Πιερράτος
Ερωτήσεις Σωστό - Λάθος 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου αριθµού εντολών. 2. Η είσοδος σε έναν αλγόριθµο µπορεί να είναι έξοδος σε έναν άλλο αλγόριθµο. 3. Ένας αλγόριθµος
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ 1ο Α. 1. Να αναφέρετε ονοµαστικά τα κριτήρια που πρέπει απαραίτητα
Διαβάστε περισσότεραΠεριεχόμενα. Ανάλυση προβλήματος. Δομή ακολουθίας. Δομή επιλογής. Δομή επανάληψης. Απαντήσεις. 1. Η έννοια πρόβλημα Επίλυση προβλημάτων...
Περιεχόμενα Ανάλυση προβλήματος 1. Η έννοια πρόβλημα...13 2. Επίλυση προβλημάτων...17 Δομή ακολουθίας 3. Βασικές έννοιες αλγορίθμων...27 4. Εισαγωγή στην ψευδογλώσσα...31 5. Οι πρώτοι μου αλγόριθμοι...54
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 7 ο. Έτσι ο προγραµµατισµός µε τη ΓΛΩΣΣΑ εστιάζεται στην ανάπτυξη του αλγορίθµου και τη µετατροπή του σε σωστό πρόγραµµα.
ΚΕΦΑΛΑΙΟ 7 ο 1. Επιλογή της κατάλληλης γλώσσας προγραµµατισµού Εκατοντάδες γλώσσες προγραµµατισµού χρησιµοποιούνται όπως αναφέρθηκε σήµερα για την επίλυση των προβληµάτων µε τον υπολογιστή, τη δηµιουργία
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Δομή Ακολουθίας
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Δομή Ακολουθίας Θέμα Α Α1. Να απαντήσετε με Σ ή Λ στα παρακάτω: 1. Όλες οι εντολές σε μία δομή ακολουθίας εκτελούνται υποχρεωτικά. 2. Η Δευτέρα αποτελεί
Διαβάστε περισσότεραΔομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός
Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει
Διαβάστε περισσότεραΕρωτήσεις Σωστού-Λάθους
Τάξη: Γ Λυκείου Τεχνολογική Κατεύθυνση Ενότητες: Εισαγωγή στον προγραμματισμό (7.1-7.8) Ερωτήσεις Σωστού-Λάθους 1. Οι μεταβλητές που χρησιμοποιούνται σ ένα πρόγραμμα αντιστοιχίζονται από το μεταγλωττιστή
Διαβάστε περισσότεραΠροβλήματα, αλγόριθμοι, ψευδοκώδικας
Προβλήματα, αλγόριθμοι, ψευδοκώδικας October 11, 2011 Στο μάθημα Αλγοριθμική και Δομές Δεδομένων θα ασχοληθούμε με ένα μέρος της διαδικασίας επίλυσης υπολογιστικών προβλημάτων. Συγκεκριμένα θα δούμε τι
Διαβάστε περισσότεραΑλγόριθμοι. Βασικές έννοιες ΤΕΛΟΣ
Αλγόριθμοι Βασικές έννοιες ΤΕΛΟΣ Κριτήρια πληρότητας Είσοδος Έξοδος Καθοριστικότητα Περατότητα Αποτελεσματικότητα 04/01/09 βασικές έννοιες Αλγορίθμων 2 Σκοπιές μελέτης αλγορίθμων Υλικού Η ταχύτητα εκτέλεσης
Διαβάστε περισσότεραΚεφ 2. Βασικές Έννοιες Αλγορίθμων
Κεφ 2. Βασικές Έννοιες Αλγορίθμων 2.7 Τι είναι οι μεταβλητές και τι οι σταθερές; ΑΠΑΝΤΗΣΗ Μεταβλητές: Μια μεταβλητή είναι μια θέση μνήμης του υπολογιστή με συγκεκριμένο όνομα, που χρησιμοποιείται για να
Διαβάστε περισσότεραΒασικές Έννοιες Αλγορίθμων. Τι είναι αλγόριθμος. Για να είναι αλγόριθμος. Καθοριστικότητα 20/5/2014. Σκοπός μαθήματος. Αλγόριθμος
Σκοπός μαθήματος Το μάθημα έχει ως σκοπό να αναπτύξει την σκέψη των φοιτητών, ώστε να κατανοούν και να επιλύουν «προβλήματα» με τη βοήθεια του Η/Υ. Η επίλυση γίνεται με τη δημιουργία λογικών διαγραμμάτων,
Διαβάστε περισσότερα7. Βασικά στοιχεία προγραµµατισµού.
