Κεφάλαιο 2.2: Αλγόριθμοι. Επιστήμη ΗΥ Κεφ. 2.2 Καραμαούνας Πολύκαρπος

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Κεφάλαιο 2.2: Αλγόριθμοι. Επιστήμη ΗΥ Κεφ. 2.2 Καραμαούνας Πολύκαρπος"

Transcript

1 Κεφάλαιο 2.2: Αλγόριθμοι 1

2 2.2.1 Ορισμός αλγορίθμου Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Η έννοια του αλγορίθμου δεν συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής. π.χ. το δέσιμο της γραβάτας Χαρακτηριστικά αλγορίθμου Καθοριστικότητα: Κάθε εντολή ενός αλγορίθμου χρειάζεται να καθορίζεται χωρίς καμία αμφιβολία για τον τρόπο εκτέλεσής της. Περατότητα: Κάθε αλγόριθμος πρέπει να τελειώνει μετά από πεπερασμένα βήματα εκτέλεσης των εντολών του. Αποτελεσματικότητα: Κάθε εντολή ενός αλγορίθμου χρειάζεται να είναι διατυπωμένη απλά και κατανοητά, ώστε να μπορεί να εκτελεστεί επακριβώς και σε πεπερασμένο μήκος χρόνου. Είσοδος: Κάθε αλγόριθμος χρειάζεται να δέχεται ένα σύνολο μεταβλητών εισόδου (που μπορεί να είναι και το κενό σύνολο), οι οποίες αποτελούν τα δεδομένα του αλγορίθμου. Έξοδος: Κάθε αλγόριθμος χρειάζεται να δημιουργεί κάποιο αποτέλεσμα. 2

3 2.2.4 Βασικοί τύποι αλγορίθμων Σειριακοί: χρησιμοποιούν μία κεντρική μονάδα επεξεργασίας και οι εντολές τους εκτελούνται σε σειρά η μία μετά την άλλη. Παράλληλοι: χρησιμοποιούν πολλαπλές κεντρικές μονάδες επεξεργασίας όπου ορισμένες ή μία σειρά από εντολές εκτελούνται παράλληλα (ταυτόχρονα). Ενδιαφέρον ζήτημα αποτελεί ο εντοπισμός του καλύτερου τρόπου υποδιαίρεσης των προβλημάτων, για να είναι εφικτή η επεξεργασία τους από πολλούς επεξεργαστές παράλληλα Αναπαράσταση αλγορίθμου Φυσική γλώσσα: η αναπαράσταση γίνεται με την ομιλούμενη γλώσσα. Μπορούν να παρατηρηθούν ασάφειες στις οδηγίες. Ψευδοκώδικα ή ψευδογλώσσα: υποθετική γλώσσα με στοιχεία από κάποιες γλώσσες προγραμματισμού, παραλείποντας λεπτομέρειες. Γλώσσα προγραμματισμού: τεχνητή γλώσσα, για να δημιουργεί προγράμματα για τον υπολογιστή. Οπτικές γλώσσες προγραμματισμού: η αναπαράσταση γίνεται μέσα από το γραφικό χειρισμό προγραμματιστικών στοιχείων. Κειμενικές γλώσσες προγραμματισμού: η αναπαράσταση γίνεται με τη χρήση σειρών κειμένου που περιλαμβάνουν λέξεις, αριθμούς και σημεία στίξης. 3

4 2.2.5 Αναπαράσταση αλγορίθμου Διαγραμματική αναπαράσταση: γραφικός τρόπος παρουσίασης του αλγόριθμου με διάγραμμα ροής, όπου η περιγραφή γίνεται με τη χρήση γεωμετρικών σχημάτων - συμβόλων, όπου το καθένα δηλώνει μια συγκεκριμένη ενέργεια. 4

5 2.2.5 Αναπαράσταση αλγορίθμου 5

6 2.2.6 Δεδομένα και αναπαράστασή τους Τύποι δεδομένων: 1. Ακέραιος π.χ. 3, -9, Πραγματικός π.χ Χαρακτήρας π.χ. 3ο Γενικό Λύκειο 4. Λογικός π.χ. έγγαμος 6

7 2.2.6 Δεδομένα και αναπαράστασή τους Eξίσωση του Wirth : Aλγόριθμοι + Δομές Δεδομένων = Προγράμματα Πίνακας: στατική ΔΔ κατάλληλη για την προσωρινή αποθήκευση ενός συνόλου τιμών τιμών γνωστού πλήθους (ή γνωστού μέγιστου πλήθους), του ίδιου τύπου. Βασικά χαρακτηριστικά: Όνομα Τύπος (Ακέραιος / Πραγματικός / Χαρακτήρες / Λογικός) Διαστάσεις: 1, 2, 3,... Μέγεθος ανά διάσταση 7

8 2.2.6 Δεδομένα και αναπαράστασή τους Στοίβα: στατική ΔΔ που υλοποιείται με έναν 1-Δ πίνακα και έναν ακέραιο δείκτη «κορυφή» (top). Μέθοδος επεξεργασίας: «τελευταίο μέσα, πρώτο έξω» (LIFO: last in first out). Όπως για παράδειγμα: μία στοίβα από πιάτα, ή η στοίβα χρόνου εκτέλεσης των υποπρογραμμάτων (κεφ.10). Κύριες λειτουργίες: Ώθηση (push): ο top αυξάνεται κατά 1 και το νέο στοιχείο ωθείται στο Σ[top]. Έλεγχος για υπερχείλιση (stack overflow) ήθηση σε γεμάτη στοίβα Απώθηση (pop): απωθείται το κορυφαίο στοιχείο (Σ[top]) και ο top μειώνεται κατά 1. Έλεγχος για υποχείλιση (stack underflow) απώθηση σε άδεια στοίβα 8

9 2.2.6 Δεδομένα και αναπαράστασή τους Ουρά: στατική ΔΔ που υλοποιείται με έναν 1-Δ πίνακα και δύο ακέραιους δείκτες «εμπρός» (front) και «πίσω» (rear) Μέθοδος επεξεργασίας: «πρώτο μέσα, πρώτο έξω» (FIFO: first in first out). Όπως για παράδειγμα: μία ουρά σε ταμείο, ή η ουρά ενός εκτυπωτή. Κύριες λειτουργίες: Εισαγωγή (enqueue): ο rear αυξάνεται κατά 1 και το νέο στοιχείο εισάγεται στο Q[rear]. Έλεγχος για έλλειψη ελεύθερου χώρου εισαγωγή σε γεμάτη ουρά Εξαγωγή (dequeue): εξάγεται το μπροστινό στοιχείο (Q[front]) και ο front αυξάνεται κατά 1. Έλεγχος για αποτυχημένη εξαγωγή εξαγωγή σε άδεια ουρά 9

10 2.2.6 Δεδομένα και αναπαράστασή τους Συνδεδεμένη λίστα (linked list): τα στοιχεία βρίσκονται σε μη συνεχόμενες θέσεις της μνήμης. Ένα δεδομένο συσχετίζεται με το επόμενό του με τη βοήθεια κάποιου δείκτη (pointer). Δένδρο (tree): δομή που αποτελείται από ένα σύνολο κόμβων, οι οποίοι συνδέονται με ακμές. Υπάρχει μόνο ένας κόμβος, από τον οποίο μόνο ξεκινούν ακμές, που ονομάζεται ρίζα (root). Σε όλους τους άλλους κόμβους καταλήγει μία ακμή και ξεκινούν καμία, μία ή περισσότερες. Οι κόμβοι στους οποίους καταλήγουν μόνο ακμές, ονομάζονται φύλλα. Γράφος (graph): αποτελείται από κόμβους και ακμές χωρίς όμως κάποια ιεράρχηση. 10

11 2.2.6 Δεδομένα και αναπαράστασή τους Στατικές δομές: έχουν σταθερό μέγεθος και μπορούν να κατακρατήσουν συγκεκριμένο πλήθος στοιχείων. Δυναμικές δομές: δεν έχουν σταθερό μέγεθος και το πλήθος των στοιχείων τους μπορεί να μεγαλώνει ή να μικραίνει καθώς στη δομή εισάγονται νέα δεδομένα ή διαγράφονται άλλα. Γραμμικές δομές: μπορεί να ορισθεί κάποια σχέση διάταξης για δύο οποιαδήποτε διαδοχικά στοιχεία τους (κάποιο στοιχείο θα είναι πρώτο και κάποιο τελευταίο). Μη γραμμικές δομές: δεν μπορεί να οριστεί μια σχέση διάταξης. Π.χ.τα δένδρα και οι γράφοι. Ανάλογα με το είδος της χρησιμοποιούμενης μνήμης (κύρια ή βοηθητική). Δομές δεδομένων κύριας μνήμης π.χ. πίνακας Δομές δεδομένων βοηθητικής μνήμης ή αρχεία δεδομένων (data files). Απαρτίζονται από έναν αριθμό ομοειδών εγγραφών (records). Κάθε εγγραφή διαθέτει ορισμένα πεδία (fields), που περιέχουν δεδομένα για μια οντότητα (π.χ. μαθητής) 11