7. Βασικά στοιχεία προγραµµατισµού. ΗΜ01-Θ1Γ Δίνονται οι παρακάτω έννοιες: 1. Λογικός τύπος δεδοµένων 2. Επιλύσιµο 3. Ακέραιος τύπος δεδοµένων 4. Περατότητα 5. Μεταβλητή 6. Ηµιδοµηµένο 7. Πραγµατικός τύπος
Διαβάστε περισσότερα2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ
ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)
Διαβάστε περισσότεραΠρόβλημα 37 / σελίδα 207
Πρόβλημα 37 / σελίδα 207 2.5. Ôåóô áõôïáîéïëüãçóçò Δίνονται οι παρακάτω ομάδες προτάσεων. Σε κάθε μία από αυτές, να κάνετε τις απαραίτητες διορθώσεις ώστε να ισχύουν οι προτάσεις 1. Η αναπαράσταση
Διαβάστε περισσότεραΒ ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΝΟΕΜΒΡΙΟΣ 2018
ΝΟΕΜΒΡΙΟΣ 2018 Το υλικό αυτό δίνεται στους μαθητές για τη σωστή μελέτη της έως τώρα, διδαχθείσας ύλης. Πρόκειται για ένα συμπαγή κορμό ερωτήσεων και ασκήσεων οι οποίες καλύφθηκαν κατά τη διάρκεια των μαθημάτων
Διαβάστε περισσότεραΕπιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:
Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε
Διαβάστε περισσότεραΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α
ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 18/02/2013 ΘΕΜΑ Α ΑΠΑΝΤΗΣΕΙΣ Α1. α. Παραβιάζει τα κριτήρια της καθοριστικότητας και της περατότητας β. Αιτιολόγηση: ο αλγόριθμος παραβιάζει το κριτήριο
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Κεφάλαια 2, 7, 8
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΕΡΩΤΗΣΕΙΣ ΘΕΩΡΙΑΣ Κεφάλαια 2, 7, 8 1. Δώστε τον ορισμό του αλγόριθμου. Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6)
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 Διάρκεια: 3 ώρες Επίπεδο Δυσκολίας: 5/5 Ενότητες (2 6) Σημείωση: Απαντήστε στις κόλλες όλα τα θέματα. Παραδώστε καθαρογραμμένο γραπτό ΘΕΜΑ Α Α1. Απαντήστε
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Να γράψετε τι γνωρίζετε για την ολίσθηση. Ακολούθως, να αναφέρετε έναν αλγόριθμο στον οποίο χρησιμοποιείται. (Μονάδες 6) Η διαδικασία κατά την οποία ένας
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ / ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ / ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΙΟΥΛΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 ΘΕΜΑ Α
Διαβάστε περισσότερα2.1 Βασικές Έννοιες ΣΠΟΥ ΑΙΟΤΗΤΑ ΑΛΓΟΡΙΘΜΩΝ
ΚΕΦΑΛΑΙΟ 2 2.1 Βασικές Έννοιες Αλγόριθµος ονοµάζεται µία πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και ε- κτελέσιµων σε πεπερασµένο χρόνο µε σκοπό την επίλυση ενός προβλήµατος. Με τον όρο ενέργειες
Διαβάστε περισσότεραΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ
ΒΑΙΚΕ ΕΝΝΟΙΕ ΑΓΟΡΙΘΜΩΝ ΕΡΩΤΗΕΙ ΑΞΙΟΟΓΗΗ ΕΡΩΤΗΕΙ ΩΤΟΥ ΑΘΟΥ 1. ηµειώστε το γράµµα αν η πρόταση είναι σωστή και το γράµµα αν είναι λάθος. 1. Ο αλγόριθµος πρέπει να τερµατίζεται µετά από εκτέλεση πεπερασµένου
Διαβάστε περισσότεραΑΝΑΛΥΤΙΚΟ ΠΡΟΓΡΑΜΜΑ ΕΞΕΤΑΣΗΣ
Το αναλυτικό πρόγραμμα στο οποίο βασίζεται η εξέταση είναι το αναλυτικό πρόγραμμα του Μαθήματος Κατεύθυνσης Πληροφορική Επιστήμη Η.Υ της Γ Ενιαίου Λυκείου Γενικός Σκοπός Το μάθημα κατεύθυνσης της στη Γ'
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ Αλφάβητο και τύποι δεδομένων Σταθερές και μεταβλητές Τελεστές, συναρτήσεις και εκφράσεις Εντολή εκχώρησης Εντολές εισόδου - εξόδου Δομή
ΠΕΡΙΕΧΟΜΕΝΑ Αλφάβητο και τύποι δεδομένων Σταθερές και μεταβλητές Τελεστές, συναρτήσεις και εκφράσεις Εντολή εκχώρησης Εντολές εισόδου - εξόδου Δομή προγράμματος Εισαγωγή Κάθε γλώσσα προγραμματισμού, όπως
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 2 Βασικές έννοιες αλγορίθµων
ΚΕΦΑΛΑΙΟ 2 Βασικές έννοιες αλγορίθµων Αλγόριθµος : Είναι ένα σύνολο βηµάτων, αυστηρά καθορισµένων κι εκτελέσιµων σε πεπερασµένο χρόνο, που οδηγούν στην επίλυση ενός προβλήµατος. Χαρακτηριστικά ενός σωστού
Διαβάστε περισσότεραΠΕΡΙΕΧΟΜΕΝΑ. Εντολές επιλογής Εντολές επανάληψης
ΠΕΡΙΕΧΟΜΕΝΑ Εντολές επιλογής Εντολές επανάληψης Εισαγωγή Στο προηγούμενο κεφάλαιο αναπτύξαμε προγράμματα, τα οποία ήταν πολύ απλά και οι εντολές των οποίων εκτελούνται η μία μετά την άλλη. Αυτή η σειριακή
Διαβάστε περισσότεραΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PASCAL
8.1. Εισαγωγή ΚΕΦΑΛΑΙΟ 8 Η ΓΛΩΣΣΑ PACAL Πως προέκυψε η γλώσσα προγραμματισμού Pascal και ποια είναι τα γενικά της χαρακτηριστικά; Σχεδιάστηκε από τον Ελβετό επιστήμονα της Πληροφορικής Nicklaus Wirth to
Διαβάστε περισσότεραΑριθμητικές Λογικές - Σύνθετες εκφράσεις, εντολή εκχώρησης, εντολές εισόδου εξόδου, Δομές ακολουθίας/ επιλογής/ επανάληψης
Αριθμητικές Λογικές - Σύνθετες εκφράσεις, εντολή εκχώρησης, εισόδου εξόδου, Δομές ακολουθίας/ επιλογής/ επανάληψης Ενότητες βιβλίου: 7.7-7.9, 2.4.1 Ώρες διδασκαλίας: 2 Αριθμητικές Λογικές - Σύνθετες εκφράσεις
Διαβάστε περισσότερα1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης
1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 1 Παράγραφοι: 2.2.1 ορισμός αλγορίθμου (σελ.19) 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34) 34) ΑΛΓΟΡΙΘΜΟΣ Πεπερασμένη σειρά βημάτων
Διαβάστε περισσότερα2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης
Διαβάστε περισσότεραΑνάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Εκχώρηση Τιμών
Εκχώρηση Τιμών 1. Σύνταξη Με την εντολή εκχώρησης: α) Ονομάζουμε μια θέση μνήμης, και β) προσδιορίζουμε το περιεχόμενό της Η σύνταξη της εντολής εκχώρησης είναι: ή
Διαβάστε περισσότεραΠληροφορική 2. Αλγόριθμοι
Πληροφορική 2 Αλγόριθμοι 1 2 Τι είναι αλγόριθμος; Αλγόριθμος είναι ένα διατεταγμένο σύνολο από σαφή βήματα το οποίο παράγει κάποιο αποτέλεσμα και τερματίζεται σε πεπερασμένο χρόνο. Ο αλγόριθμος δέχεται
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 2 ο
Ποια είναι η μορφή ενός αλγόριθμου με ψευδοκώδικα; Αρχίζει πάντα με τη λέξη Αλγόριθμος Αλγόριθμος Στη συνέχεια παρεμβάλλονται οι Εντολές Και τελειώνει με τη λέξη Τέλος Τέλος Εντολές Ποιες είναι οι αλγοριθμικές