12 2.2.7 Εντολές και δομές αλγορίθμου Αλφάβητο: το σύνολο των χαρακτήρων που χρησιμοποιούνται στην ψευδογλώσσα, με όλα τα γράμματα της ελληνικής ή αγγλικής αλφαβήτου πεζά και κεφαλαία τους αριθμητικούς χαρακτήρες 0-9 ειδικούς χαρακτήρες Κάθε αλγόριθμος διατυπωμένος σε ψευδογλώσσα έχει την εξής δομή: Αλγόριθμος όνομα_αλγορίθμου εντολές Τέλος όνομα_αλγορίθμου Δεσμευμένες λέξεις: οι λέξεις που έχουν αυστηρά καθορισμένο νόημα στην ψευδογλώσσα Σχόλια: οτιδήποτε μπαίνει μετά από το ειδικό σύμβολο! Χρησιμότητα: δεν επηρεάζουν τη λειτουργία του προγράμματος, αλλά το κάνουν πιο ευανάγνωστο π.χ. μισθός 1.05 * μισθός! προσαύξηση μισθού κατά 5% 12

13 Εκχώρηση, Είσοδος και Έξοδος τιμών Σταθερές: τιμές οποιουδήποτε τύπου, που δεν αλλάζουν κατά την εκτέλεση του προγράμματος. Μεταβλητές: ορισμός, τύποι, δήλωση, παραδείγματα (λειτουργία του ΗΥ: δέσμευση χώρου στη μνήμη με ΑΠΡΟΣΔΙΟΡΙΣΤΕΣ τιμές). Αντιστοιχίζονται από το μεταγλωττιστή σε συγκεκριμένες θέσεις μνήμης. Επιτρεπτά ονόματα - κανόνες: όλες οι μεταβλητές να δηλώνονται, όχι 2 μεταβλητές με το ίδιο όνομα, ονόματα σχετικά με τα δεδομένα πιο ευανάγνωστο, όχι δεσμευμένες λέξεις, όχι κενά ενδιάμεσα, όχι αριθμοί στην αρχή, όχι ειδικά σύμβολα. Οι σταθερές και οι μεταβλητές καλούνται και τελεστέοι. Εντολή εκχώρησης: <μεταβλητή> <έκφραση> Κανόνες: το αριστερό και το δεξιό μέρος πρέπει να είναι του ίδιου τύπου στο αριστερό μέρος: μόνο μεταβλητή οι μεταβλητές στο δεξί μέρος πρέπει να ΜΗΝ είναι απροσδιόριστες στο αριστερό και το δεξιό μέρος μπορεί να εμφανίζεται η ίδια μεταβλητή. 13

14 Εκχώρηση, Είσοδος και Έξοδος τιμών 14

15 Εκχώρηση, Είσοδος και Έξοδος τιμών Εντολή εισόδου ΔΙΑΒΑΣΕ: Σύνταξη: Διάβασε <λίστα μεταβλητών> Λειτουργία: προκαλείται μία «παύση» στην εκτέλεση των εντολών και το πρόγραμμα περιμένει από τον χρήστη την εισαγωγή τόσων τιμών, όσες και οι μεταβλητές της λίστας. Η κάθε εισαγόμενη τιμή, αποθηκεύεται στην αντίστοιχη μεταβλητή. Παραδείγματα: (άνθρωπος ΗΥ) για εισαγωγή δεδομένων (στην προστακτική, διότι ο προγραμματιστής-σκηνοθέτης διατάζει τον ΗΥ, ενώ ο χρήστης είναι ο θεατής του έργου). Διαφορά της εντολής Διάβασε από την εκχώρηση ( ) π.χ. 2βάθμια 15

16 Εκχώρηση, Είσοδος και Έξοδος τιμών Εντολή εξόδου ΓΡΑΨΕ: Σύνταξη: Γράψε <λίστα εκφράσεων> Λειτουργία: το πρόγραμμα υπολογίζει τις τελικές τιμές των εκφράσεων και τις εμφανίζει στην οθόνη Παραδείγματα: (ΗΥ άνθρωπος) για εξαγωγή δεδομένων Εναλλακτική είσοδος και έξοδος τιμών παρέχεται με τη χρήση των εντολών Δεδομένα και Αποτελέσματα. Η εντολή Δεδομένα γράφεται δεύτερη (μετά την εντολή Αλγόριθμος) και περιγράφει εντός των συμβόλων //... // τα δεδομένα του αλγορίθμου, δηλαδή τις μεταβλητές που έχουν ήδη κάποια τιμή. Αντίστοιχα η εντολή Αποτελέσματα γράφεται προτελευταία και περιέχει τις μεταβλητές εξόδου. Αν η εκφώνηση λέει «Να γραφεί αλγόριθμος ο οποίος να διαβάζει...»», τότε πρέπει να χρησιμοποιηθεί η εντολή Διάβασε. Αν η εκφώνηση λέει «Δίνεται ένας πίνακας Α. Να γραφεί αλγόριθμος ο οποίος...», τότε πρέπει να χρησιμοποιηθεί η εντολή Δεδομένα. 16

17 Δομή ακολουθίας Αριθμητικοί τελεστές: +, -, *, /, ^, ΑΚΕΡΑΙΟΙ τελεστές: div, mod (x div y, x mod y: y 0 και x, y > 0) π.χ.: x mod 2 = 0? άρτιος? x mod y = 0? o x πολλαπλάσιο του y? x mod 10 = τελευταίο ψηφίο του x ανάλυση 2/3/4ψήφιου κλπ αριθμού στα ψηφία του (Παρατηρήσεις: α) η σύγκριση των λεκτικών τιμών γίνεται με αλφαβητική σειρά. π.χ. ΑΛΕΞΑΝΔΡΟΣ > ΑΛΕΞΑΝΔΡΑ β) η σύγκριση λογικών δεδομένων έχει έννοια μόνο στην περίπτωση του ίσου (=) και του διάφορου (<>)) 17

18 Δομή ακολουθίας Η δομή ακολουθίας χρησιμοποιείται για την αντιμετώπιση προβλημάτων στα οποία οι εντολές εκτελούνται η μία μετά την άλλη. 18

19 Λογικοί τελεστές Δομή ακολουθίας i. Τελεστής ΚΑΙ (σύζευξη) Σύνταξη: <λογική έκφραση 1> ΚΑΙ <λογική έκφραση 2> Λειτουργία: ισούται με Αληθής όταν όλες οι εκφράσεις που συνδέει, είναι Αληθείς Παράδειγμα: x > 0 KAI x <= 12 ( x (0, 12]) ii. Τελεστής H (διάζευξη) Σύνταξη: <λογική έκφραση 1> Η <λογική έκφραση 2> Λειτουργία: ισούται με Αληθής όταν τουλάχιστον μία από τις εκφράσεις που συνδέει, είναι Αληθής Παράδειγμα: x <= 0 Η x > 12 ( x (-, 0] (12, + ) ) 19

20 Δομή ακολουθίας Λογικοί τελεστές iii. Τελεστής OXI (άρνηση) Σύνταξη: ΟΧΙ <λογική έκφραση> Λειτουργία: ισούται με την αντίθετη τιμή της έκφρασης Παραδείγματα: 1. ΟΧΙ (x = 7) ( x <> 7) 2. OXI (y > 11) ( y <= 11) 3. OXI (z > -3 KAI z <= 18) ( z <= -3 H z > 18) 4. OXI (ω <= 0 Η ω > 21) ( ω > 0 ΚΑΙ ω <= 21) Πίνακας Αληθείας 20

21 Δομή ακολουθίας Συναρτήσεις: ΛΝ(x) για το φυσικό λογάριθμο δεκαδικό μέρος του Χ = Χ Α_Μ(Χ), Α_Τ(Χ) = T_Ρ(Χ^2) 21

22 Δομή ακολουθίας Αριθμητικές εκφράσεις: ορισμός, όλες οι μεταβλητές, πρέπει να έχουν τιμή!, ιεραρχία: 1. Παρενθέσεις, συναρτήσεις 2. Ύψωση σε δύναμη 3. Πολλαπλασιασμός και διαίρεση, div, mod 4. Πρόσθεση και αφαίρεση π.χ. 2+3*4 = 14 ενώ (2+3)*4 = 20 Ιεραρχία λογικών τελεστών: 1. Παρενθέσεις 2. ΟΧΙ 3. ΚΑΙ 4. Η 22

23 Ιεραρχία τελεστών: 1. Αριθμητικοί (+, -, κλπ.) 2. Συγκριτικοί (>, =, κλπ.) 3. Λογικοί (ΚΑΙ, Η, ΟΧΙ) Δομή ακολουθίας 23