Διαβάστε περισσότερα18/ 07/ Σελίδα 1 6
ΜΑΘΗΜΑ ΙΑΓΩΝΙΣΜΑ ΥΛΗ ΗΜΕΡΟΜΗΝΙΑ Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον 1o Επαναληπτικό ιαγώνισµα Εισαγωγικά στοιχεία αλγορίθµων - οµή Ακολουθίας 18/ 07/ 2016 Θέµα Α A1. Να γράψετε στο τετράδιό
Διαβάστε περισσότερα2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ
2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΗΝ ΨΕΥΔΟΓΛΩΣΣΑ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
ENOTHTA 2 ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦ2 0 ΣΕΛΙΔΕΣ ΣΧ. ΒΙΒΛΙΟΥ ΑΠΟ 23ΕΩΣ ΚΑΙ 39 ΑΠΟ 64 ΕΩΣ ΚΑΙ 66 ΒΑΣΙΚΑ ΣΤΟΙΧΕΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΥ ΚΕΦ7 0 ΣΕΛΙΔΕΣ ΣΧ. ΒΙΒΛΙΟΥ ΑΠΟ 145 ΕΩΣ ΚΑΙ 157 ΕΠΙΛΟΓΗ ΚΑΙ ΕΠΑΝΑΛΗΨΗ ΚΕΦ8
Διαβάστε περισσότεραα=5, β=7, γ=20, δ=αληθής
γραπτή εξέταση στo μάθημα ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ' ΛΥΚΕΙΟΥ Τάξη: Γ Λυκείου Τμήμα: Βαθμός: Ονοματεπώνυμο: Καθηγητές: Θ Ε Μ Α A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς
Διαβάστε περισσότεραΣχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ
Σχεδίαση και Ανάλυση Αλγορίθμων Ενότητα 1: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ - ΟΡΙΣΜΟΙ Δημήτριος Κουκόπουλος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διαχείρισης Πολιτισμικού Περιβάλλοντος και Νέων Τεχνολογιών ΠΕΡΙΕΧΟΜΕΝΟ
Διαβάστε περισσότεραΕισαγωγικά στοιχεία αλγορίθμων -Δομή Ακολουθίας Δομή Επιλογής ΗΜΕΡΟΜΗΝΙΑ 10/ 07/ 2017 ΟΝΟΜΑΤ/ΜΟ ΒΑΘΜΟΣ
ΜΑΘΗΜΑ Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΔΙΑΓΩΝΙΣΜΑ 1o Επαναληπτικό Διαγώνισμα ΥΛΗ Εισαγωγικά στοιχεία αλγορίθμων -Δομή Ακολουθίας Δομή Επιλογής ΗΜΕΡΟΜΗΝΙΑ 10/ 07/ 2017 ΟΝΟΜΑΤ/ΜΟ ΒΑΘΜΟΣ
Διαβάστε περισσότεραΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ
ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1
Διαβάστε περισσότερα1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες εντολές (μορφές) της;
1. Πότε χρησιμοποιούμε την δομή επανάληψης; Ποιες είναι οι διάφορες (μορφές) της; Η δομή επανάληψης χρησιμοποιείται όταν μια σειρά εντολών πρέπει να εκτελεστεί σε ένα σύνολο περιπτώσεων, που έχουν κάτι
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:
ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Να γράψετε τι γνωρίζετε για την ολίσθηση. Ακολούθως, να αναφέρετε έναν αλγόριθμο στον οποίο χρησιμοποιείται.
Διαβάστε περισσότεραΔιάγραμμα Ροής (Flow Chart )
Διάγραμμα Ροής (Flow Chart ) Είναι ένας γραφικός τρόπος αναπαράστασης των αλγορίθμων ( διαγραμματική τεχνική ) Σύμβολα Διαγράμματος Ροής Ένα διάγραμμα ροής αποτελείται : Από ένα σύνολο γεωμετρικών σχημάτων,
Διαβάστε περισσότεραΑΛΓΟΡΙΘΜΟΙ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ
Έλεγχος πληρότητας: Πρέπει να καταχωρούνται στα δεδομένα ο αριθμός της αίθουσας καθώς και ο όροφος στον οποίο βρίσκεται ώστε να μην υπάρχουν αμφιβολίες σε ποια αίθουσα αντιστοιχεί το εμβαδόν που υπολογίστηκε.