24 Δομή επιλογής Δομή επιλογής: λαμβάνονται κάποιες αποφάσεις με βάση κάποια κριτήρια. Περιλαμβάνει τον έλεγχο μιας συνθήκης που μπορεί να έχει δύο τιμές (Αληθής ή Ψευδής) και ακολουθεί η απόφαση εκτέλεσης εντολών με βάση την τιμή αυτής της συνθήκης. Ως συνθήκη εννοείται μια λογική έκφραση στην οποία υπάρχει τουλάχιστον ένας σχεσιακός τελεστής Απλή Δομή Αν ΤέλοςΑν Σύνταξη: Αν <συνθήκη> τότε <εντολές> ΤέλοςΑν ή Αν <συνθήκη> τότε <εντολή> Παράδειγμα Να διαβαστεί ένας αριθμός και να εμφανιστεί η απόλυτη τιμή του. 24

25 Δομή επιλογής Σύνθετη Δομή Αν - Αλλιώς - ΤέλοςΑν Σύνταξη: Αν <συνθήκη> τότε <εντολές1> Αλλιώς <εντολές2> ΤέλοςΑν 25

26 Δομή επιλογής Δομή Αν πολλαπλής επιλογής Αν η συνθήκη_k είναι αληθής, εκτελούνται οι εντολές_k και η συνέχεια είναι η επόμενη εντολή από το Τέλος_αν. Εφόσον καμία συνθήκη δεν είναι αληθής, τότε εκτελούνται οι εντολές_αλλιώς. Οι εντολές_αλλιώς χρησιμοποιούνται κατά περίσταση. 26

27 Δομή επιλογής 27

28 Δομή επιλογής Εμφωλευμένες εντολές επιλογής: σε όλες τις προηγούμενες περιπτώσεις όπου αναφέρεται εντολή ή εντολές, τίποτα δεν απαγορεύει αυτές οι εντολές να είναι επίσης εντολές επιλογής. Αναφερόμαστε τότε σε εμφωλευμένες εντολές επιλογής. 28

29 Δομή επανάληψης Δομή επανάληψης: κατάλληλη για προβλήματα όπου χρειάζεται μια σειρά εντολών να επαναληφθεί πολλές φορές. Οι εντολές που συγκροτούν μια εντολή επανάληψης αποκαλούνται βρόχος (αγγλ. loop). αριθμός επαναλήψεων [0, ) περιπτώσεις χρήσης (άγνωστο πλήθος επαναλήψεων που μπορεί να είναι και 0). 29

30 Δομή επανάληψης 30

31 Δομή επανάληψης 31

32 Δομή επανάληψης αριθμός επαναλήψεων [1, ) περιπτώσεις χρήσης (άγνωστο πλήθος επαναλήψεων που είναι τουλάχιστον 1). 32

33 Δομή επανάληψης 33

34 Δομή Για-από-μέχρι Δομή επανάληψης Σύνταξη: για <μετρητής> από <αρχική> μέχρι <τελική> [μεβήμα β] <εντολές> τέλοςεπανάληψης όταν το βήμα δεν αναγράφεται, εννοείται το 1 Εντός της Για δεν επιτρέπεται η τροποποίηση της τιμής του μετρητή 34

35 Δομή επανάληψης Λειτουργία: Ο ΗΥ σαρώνει μέσω του μετρητή το διάστημα: και σε κάθε επανάληψη, εκτελεί τις εντολές. Πιθανός αριθμός επαναλήψεων: [0, + ) βήμα = 0 και αρχική <= τελική επαναλήψεις β 0 και αρχική = τελική 1 επανάληψη β >= 0 και αρχική > τελική ή β < 0 και αρχική < τελική 0 επαναλήψεις σε κάθε άλλη περίπτωση, επαναλήψεις = Χρήση: όταν έχω επανάληψη ΓΝΩΣΤΟΥ πλήθους επαναλήψεων. 35

36 Εμφάνιση των 100 πρώτων ακεραίων: για x από 1 μέχρι 100 Γράψε x Δομή επανάληψης Εμφάνιση των αριθμών: 50, 49,..., 32, 31, 30 για y από 50 μέχρι 30 μεβήμα -1 Γράψε y Εμφάνιση των αριθμών: 1.7, 1.8,..., 9.7, 9.8 για z από 1.7 μέχρι 9.8 μεβήμα 0.1 Γράψε z Εμφάνιση της λέξης Καλημέρα χίλιες φορές για κ από 1 μέχρι 1000 Γράψε Καλημέρα 36

37 Δομή επανάληψης Εμφάνιση των 100 πρώτων πολλαπλασίων του 7 : για κ από 7 μέχρι 700 μεβήμα 7 Γράψε κ Υπολογισμός του αθροίσματος S = : S 0 για x από 5 μέχρι 500 μεβήμα 5 S S + x Γράψε S Υπολογισμός του γινομένου Γ = 3 x 6 x 9 x 12 x x 300: Γ 1 για x από 3 μέχρι 300 μεβήμα 3 Γ Γ * x Γράψε Γ 37

38 Δομή επανάληψης Υπολογισμός του αθροίσματος S = : S 0 για x από 1 μέχρι 99 μεβήμα 2 S S + x^2 Γράψε S Υπολογισμός του α β, β>0, β Z: Διάβασε α, β Δ 1 για x από 1 μέχρι β Δ Δ * α Γράψε Δ ποιό το πλήθος των επαναλήψεων και τί εμφανίζουν: 1. για κ από 5 μέχρι 35 μεβήμα 7, Γράψε κ 2. για λ από 14 μέχρι 31 μεβήμα 0, Γράψε λ 3. για μ από 15 μέχρι 4 μεβήμα 2, Γράψε μ 4. για ν από 11 μέχρι 23 μεβήμα -3, Γράψε ν 5. για λ από 11 μέχρι 11 μεβήμα 4, Γράψε λ 6. για x από 314 μέχρι 5729 μεβήμα 7 (τύπος 774 επαναλήψεις) 7. Τ 1; για x από 1 μέχρι Τ; Γράψε x; T T + 1; TέλοςΕπανάληψης 38

39 Υπολογισμός της παράστασης: S1 0 S2 0 για x από 1 μέχρι 99 μεβήμα 2 S1 S1 + x^2 S2 S2 + (x+1)^3 S S1 / S2 Γράψε S Δομή επανάληψης Υπολογισμός της παράστασης: S = S 0 Δ 10 για x από 1 μέχρι 10 S S + x^δ Δ Δ 1 Γράψε S 39

40 Δομή επανάληψης ποιό το πλήθος των επαναλήψεων και τί εμφανίζει: για x από 1 μέχρι 9 μεβήμα 2 για y από 11 μέχρι 2 μεβήμα -3 Γράψε x, y Εμφάνιση όλων των συνδυασμών ρίψης 2 ζαριών: για x από 1 μέχρι 6 για y από 1 μέχρι 6 Γράψε x, y Εμφάνιση όλων των ενδείξεων ενός ψηφιακού ρολογιού από την ώρα 0:0:0 έως και 23:59:59: για ω από 0 μέχρι 23 για λ από 0 μέχρι 59 για δ από 0 μέχρι 59 Γράψε ω, :, λ, :, δ 40

41 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων 1. Προσπέλαση (access), πρόσβαση σε ένα κόμβο με σκοπό να εξετασθεί ή να τροποποιηθεί το περιεχόμενό του. 2. Εισαγωγή (insertion), δηλαδή η προσθήκη νέων κόμβων σε μία υπάρχουσα δομή. 3. Διαγραφή (deletion), που αποτελεί το αντίστροφο της εισαγωγής, δηλαδή ένας κόμβος αφαιρείται από μία δομή. 4. Αναζήτηση (searching), κατά την οποία προσπελαύνονται οι κόμβοι μιας δομής, προκειμένου να εντοπιστούν ένας ή περισσότεροι που έχουν μια δεδομένη ιδιότητα. 5. Ταξινόμηση (sorting), όπου οι κόμβοι μιας δομής διατάσσονται κατά αύξουσα ή φθίνουσα σειρά. 6. Αντιγραφή (copying), κατά την οποία όλοι οι κόμβοι ή μερικοί από τους κόμβους μίας δομής αντιγράφονται σε μία άλλη δομή. 7. Συγχώνευση (merging), κατά την οποία δύο ή περισσότερες δομές συνενώνονται σε μία ενιαία δομή. 8. Διαχωρισμός (separation), που αποτελεί την αντίστροφη πράξη της συγχώνευσης. 41

42 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Πίνακας: στατική ΔΔ κατάλληλη για την προσωρινή αποθήκευση ενός συνόλου τιμών τιμών γνωστού πλήθους (ή γνωστού μέγιστου πλήθους), του ίδιου τύπου. Βασικά χαρακτηριστικά: Όνομα Τύπος (Ακέραιος / Πραγματικός / Χαρακτήρες / Λογικός) Διαστάσεις: 1, 2, 3,... Μέγεθος ανά διάσταση 42

43 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων α) Μονοδιάστατος (1-Δ) π.χ. ύψη 100 μαθητών Mεταβλητές Πραγματικός: Υ[100] 43

44 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων β) Δισδιάστατος (2-Δ) π.χ. ΜΟ βαθμών 6 τμημάτων της Γ Λυκείου σε 5 μαθήματα Mεταβλητές Πραγματικός: Β[6, 5] ή Mεταβλητές Πραγματικός: Β[5, 6] Πλήθος κελιών = 6 x 5 = 30 44

45 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων γ) Τρισδιάστατος (3-Δ) π.χ. ΜΟ βαθμών 6 τμημάτων της Γ Λυκείου σε 5 μαθήματα για 2 τετράμηνα Mεταβλητές Πραγματικός: Β[6, 5, 2] Πλήθος κελιών = 6 x 5 x 2 = 60 45

46 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Σάρωση κελιών πίνακα α) Μονοδιάστατος (1-Δ) - π.χ. ύψη 100 μαθητών για i από 1 μέχρι 100 Αναφορά (Διάβασε/Γράψε/ ) στο κελί Υ[i] για i από 1 μέχρι 100 μεβήμα -1 Αναφορά (Διάβασε/Γράψε/ ) στο κελί Υ[i] για i από 1 μέχρι 100 Αναφορά (Διάβασε/Γράψε/ ) στο κελί Υ[101 - i] ή 46

47 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Σάρωση κελιών πίνακα β) Δισδιάστατος (2-Δ) - π.χ. ΜΟ βαθμών 6 τμημάτων της Γ Λυκείου σε 5 μαθήματα i. Κατά γραμμές: ii. Κατά στήλες: για i από 1 μέχρι 6 για j από 1 μέχρι 5 Αναφορά (Διάβασε/Γράψε/ ) στο κελί B[i, j] για j από 1 μέχρι 5 για i από 1 μέχρι 6 Αναφορά (Διάβασε/Γράψε/ ) στο κελί B[i, j] 47

48 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Σάρωση κελιών πίνακα γ) Τρισδιάστατος (3-Δ) - π.χ. ΜΟ βαθμών 6 τμημάτων της Γ Λυκείου σε 5 μαθήματα για 2 τετράμηνα για i από 1 μέχρι 6 για j από 1 μέχρι 5 για k από 1 μέχρι 2 Αναφορά (Διάβασε/Γράψε/ ) στο κελί B[i, j, k] 48

49 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 1-Δ πίνακα Αλγόριθμος ο οποίος: Διαβάζει σε κατάλληλο πίνακα τους βαθμούς 90 μαθητών σε ένα διαγώνισμα στην 20θμια κλίμακα (0-20), με έλεγχο εγκυρότητας. για i από 1 μέχρι 90 ΑρχήΕπανάληψης Διάβασε Β[i] ΜέχριςΌτου (Β[i] >= 0 ΚΑΙ Β[i] <= 20) 49

50 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 1-Δ πίνακα Βρίσκει τον μέσο όρο όλων των μαθητών. S 0 για i από 1 μέχρι 90 S S + Β[i] MO S / 90 Γράψε ΜΟ 50

51 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 1-Δ πίνακα Βρίσκει τον μέσο όρο των 45 πρώτων και των 45 τελευταίων μαθητών. S1 0 S2 0 για i από 1 μέχρι 45 S1 S1 + Β[i] S2 S2 + Β[45 + i] MO1 S1 / 45 MO2 S2 / 45 Γράψε ΜΟ1, MO2 51

52 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Βρίσκει τον μέσο όρο των άριστων (>18) μαθητών. SA 0 ΠΑ 0 για i από 1 μέχρι 90 Αν (Β[i] > 18) τότε SΑ SΑ + Β[i] ΠΑ ΠΑ + 1 ΤέλοςΑν Αν (ΠΑ <> 0) τότε MOΑ SΑ / ΠΑ Γράψε ΜΟΑ Αλλιώς Γράψε κανένας ΤέλοςΑν 52

53 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 1-Δ πίνακα Βρίσκει τον μεγαλύτερο βαθμό και τον αριθμό (1-90) του μαθητή που τον έχει (χωρίς ισοτιμία). max B[1] θmax 1 για i από 2 μέχρι 90 Αν (Β[i] > max) τότε max Β[i] θmax i ΤέλοςΑν Γράψε max, θmax 53

54 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Βρίσκει τον μικρότερο βαθμό και τον αριθμό του μαθητή(ών) που τον έχει (με ισοτιμία) min B[1] για i από 2 μέχρι 90 Αν (Β[i] < min) τότε min Β[i] ΤέλοςΑν Γράψε min για i από 1 μέχρι 90 Αν (Β[i] = min) τότε Γράψε i ΤέλοςΑν 54

55 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Βρίσκει τα % ποσοστά των «κακών» (<9) και των «άριστων» (>18) ΠΑ 0 ΠΚ 0 για i από 1 μέχρι 90 Αν (Β[i] < 9) τότε ΠΚ ΠΚ + 1 ΑλλιώςΑν (Β[i] > 18) τότε ΠΑ ΠΑ + 1 ΤέλοςΑν Γράψε ΠK/90*100, ΠΑ/90*100, % 55

56 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Βρίσκει τον μικρότερο βαθμό των «άριστων» (>18) mina 21! κάτι μεγάλο για i από 2 μέχρι 90 Αν (Β[i] > 18 ΚΑΙ Β[i] < minα) τότε minα Β[i] ΤέλοςΑν Αν (minα <> 21) τότε Γράψε mina Αλλιώς Γράψε κανένας ΤέλοςΑν 56

57 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 2-Δ πίνακα Αλγόριθμος ο οποίος: Διαβάζει σε κατάλληλους πίνακες: τα ονόματα των 80 πωλητών μιας εταιρείας τις μηνιαίες πωλήσεις τους ( ) για τους 12 μήνες ενός έτους ( 0) Δίνεται ο Μ[12] με τα ονόματα των 12 μηνών (Ιανουάριος,, Δεκέμβριος) για i από 1 μέχρι 80 Διάβασε Ο[i] για j από 1 μέχρι 12 ΑρχήΕπανάληψης Διάβασε Π[i, j] ΜέχριςΌτου (Π[i, j] >= 0) 57

58 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 2-Δ πίνακα Βρίσκει τον ΜΟ ετησίων πωλήσεων όλων των πωλητών S 0 για i από 1 μέχρι 80 για j από 1 μέχρι 12 S S + Π[i,j] MO S /(80*12) Γράψε ΜΟ 58

59 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 2-Δ πίνακα Εμφανίζει τον κάθε πωλητή με το ΜΟ των πωλήσεών του για i από 1 μέχρι 80 s 0 για j από 1 μέχρι 12 s s + Π[i,j] MOΠ[i] s / 12 Γράψε O[i], MOΠ[i] 59

60 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Επεξεργασία 2-Δ πίνακα Εμφανίζει τον κάθε μήνα με το ΜΟ των πωλήσεών του για j από 1 μέχρι 12 s 0 για i από 1 μέχρι 80 s s + Π[i,j] MOΜ[j] s / 80 Γράψε M[j], MOM[j] 60

61 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Αναζήτηση τιμής σε πίνακα ( 3.6) Σειριακή αναζήτηση εντοπισμός της 1 ης εμφάνισης Διάβασε x βρ Ψευδής i 1 Όσο (i <= 100 KAI βρ = Ψευδής) επανάλαβε Αν (x = A[i]) τότε βρ Αληθής θέση i Αλλιώς i i + 1 ΤέλοςΑν Αν (βρ = Αληθής) τότε Γράψε Βρέθηκε στο κελί:, θέση Αλλιώς Γράψε Δεν βρέθηκε ΤέλοςΑν 61

62 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Αναζήτηση τιμής σε πίνακα Εντοπισμός όλων των εμφανίσεων Διάβασε x βρ Ψευδής για i από 1 μέχρι 100 Αν (x = A[i]) τότε βρ Αληθής Γράψε Βρέθηκε στο κελί:, i ΤέλοςΑν Αν (βρ = Ψευδής) τότε Γράψε Δεν βρέθηκε ΤέλοςΑν 62

63 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων Αναζήτηση τιμής σε πίνακα Εντοπισμός όλων των εμφανίσεων σε 2-Δ πίνακα Διάβασε x βρ Ψευδής για i από 1 μέχρι 50 για j από 1 μέχρι 100 Αν (x = A[i, j]) τότε βρ Αληθής Γράψε Βρέθηκε στη γραμμή:, i, στήλη:, j ΤέλοςΑν ΤέλοςΑν Αν (βρ = Ψευδής) τότε Γράψε Δεν βρέθηκε ΤέλοςΑν 63

64 2.2.8 Βασικές αλγοριθμικές λειτουργίες σε δομές δεδομένων 64

65 Κεφάλαιο Ασκήσεις 65

66 Κεφάλαιο Ασκήσεις 66

67 Κεφάλαιο Ασκήσεις 67

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ

2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ 2.2.5 ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΛΓΟΡΙΘΜΟΥ Προκειμένου να επιτευχθεί η «ακριβής περιγραφή» ενός αλγορίθμου, χρησιμοποιείται κάποια γλώσσα που μπορεί να περιγράφει σειρές ενεργειών με τρόπο αυστηρό,