Διαβάστε περισσότεραΤάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης:
Τάξη: Γ Λυκείου Κατεύθυνση: Τεχνολογική Μάθημα: Ανάπτυξη Εφαρμογών σε Προγ/κό Περιβάλλον Είδος Εξέτασης: Διαγώνισμα Ημερομηνία Εξέτασης: Ονοματεπώνυμο: Βαθμός: Θέμα 1 ο - (0) Α. Να γράψετε στο τετράδιό
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ σε ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΑΕΠΠ) Δημιουργία - Συγγραφή Costas Chatzinikolas info@costaschatzinikolas.gr Τελευταία Ενημέρωση:
Διαβάστε περισσότερα1 Ο Λύκειο Ρόδου. Β ΓΕΛ ΕισΑρχΕπ Η/Υ. Γεωργαλλίδης Δημήτρης
1 Ο Λύκειο Ρόδου Β ΓΕΛ ΕισΑρχΕπ Η/Υ Γεωργαλλίδης Δημήτρης Μάθημα 2 Παράγραφοι: 2.2.7 Εντολές και δομές αλγορίθμου (σελ.. 31-34): 34): Δεδομένα, Αποτελέσματα, Μεταβλητές, εκφράσεις, σταθερές, DIV, MOD Συντάξτε
Διαβάστε περισσότεραΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ
ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ ΜΕΡΛΙΑΟΥΝΤΑΣ ΣΤΕΦΑΝΟΣ, ΠΕ19 ΚΕΦΑΛΑΙΟ 3 Αλγόριθμοι 3. Αλγόριθμοι 2 3. Αλγόριθμοι 3.1 Η έννοια του αλγορίθμου 3.2 Χαρακτηριστικά αλγορίθμου 3.3 Ανάλυση αλγορίθμων
Διαβάστε περισσότεραΕισαγωγή στις Αρχές της επιστήμης των ΗΥ
Εισαγωγή στις Αρχές της επιστήμης των ΗΥ Ερωτήσεις και ασκήσεις για επανάληψη 1. Τι είναι πρόβλημα (σελ 14) 2. Ποιες είναι οι κατηγορίες προβλημάτων με βάση την επίλυση; Δώστε τον ορισμό για κάθε μια κατηγορία.
Διαβάστε περισσότεραΨευδοκώδικας. November 7, 2011
Ψευδοκώδικας November 7, 2011 Οι γλώσσες τύπου ψευδοκώδικα είναι ένας τρόπος περιγραφής αλγορίθμων. Δεν υπάρχει κανένας τυπικός ορισμός της έννοιας του ψευδοκώδικα όμως είναι κοινός τόπος ότι οποιαδήποτε
Διαβάστε περισσότεραΒασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος Κων/νος Φλώρος
Βασικοί τύποι δεδομένων (Pascal) ΕΠΑ.Λ Αλίμου Γ Πληροφορική Δομημένος Προγραμματισμός (Ε) Σχολ. Ετος 2012-13 Κων/νος Φλώρος Απλοί τύποι δεδομένων Οι τύποι δεδομένων προσδιορίζουν τον τρόπο παράστασης των
Διαβάστε περισσότερατου προγράμματος diagrama_rohs.zip )
έκδοση 3.20 ( κατέβασμα του προγράμματος diagrama_rohs.zip ) Το πρόγραμμα αυτό γράφτηκε όχι να γίνει μια γλώσσα προγραμματισμού, αλλά να γίνει ένα εργαλείο για την εισαγωγή των μαθητών στον προγραμματισμό.
Διαβάστε περισσότεραΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ
Επιμέλεια Παρουσίασης: Δημήτρης Σπανουδάκης 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 2ο: ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΜΕΡΟΣ Α : ΒΑΣΙΚΟΙ ΟΡΙΣΜΟΙ ΠΕΡΙΓΡΑΦΗ ΚΑΙ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΩΝ 2
Διαβάστε περισσότεραΠειραματικό Γενικό Λύκειο Π.Κ. Σχ. Έτος
1 ο Κεφάλαιο: Ανάλυση Προβλήματος Σύντομη Θεωρία Πρόβλημα: Μία κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση δεν είναι γνωστή, ούτε προφανής. Υπάρχει μία σχετικότητα στον ορισμό? Υπάρχουν
Διαβάστε περισσότεραΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. Α2. Να αναφέρετε ονομαστικά: i) τα αλγοριθμικά κριτήρια ii) τους τρόπους αναπαράστασης αλγορίθμου. (μονάδες 10)
ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ / Γ3 + Γ4 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΥΓΟΥΣΤΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον
Διαβάστε περισσότεραA. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα. το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη.
ΘΕΜΑ 1 ο A. Να γράψετε τον αριθμό της κάθε μιας από τις παρακάτω προτάσεις και δίπλα το γράμμα Σ, εάν είναι σωστή, ή το γράμμα Λ, εάν είναι λανθασμένη. 1. Η συνθήκη Χ = Α_Μ (Χ) είναι πάντα αληθής, για
Διαβάστε περισσότερα