Διαβάστε περισσότερα

Ενδεικτικές Ερωτήσεις Θεωρίας

Ενδεικτικές Ερωτήσεις Θεωρίας Ενδεικτικές Ερωτήσεις Θεωρίας Κεφάλαιο 2 1. Τι καλούμε αλγόριθμο; 2. Ποια κριτήρια πρέπει οπωσδήποτε να ικανοποιεί ένας αλγόριθμος; 3. Πώς ονομάζεται μια διαδικασία που δεν περατώνεται μετά από συγκεκριμένο

Διαβάστε περισσότερα

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με:

Αλγόριθμοι Αναπαράσταση αλγορίθμων Η αναπαράσταση των αλγορίθμων μπορεί να πραγματοποιηθεί με: Αλγόριθμοι 2.2.1. Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά εντολών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Τα κυριότερα χρησιμοποιούμενα

Διαβάστε περισσότερα

Κεφάλαιο 7 Βασικά Θέματα Προγραμματισμού. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1

Κεφάλαιο 7 Βασικά Θέματα Προγραμματισμού. Εφαρμογές Πληροφορικής Κεφ. 7 Καραμαούνας Πολύκαρπος 1 Κεφάλαιο 7 Βασικά Θέματα Προγραμματισμού Καραμαούνας Πολύκαρπος 1 1. Τύποι και Μεταβλητές Τύποι δεδομένων: 1. Ακέραιος π.χ. 3, -9, 2004 2. Πραγματικός π.χ. 3.14 3. Χαρακτήρας π.χ. 3ο Ενιαίο Λύκειο 4. Λογικός

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Τα δεδομένα (data) είναι η αφαιρετική αναπαράσταση της πραγματικότητας και συνεπώς μία απλοποιημένη όψη της. Η συλλογή των ακατέργαστων δεδομένων και ο συσχετισμός

Διαβάστε περισσότερα

Εισαγωγή στις Αρχές της επιστήμης των Η/Υ. Β Λυκείου

Εισαγωγή στις Αρχές της επιστήμης των Η/Υ. Β Λυκείου Εισαγωγή στις Αρχές της επιστήμης των Η/Υ Β Λυκείου Επιστήμη των υπολογιστών μελετά Θεωρητικά θεμέλια Φύση πληροφοριών Φύση αλγορίθμων Φύση υπολογισμών Και τις τεχνολογικές εφαρμογές τους Από τις σκοπιές

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων Πληροφορικής 2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών 3. Ο αλγόριθμος

Διαβάστε περισσότερα

Εισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο

Εισαγωγή - Βασικές έννοιες. Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος A Εξάμηνο Εισαγωγή - Βασικές έννοιες Ι.Ε.Κ ΓΛΥΦΑΔΑΣ Τεχνικός Τεχνολογίας Internet Αλγοριθμική Ι (Ε) Σχολ. Ετος 2012-13 A Εξάμηνο Αλγόριθμος Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς Βασικές Έννοιες Αλγορίθμων Δομή Ακολουθίας (κεφ. 2 και 7 σχολικού βιβλίου) 1. Οι μεταβλητές αντιστοιχίζονται από τον μεταγλωττιστή κάθε

Διαβάστε περισσότερα

Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού

Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού ( 2.1) Η έννοια Αλγόριθμος. Κριτήρια αλγορίθμου: 1. Είσοδος (προαιρετική, π.χ. γεννήτρια τυχαίων αριθμών) 2. Έξοδος 3. Καθοριστικότητα (καμμία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3ο: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΜΕΡΟΣ 2 ο : ΣΤΟΙΒΑ & ΟΥΡΑ ΙΣΤΟΣΕΛΙΔΑ ΜΑΘΗΜΑΤΟΣ: http://eclass.sch.gr/courses/el594100/ ΣΤΟΙΒΑ 2 Μια στοίβα

Διαβάστε περισσότερα

Εισαγωγή στις Αρχές της επιστήμης των Η/Υ. Β Λυκείου

Εισαγωγή στις Αρχές της επιστήμης των Η/Υ. Β Λυκείου Εισαγωγή στις Αρχές της επιστήμης των Η/Υ Β Λυκείου Επιστήμη των υπολογιστών μελετά Θεωρητικά θεμέλια Φύση πληροφοριών Φύση αλγορίθμων Φύση υπολογισμών Και τις τεχνολογικές εφαρμογές τους Από τις σκοπιές

Διαβάστε περισσότερα

Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού

Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού Κεφάλαια 2, 7, 8 Βασικές έννοιες αλγορίθμων - προγραμματισμού ( 2.1) Η έννοια Αλγόριθμος. Κριτήρια αλγορίθμου: 1. Είσοδος (προαιρετική, π.χ. γεννήτρια τυχαίων αριθμών) 2. Έξοδος 3. Καθοριστικότητα (καμμία

Διαβάστε περισσότερα

Πρόβλημα 29 / σελίδα 28

Πρόβλημα 29 / σελίδα 28 Πρόβλημα 29 / σελίδα 28 Πρόβλημα 30 / σελίδα 28 Αντιμετάθεση / σελίδα 10 Να γράψετε αλγόριθμο, οποίος θα διαβάζει τα περιεχόμενα δύο μεταβλητών Α και Β, στη συνέχεια να αντιμεταθέτει τα περιεχόμενά τους

Διαβάστε περισσότερα

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός

Δομές Ακολουθίας- Επιλογής - Επανάληψης. Δομημένος Προγραμματισμός Δομές Ακολουθίας- Επιλογής - Επανάληψης Δομημένος Προγραμματισμός 1 Βασικές Έννοιες αλγορίθμων Σταθερές Μεταβλητές Εκφράσεις Πράξεις Εντολές 2 Βασικές Έννοιες Αλγορίθμων Σταθερά: Μια ποσότητα που έχει

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2. Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 2 Α1. Ο αλγόριθμος είναι απαραίτητος μόνο για την επίλυση προβλημάτων πληροφορικής Α2. Ο αλγόριθμος αποτελείται από ένα πεπερασμένο σύνολο εντολών Α3. Ο αλγόριθμος

Διαβάστε περισσότερα

Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής.

Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. Κεφάλαιο 2 - Πρόβλημα 2.1.1. Η έννοια του προβλήματος Πρόβλημα είναι μια κατάσταση η οποία χρήζει αντιμετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή, ούτε προφανής. 2.1.2. Κατηγορίες προβλημάτων

Διαβάστε περισσότερα

Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι

Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον υποδειγματική διδασκαλία Κεφ. 3 Δομές Δεδομένων & αλγόριθμοι Αραποστάθης Μάριος Καθηγητής Πληροφορικής Πειραματικού Λυκείου Βαρβακείου http://users.sch.gr/mariosarapostathis

Διαβάστε περισσότερα

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ. Πίνακες και βασικές επεξεργασίες αυτών ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ Πίνακες και βασικές επεξεργασίες αυτών Σκοπιές από τις οποίες μελετά η πληροφορική τα δεδομένα Γλωσσών προγραμματισμού Υλικού Δομών δεδομένων Ανάλυσης δεδομένων 22/11/08 Παρουσιάσεις

Διαβάστε περισσότερα

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ )

Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ ) Κεφάλαιο 2 ο Βασικές Έννοιες Αλγορίθμων (σελ. 25 48) Τι είναι αλγόριθμος; Γ ΛΥΚΕΙΟΥ Αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρονικό διάστημα,

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΔΙΑΦΟΡΩΝ ΤΥΠΩΝ ΣΤΟ ΚΕΦΑΛΑΙΟ 2.2

ΕΡΩΤΗΣΕΙΣ ΔΙΑΦΟΡΩΝ ΤΥΠΩΝ ΣΤΟ ΚΕΦΑΛΑΙΟ 2.2 1. 1-Σ, 2-Σ, 3-Λ, 4-Σ, 5-Σ 2. 1-α, 2-α, 3-β, 4-β, 5-α, 6-α, 7-α, 8-β, 9-β, 10-β 3. Τι ονομάζουμε αλγόριθμο; Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο

Διαβάστε περισσότερα

! Δεν μπορούν να λυθούν όλα τα προβλήματα κάνοντας χρήση του παρ/λου προγ/σμου ΑΡΧΗ ΝΑΙ Διάβα σε a Εκτύπ ωσε a > a 0 ΟΧΙ ΤΕΛΟΣ Σύμβολα διαγράμματος ροής 1 Ακέραιος τύπος 14 0-67 2 Πραγματικός τύπος

Διαβάστε περισσότερα

Κάθε στοιχείο που γίνεται αντιληπτό με μία από τις πέντε αισθήσεις μας

Κάθε στοιχείο που γίνεται αντιληπτό με μία από τις πέντε αισθήσεις μας Κάθε στοιχείο που γίνεται αντιληπτό με μία από τις πέντε αισθήσεις μας είναι ένα δεδομένο. Τα δεδομένα μπορούν να αναπαραστήσουν αφαιρετικά την πραγματικότητα δηλαδή να μας δείχνουν μία απλοποιημένη όψη

Διαβάστε περισσότερα

Οι δομές δεδομένων στοίβα και ουρά

Οι δομές δεδομένων στοίβα και ουρά Καθηγητής Πληροφορικής Απαγορεύεται η αναπαραγωγή των σημειώσεων χωρίς αναφορά στην πηγή Βίντεο: https://youtu.be/j8petzztqty Οι δομές δεδομένων στοίβα και ουρά Εισαγωγή Στα πλαίσια του μαθήματος της Ανάπτυξης

Διαβάστε περισσότερα

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι:

Οι βασικές λειτουργίες (ή πράξεις) που γίνονται σε μια δομή δεδομένων είναι: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ Μια δομή δεδομένων στην πληροφορική, συχνά αναπαριστά οντότητες του φυσικού κόσμου στον υπολογιστή. Για την αναπαράσταση αυτή, δημιουργούμε πρώτα ένα αφηρημένο μοντέλο στο οποίο προσδιορίζονται

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος

Προγραμματισμός Η/Υ. Δομές Δεδομένων. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Προγραμματισμός Η/Υ Δομές Δεδομένων ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομές Δεδομένων Τα δεδομένα ενός προβλήματος αποθηκεύονται στον υπολογιστή,

Διαβάστε περισσότερα

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ. Όνομα:.. Βαθμός: /100

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ. Όνομα:.. Βαθμός: /100 ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ Α.Ε.Π.Π. Γ ΤΕΧΝΟΛΟΓΙΚΗΣ Όνομα:.. Βαθμός: /100 Θέμα Α 1. Να χαρακτηρίσετε τις προτάσεις με Σ, αν είναι σωστές και Λ, αν είναι λάθος. a. Οι πίνακες δεν μπορούν να έχουν περισσότερες από δύο

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο ΚΕΦΑΛΑΙΟ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ο ΚΕΦΑΛΑΙΟ 1) Τι είναι πρόβλημα (σελ. 3) 2) Τι είναι δεδομένο, πληροφορία, επεξεργασία δεδομένων (σελ. 8) 3) Τι είναι δομή ενός προβλήματος (σελ. 8)

Διαβάστε περισσότερα

ΑΕΠΠ Ερωτήσεις θεωρίας

ΑΕΠΠ Ερωτήσεις θεωρίας ΑΕΠΠ Ερωτήσεις θεωρίας Κεφάλαιο 1 1. Τα δεδομένα μπορούν να παρέχουν πληροφορίες όταν υποβάλλονται σε 2. Το πρόβλημα μεγιστοποίησης των κερδών μιας επιχείρησης είναι πρόβλημα 3. Για την επίλυση ενός προβλήματος

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά.

Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. AeppAcademy.com facebook.com/aeppacademy Γεια. Σου προτείνω να τυπώσεις τις επόμενες τέσσερις σελίδες σε ένα φύλο διπλής όψης και να τις έχεις μαζί σου για εύκολη αναφορά. Καλή Ανάγνωση & Καλή Επιτυχία

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός...

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Διάρκεια 3 ώρες. Όνομα... Επώνυμο... Βαθμός... 1 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Διάρκεια 3 ώρες Στοιχεία Μαθητή: Όνομα... Επώνυμο... Βαθμός... 2 Θεμα Α (30%) Α1 ΣΩΣΤΟ - ΛΑΘΟΣ 1. Ένα υποπρόγραμμα δεν μπορεί να κληθεί περισσότερες

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον ΚΕΦΑΛΑΙΟ 2 2.4 Βασικές συνιστώσες/εντολές ενός αλγορίθμου 2.4.1 Δομή ακολουθίας ΚΕΦΑΛΑΙΟ 7 7.1 7.9 Σταθερές (constants): Προκαθορισμένες τιμές που παραμένουν

Διαβάστε περισσότερα

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω:

Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: Επιλέξτε Σωστό ή Λάθος για καθένα από τα παρακάτω: 1ο ΓΕΛ Καστοριάς K εφ. 1 σχολικού βιβλίου 1. Επιλύσιμο είναι ένα πρόβλημα για το οποίο ξέρουμε ότι έχει λύση, αλλά αυτή δεν έχει βρεθεί ακόμη. 2. Για

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Κεφάλαιο 3 ο ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Να γίνει περιγραφή της δομής δεδομένων Στοίβα. Στη δομή δεδομένων στοίβα τα δεδομένα στοιβάζονται το ένα πάνω στο άλλο. Σχηματικά οι λεπτομέρειες μιας δομής δεδομένων στοίβας μπορούν

Διαβάστε περισσότερα

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 7 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ και ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ 2.1 Να δοθεί ο ορισμός

Διαβάστε περισσότερα

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου

Ορισµοί κεφαλαίου. Σηµαντικά σηµεία κεφαλαίου Ορισµοί κεφαλαίου Αλγόριθµος είναι µια πεπερασµένη σειρά ενεργειών, αυστηρά καθορισµένων και εκτελέσιµων σε πεπερασµένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήµατος. Σηµαντικά σηµεία κεφαλαίου Κριτήρια

Διαβάστε περισσότερα

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή

Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή Ερωτήσεις πολλαπλής επιλογής - Κεφάλαιο 3 1. Κάθε δομή μπορεί να χρησιμοποιηθεί σε οποιοδήποτε πρόβλημα ή εφαρμογή 2. Δυναμικές είναι οι δομές που αποθηκεύονται σε συνεχόμενες θέσεις μνήμης 3. Ένας πίνακας

Διαβάστε περισσότερα

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ

ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ Α) Να γράψετε στο τετράδιό σας τον αριθμό κάθε πρότασης και δίπλα το γράμμα "Σ", αν είναι σωστή, ή το γράμμα "Λ", αν είναι λανθασμένη. (Μονάδες 25) 1. Ένα αδόμητο πρόβλημα είναι ταυτόχρονα και ανοικτό

Διαβάστε περισσότερα

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια

Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός προβλήματος. Ο αλγόριθμος πρέπει να τηρεί κάποια κριτήρια Είσοδος:

Διαβάστε περισσότερα

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης

Περιεχόμενα. Δομές δεδομένων. Τεχνικές σχεδίασης αλγορίθμων. Εισαγωγή στον προγραμματισμό. Υποπρογράμματα. Επαναληπτικά κριτήρια αξιολόγησης Περιεχόμενα Δομές δεδομένων 37. Δομές δεδομένων (θεωρητικά στοιχεία)...11 38. Εισαγωγή στους μονοδιάστατους πίνακες...16 39. Βασικές επεξεργασίες στους μονοδιάστατους πίνακες...25 40. Ασκήσεις στους μονοδιάστατους

Διαβάστε περισσότερα

Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες.

Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες. Ημερομηνία: 15/04/15 Διάρκεια διαγωνίσματος: 180 Εξεταζόμενο μάθημα: Προγραμματισμός Γ Λυκείου Υπεύθυνος καθηγητής: Παπαδόπουλος Πέτρος ΘΕΜΑ Α Α1. Χαρακτηρίστε τις παρακάτω προτάσεις ως σωστές ή λανθασμένες.

Διαβάστε περισσότερα

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ )

Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ ) Κεφάλαιο 7 ο Βασικές Έννοιες Προγραμματισμού (σελ. 147 159) Για τις γλώσσες προγραμματισμού πρέπει να έχουμε υπόψη ότι: Κάθε γλώσσα προγραμματισμού σχεδιάζεται για συγκεκριμένο σκοπό, δίνοντας ιδιαίτερη

Διαβάστε περισσότερα

Πρόβλημα 37 / σελίδα 207

Πρόβλημα 37 / σελίδα 207 Πρόβλημα 37 / σελίδα 207 2.5. Ôåóô áõôïáîéïëüãçóçò Δίνονται οι παρακάτω ομάδες προτάσεων. Σε κάθε μία από αυτές, να κάνετε τις απαραίτητες διορθώσεις ώστε να ισχύουν οι προτάσεις 1. Η αναπαράσταση

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ 1 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΟ 3 ο : ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ & ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 9 ο : ΠΙΝΑΚΕΣ ΜΕΡΟΣ 1 ο : ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΠΙΝΑΚΕΣ 1 & 2 ΔΙΑΣΤΑΣΕΩΝ http://eclass.sch.gr/courses/el594100/

Διαβάστε περισσότερα

Άσκηση 1. Ποια από τα κάτω αλφαριθμητικά είναι αποδεκτά ως ονόματα μεταβλητών σε έναν αλγόριθμο i. Τιμή

Άσκηση 1. Ποια από τα κάτω αλφαριθμητικά είναι αποδεκτά ως ονόματα μεταβλητών σε έναν αλγόριθμο i. Τιμή Θεωρία επισκόπηση 1 Η μεταβλητή είναι ένα συμβολικό όνομα κάτω από το οποίο βρίσκεται μια τιμή, η οποία μπορεί να μεταβάλλεται κατά την εκτέλεση του αλγορίθμου 1. Τύποι Δεδομένων (Μεταβλητών και Σταθερών)

Διαβάστε περισσότερα

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση:

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Λάθος, 3. Σωστό, 4. Λάθος, 5. Λάθος. Ποια η διαφορά μεταξύ διερμηνευτή και μεταγλωττιστή; Απάντηση: ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Η ταξινόμηση είναι μια από τις βασικές

Διαβάστε περισσότερα

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σελίδα 1 από 12 www.lazarinis.gr ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ 2011 - ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ Σε συνεργασία µε τις εκδόσεις ΕΛΛΗΝΟΕΚ ΟΤΙΚΗ κυκλοφορούν τα βοηθήµατα «Ανάπτυξη Εφαρµογών σε Προγραµµατιστικό Περιβάλλον:

Διαβάστε περισσότερα

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Κεφάλαια 2,7,8

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον. Κεφάλαια 2,7,8 Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Επιμέλεια : Δρεμούσης Παντελής Κεφάλαια 2,7,8 1. Τι είναι αλγόριθμος; Μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο

Διαβάστε περισσότερα

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ ΣΤΑΘΕΡΕΣ είναι τα μεγέθη που δεν μεταβάλλονται κατά την εκτέλεση ενός αλγόριθμου. Εκτός από τις αριθμητικές σταθερές (7, 4, 3.5, 100 κλπ), τις λογικές σταθερές (αληθής και ψευδής)

Διαβάστε περισσότερα

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ

ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ ΚΕΦΑΛΑΙΟ 2 ο ΚΕΦΑΛΑΙΟ 7 ο ΕΡΩΤΗΣΕΙΣ ΓΕΝΙΚΑ ΠΕΡΙ ΑΛΓΟΡΙΘΜΩΝ 1. Έστω ότι ο καθηγητής σας δίνει δύο αριθμούς και σας ζητάει να του πείτε πόσο είναι το άθροισμά τους. Διατυπώστε

Διαβάστε περισσότερα

Επιµέλεια Θοδωρής Πιερράτος

Επιµέλεια Θοδωρής Πιερράτος εδοµένα οµές δεδοµένων και αλγόριθµοι Τα δεδοµένα είναι ακατέργαστα γεγονότα. Η συλλογή των ακατέργαστων δεδοµένων και ο συσχετισµός τους δίνει ως αποτέλεσµα την πληροφορία. Η µέτρηση, η κωδικοποίηση,

Διαβάστε περισσότερα

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ

3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 3 ΟΥ και 9 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΠΙΝΑΚΩΝ ΣΤΟΙΒΑΣ ΚΑΙ ΟΥΡΑΣ Α ΜΕΡΟΣ ΘΕΩΡΙΑ ΓΙΑ ΠΙΝΑΚΕΣ 3.1

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ ΘΕΜΑΤΑ ΘΕΜΑ A Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν

Διαβάστε περισσότερα

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων; ΦΡΟΝΤΙΣΤΗΡΙΑΚΟΣ ΟΡΓΑΝΙΣΜΟΣ ΘΕΜΑ Α ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ 01/03/2015 Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1.

Διαβάστε περισσότερα

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΕΠΠ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΕΠΠ ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ 2008 - ΑΕΠΠ ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή

Διαβάστε περισσότερα

Επανάληψη Θεωρίας. Καστούμης Γιώργος

Επανάληψη Θεωρίας. Καστούμης Γιώργος ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΨΗ ΘΕΩΡΙΑΣ ΚΕΦΑΛΑΙΟ 1 Ορισµοί: Με τον όρο πρόβληµα εννοείται µια κατάσταση η οποία χρήζει αντιµετώπισης, απαιτεί λύση, η δε λύση της δεν είναι γνωστή,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1-6 και

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ ΕΙΣΑΓΩΓΗ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ενότητα 7: Αφαίρεση δεδόμενων Πασχαλίδης Δημοσθένης Τμήμα Διαχείρισης Εκκλησιαστικών Κειμηλίων Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.

Διαβάστε περισσότερα

ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμίας από τις παρακάτω προτάσεις 1-5 και, δίπλα, τη λέξη ΣΩΣΤΟ, αν η πρόταση είναι σωστή, ή τη λέξη ΛΑΘΟΣ,

Διαβάστε περισσότερα

ΘΕΜΑ 1 Ο Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος:

ΘΕΜΑ 1 Ο Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ Ον/μο:.. Γ Λυκείου Ύλη:3-6-9 Τεχν. Κατ. 09-03-14 ΘΕΜΑ 1 Ο Α1. Δίνονται οι παρακάτω εντολές από ένα τμήμα προγράμματος: ΔΙΑΒΑΣΕ α, β x α > β Να χαρακτηρίσετε αν κάθε μία από

Διαβάστε περισσότερα

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ

ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ. ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΑΠΟΦΟΙΤΟΙ ΣΕΙΡΑ: ΗΜΕΡΟΜΗΝΙΑ: 05/03/2012 ΑΠΑΝΤΗΣΕΙΣ ΘΕΜΑ Α Α1. Α2. 1. ΣΩΣΤΟ 1 στ 2. ΛΑΘΟΣ 2 δ 3. ΣΩΣΤΟ 3 ε 4. ΛΑΘΟΣ 4 β 5. ΣΩΣΤΟ 5 γ Α3. α. (σελ. 183-184) Στοίβα: ώθηση, απώθηση Ουρά:

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ) 2013 ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω

Διαβάστε περισσότερα

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης ΑΠΑΝΤΗΣΕΙΣ Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης 1 Τετάρτη, 29 Μα ου 2013 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον

Διαβάστε περισσότερα

Θεωρητικές Ασκήσεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο Μέρος

Θεωρητικές Ασκήσεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο Μέρος ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. 1 ο Μέρος Θέμα 1 Δίνονται τα παρακάτω τμήματα αλγορίθμου Α. βαλίτσα Αληθής εισιτήριο Αληθής ταξίδι βαλίτσα και εισιτήριο Τι τιμή θα έχει η λογική μεταβλητή

Διαβάστε περισσότερα

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ

ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ ΚΕΦΑΛΑΙΟ 2 ΑΛΓΟΡΙΘΜΟΙ ΔΟΜΗ ΑΚΟΛΟΥΘΙΑΣ ΘΕΩΡΙΑ Ερωτήσεις Σωστό / Λάθος 1. Η έννοια του αλγορίθμου συνδέεται αποκλειστικά και μόνο με προβλήματα της Πληροφορικής (ΕΞΕΤΑΣΕΙΣ 2003, 2007) 2. Ο αλγόριθμος μπορεί

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1. Να

Διαβάστε περισσότερα

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις.

8. Λεξιλόγιο μιας γλώσσας είναι όλες οι ακολουθίες που δημιουργούνται από τα στοιχεία του αλφαβήτου της γλώσσας, τις λέξεις. ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΚΕΦΑΛΑΙΑ 1-6 ΟΝΟΜΑ: ΗΜΕΡΟΜΗΝΙΑ: ΒΑΘΜΟΣ: ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό,

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 6/04/2014 ΘΕΜΑ 1 Ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις και δίπλα τη λέξη Σωστό, αν είναι

Διαβάστε περισσότερα

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ Καλλιόπη Μαγδαληνού ΕΠΙΚΕΦΑΛΙΔΑ ΠΡΟΓΡΑΜΜΑΤΟΣ ΔΗΛΩΣΕΙΣ ΣΤΑΘΕΡΩΝ ΔΗΛΩΣΕΙΣ ΜΕΤΑΒΛΗΤΩΝ ΕΝΤΟΛΕΣ πρόγραμμα τεστ σταθερές π = 3.14 μεταβλητές πραγματικές : εμβαδό, ακτίνα αρχή

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ)

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ) ΘΕΜΑ Α : A1. Να γράψετε στο φύλλο απαντήσεων τον αριθμό καθεμιάς

Διαβάστε περισσότερα

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Σωστό, 3. Λάθος, 4. Λάθος, 5. Λάθος

ΘΕΜΑ Α. Λύση: 1. Σωστό, 2. Σωστό, 3. Λάθος, 4. Λάθος, 5. Λάθος ΘΕΜΑ Α Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. 1. Όταν αριθμητικοί και συγκριτικοί

Διαβάστε περισσότερα

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΑΝΑΚΕΦΑΛΑΙΩΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ Γ' ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 26 ΑΠΡΙΛΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΛΥΣΕΙΣ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: 7 Α1. Κάθε σωστή απάντηση

Διαβάστε περισσότερα

θέμα των Πανελλαδικών Εξετάσεων

θέμα των Πανελλαδικών Εξετάσεων Θέμα 2000. 1. Σωστό (Σ) Λάθος (Λ). i. Η περατότητα ενός αλγορίθμου αναφέρεται στο γεγονός ότι καταλήγει στη λύση του προβλήματος μετά από πεπερασμένο αριθμό βημάτων (εντολών). Μονάδες 4 ii. Για να αναπαραστήσουμε

Διαβάστε περισσότερα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα Ονοματεπώνυμο: ΘΕΜΑ 1 A. Να δώσετε τον ορισμό της καθοριστικότητας και της περατότητας καθώς και ένα παράδειγμα για την κάθε μία. B. Με ποιο τρόπο μπορεί να πάρει τιμή μια

Διαβάστε περισσότερα

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ Ερωτήσεις Ανάπτυξης 1. Να περιγράψετε τη δομή της λίστας και τη διαδικασία εισαγωγής και διαγραφής ενός κόμβου. 3.9.1 Σελ 71-72

Διαβάστε περισσότερα

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ

2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΙΜΕΛΕΙΑ: ΜΑΡΙΑ Σ. ΖΙΩΓΑ ΚΑΘΗΓΗΤΡΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΘΕΩΡΙΑ 2 ΟΥ και 8 ΟΥ ΚΕΦΑΛΑΙΟΥ ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΔΟΜΗ ΕΠΑΝΑΛΗΨΗΣ 1) Πότε χρησιμοποιείται η δομή επανάληψης

Διαβάστε περισσότερα

Α5. Να γράψετε στο τετράδιό σας τους αριθμούς της στήλης Α και δίπλα το γράμμα της στήλης Β που αντιστοιχεί σωστά. 1. χαρακτήρες α.

Α5. Να γράψετε στο τετράδιό σας τους αριθμούς της στήλης Α και δίπλα το γράμμα της στήλης Β που αντιστοιχεί σωστά. 1. χαρακτήρες α. Α Π Α Ν Τ Η Σ Ε Ι Σ Θ Ε Μ Α Τ Ω Ν Π Α Ν Ε Λ Λ Α Δ Ι Κ Ω Ν Ε Ξ Ε Τ Α Σ Ε Ω Ν 2 0 1 3 Α Ν Α Π Τ Υ Ξ Η Ε Φ Α Ρ Μ Ο Γ Ω Ν Σ Ε Π Ρ Ο Γ Ρ Α Μ Μ Α Τ Ι Σ Τ Ι Κ Ο Π Ε Ρ Ι Β Α Λ Λ Ο Ν Τ Ε Χ Ν Ο Λ Ο Γ Ι Κ Η Σ Κ Α

Διαβάστε περισσότερα

1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα.

1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα. 1. Τι ονομάζουμε αλγόριθμο; Δώστε παράδειγμα. ΑΠΑΝΤΗΣΗ Ορισμός: Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν στην επίλυση ενός

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012 ΘΕΜΑ Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-5 και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή,

Διαβάστε περισσότερα

1. Τι είναι αλγόριθμος; Καταγράψτε ή συζητήστε με τους συμμαθητές σας έναν αλγόριθμο.

1. Τι είναι αλγόριθμος; Καταγράψτε ή συζητήστε με τους συμμαθητές σας έναν αλγόριθμο. 1. Τι είναι αλγόριθμος; Καταγράψτε ή συζητήστε με τους συμμαθητές σας έναν αλγόριθμο. Αλγόριθμος είναι μια πεπερασμένη σειρά ενεργειών, αυστηρά καθορισμένων και εκτελέσιμων σε πεπερασμένο χρόνο, που στοχεύουν

Διαβάστε περισσότερα

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών Ι

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών Ι Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών Ι Περιλαμβάνει τα πρώτα θέματα όλων των πανελληνίων εξετάσεων από το 2000 μέχρι και σήμερα ΑΠΟΛΥΤΗΡΙΕΣ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2000 A. Να γράψετε στο τετράδιό σας

Διαβάστε περισσότερα

Φυσικές και τεχνητές γλώσσες. Το αλφάβητο της ΓΛΩΣΣΑΣ, Τύποι Δεδομένων. Σταθερές, Μεταβλητές, Τελεστές, Συναρτήσεις, Δομή Προγράμματος

Φυσικές και τεχνητές γλώσσες. Το αλφάβητο της ΓΛΩΣΣΑΣ, Τύποι Δεδομένων. Σταθερές, Μεταβλητές, Τελεστές, Συναρτήσεις, Δομή Προγράμματος Φυσικές και τεχνητές γλώσσες. Το αλφάβητο της ΓΛΩΣΣΑΣ, Τύποι Δεδομένων. Σταθερές, Μεταβλητές, Τελεστές, Συναρτήσεις, Δομή Προγράμματος Ενότητες βιβλίου: 6.3, 7.1-7.6, 7.10, 8.1 Ώρες διδασκαλίας: 2 Φυσικές

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ 2015-2016 Θέμα Α Α1. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις προτάσεις 1-4 και δίπλα τη λέξη ΣΩΣΤΟ,

Διαβάστε περισσότερα

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙ ΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΥ ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α : Α1

Διαβάστε περισσότερα

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΟΚΤΩΒΡΙΟΥ 2015 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 ΘΕΜΑ Α

Διαβάστε περισσότερα

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΑΠΟ ΕΩΣ 02/04/2018 ΕΩΣ 14/04/2018 ΤΑΞΗ: ΜΑΘΗΜΑ: Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ ΘΕΜΑ Α Α1. Να

Διαβάστε περισσότερα

Πληροφορική ΙΙ. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα

Πληροφορική ΙΙ. Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Πληροφορική ΙΙ Τ.Ε.Ι. Ιονίων Νήσων Σχολή Διοίκησης και Οικονομίας - Λευκάδα Στέργιος Παλαμάς, Υλικό Μαθήματος «Πληροφορική ΙΙ», 2015-2016 Μάθημα 1: Εισαγωγή στους Αλγόριθμους Αλγόριθμος είναι μια πεπερασμένη

Διαβάστε περισσότερα

ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ

ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΥ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ: Θέμα 1ο I. Τι γνωρίζετε για τη στοίβα και τι για την ουρά; (Μονάδες 7) Στοίβα (Stack) είναι μια δομή στην οποία

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΗΜΕΙΩΣΕΙΣ ΘΕΩΡΙΑΣ (ΠΕΡΙΛΗΨΗ) ΕΠΙΜΕΛΕΙΑ: ΝΙΚΗΦΟΡΟΣ ΜΑΝΔΗΛΑΡΑΣ ΚΕΦΑΛΑΙΟ 2 ο -ΒΑΣΙΚΕΣ ΕΝΝΟΙΕΣ ΑΛΓΟΡΙΘΜΩΝ 2.1 ΤΙ ΕΙΝΑΙ ΑΛΓΟΡΙΘΜΟΣ ΟΡΙΣΜΟΣ: Αλγόριθμος είναι

Διαβάστε περισσότερα

8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη.

8. Η δημιουργία του εκτελέσιμου προγράμματος γίνεται μόνο όταν το πηγαίο πρόγραμμα δεν περιέχει συντακτικά λάθη. 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΙΚΟ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ 2015 Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) ΣΥΝΟΛΟ

Διαβάστε περισσότερα

Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Θέμα Α Α1 1 Λ 2 Λ 3 Σ 4 Λ 5 Σ Α2. Χαρακτήρας ΑΛΗΘΗΣ Πραγματική -2.0 Λογική ΑΛΗΘΗΣ Λογική ΨΕΥΔΗΣ Ακέραια 4 Α3. α Α[6]

Διαβάστε περισσότερα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΤΕΤΑΡΤΗ 29 ΜΑΪΟΥ 2013 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Διαβάστε περισσότερα

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΣΣΧ... ΕΤΤΟΣΣ 22000099-22001100 Επιμέλεια : Ομάδα Διαγωνισμάτων από Το στέκι των πληροφορικών Θέμα 1 ο Α. Δίνεται η παρακάτω ακολουθία

Διαβάστε περισσότερα

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ

Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ Ενότητα 3: ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΔΕΔΟΜΕΝΑ ΑΛΓΟΡΙΘΜΟΙ -ΠΛΗΡΟΦΟΡΙΑ: Δεδομένα: Αναπαράσταση της Πραγματικότητας Μπορούν να γίνουν αντιληπτά με μια από τις αισθήσεις μας Πληροφορία: Προκύπτει από

Διαβάστε περισσότερα

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ

Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΚΦΩΝΗΣΕΙΣ ÏÅÖÅ 1 Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ 1 ο ΕΚΦΩΝΗΣΕΙΣ Α. Να γράψετε στην κόλλα σας τον αριθµό καθεµιάς από τις παρακάτω προτάσεις 1 5 και δίπλα τη λέξη

Διαβάστε περισσότερα

Προγραμματισμός Η/Υ. 4 η ενότητα: Δομές Δεδομένων. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων

Προγραμματισμός Η/Υ. 4 η ενότητα: Δομές Δεδομένων. Τμήμα. Τεχνολόγων Περιβάλλοντος. ΤΕΙ Ιονίων Νήσων. Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Προγραμματισμός Η/Υ 4 η ενότητα: Δομές Δεδομένων Τμήμα Τεχνολόγων Περιβάλλοντος ΤΕΙ Ιονίων Νήσων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative

Διαβάστε περισσότερα

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος.

10. Με πόσους και ποιους τρόπους μπορεί να αναπαρασταθεί ένα πρόβλημα; 11. Περιγράψτε τα τρία στάδια αντιμετώπισης ενός προβλήματος. 1. Δώστε τον ορισμό του προβλήματος. 2. Σι εννοούμε με τον όρο επίλυση ενός προβλήματος; 3. Σο πρόβλημα του 2000. 4. Σι εννοούμε με τον όρο κατανόηση προβλήματος; 5. Σι ονομάζουμε χώρο προβλήματος; 6.

Διαβάστε περισσότερα