Chapter 1: Problem Solving, Expressions, and Equations

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Chapter 1: Problem Solving, Expressions, and Equations"

Transcript

1 CHAPTR Chapter : Problem Solving, xpressions, and quations xercise. Answers will vary for xercises in 0 in 9. Primary: ( 0) in Secondary: ( ) 0 Tertiary: ( ) cm. Primary: ( 0) 90 cm Secondary: ( 90) 0 Tertiary: ( 90). Primary is 7 in. ()? 7. Primary is cm. ()? in. ; so, Vase is ( 7) 8 7 cm. ; so, Vase is ( ) 7. Vase is in. Primary: ( ). Secondary: ( ) Tertiary: ( ) 80 cm in, total length:. 7. in in, total length: 0 in 7. in, total length: 7.. in 9. The secondary stem is of the primary stem, which is of the Vase. of the primary stem of Vase times the height of the Vase. So, the height of the secondary stem is times the height of the Vase.. The two girls will ride out together and one of them will return for Gayle. Gayle will ride to where the other girl is waiting. This girl will return for the second girl and the two of them will return together. Copyright by Houghton Mifflin Company. All rights reserved.

2 Problem Solving, xpressions, and quations Copyright by Houghton Mifflin Company. All rights reserved.. First, fill the -cup container. Then, using the -cup container, fill the 7-cup container. Now there are cups remaining in the -cup container. Next, pour the remaining cups into the tank. Fill up the -cup container again and pour cups into the tank. xercise.. a. Assuming the protected area had 0 mph wind speed, the apparent temperature went from º to -º; º º 8º, the apparent temperature change. b. A 0-mph wind speed has an apparent temperature of 0º; 0º º º, the apparent temperature change. When riding the bicycle the total speed is 0 mph, for an apparent temperature of -7º; 7º º º, the apparent temperature change.. a. Real numbers b. Integers c. Irrational numbers d. Multiplicative inverses e. Additive inverses. a. Distributive of multiplication over addition b. Associative property for addition c. Commutative property for multiplication d. Distributive of multiplication over addition e. Associative property for addition 7. a. Negative b. one c. positive d. one e. zero 9. Integer. Irrational. Natural. Natural numbers 7. a. ( ) 8 ( ) ()( ) 8 ( ) ) ( b. c d. 0.7 ( 0.) ( 0.) (0.7)( 0.) 0. (0.7) ( 0.).7

3 CHAPTR e. 0. (.).9 0. (.) ( 0.)(.) 0.7 ( 0.) (.) 0. f or a. 8 ( ) ( ) 8 b. ( 9) ( 8) 9 8 c.. (.8) (.)..8.. d. 8. (.8) (.) e. f. 7. a. 9 is undefined on the set of real numbers b. 9 c. 9. a. ( ); the opposite of negative three b. ; negative two c. ( ); negative three subtracted from five. a (9 8) 9(00) 900 b (0.) 0 c. 99 ( 00 ) 00 9 d (07 7) 9(00) 900 e a. In the U.S., a decimal would be used instead of a comma. b. In the U.S., we borrow from the 7 and leave the alone. c. U.S. drivers sit on the left and use the right lane. d. In the U.S. we read from left to right. Copyright by Houghton Mifflin Company. All rights reserved.

4 Problem Solving, xpressions, and quations 9. a. π ( ) π ( ) π ( 7) A b. S π π ()(.) A S π π (9) A S 8 π 8π A 89.9cm S π 8.7in c. d ( ) ()( 7) d. x 9 (9 ) 8 d ()( 7) x 9 (7) 0 d 8 x d 9 x 7 8. a. m ( ) m 8 9 c. F ( 00) 900 F 80 e. h ( 0) ( 00) 00 h. 8 b. c c d. C ( ) C ( ) 00. a. d ( ( ) ) ( ( ) ) d () 8 () d 00 0 ( ) b. m ( ) m 8 ( ) ( ) ()( ) c. x () 0 x 8 0 x d. d { } d { } d ( ) d..0. a slope; b Pythagorean Theorem; c Celsius to Fahrenheit temperatures; d Fahrenheit to Celsius temperatures; a Distance Formula between two ordered pairs; b slope; c Quadratic Formula; 9c Discriminant for the Quadratic Formula Copyright by Houghton Mifflin Company. All rights reserved.

5 CHAPTR xercise.. Visualize x columns of dots with one dot missing from the last column.. a. Input, x Output, y 9 b. ; 9 ; 9 c. The rule is y x.. a. Input, x Output, y 8 b. ; 8 ; 8 ; c. We can estimate the rule as y x?. When x, y () or y. The rule is y x. 7. a. In x, the variable is x, the numerical coefficient is, and the constant term is. b. The variable is r and the numerical coefficient is π. There is no constant term. c. The variable is x, the numerical coefficient is (implied by the in front of x), and the constant term is. 9. a. Four subtract the opposite of c. b. The opposite of the cube of z (or z-cubed). c. Negative z-squared, or the opposite of z-squared. d. The output may be positive or negative. Input, z 0 Output, z () 8 () (0) 0 () () 8 e. z will always be negative because z is always positive for any real number z.. a. () ()() 9 b. () ()()() 8 c. ()() 9 d. (x) (x)(x) ( )(x x) 9x e. x ()(x)(x) x f. 0 x x. a. () base is b. () base is c. base is d. (x) base is x e. x base is x f. 0 x base is x Copyright by Houghton Mifflin Company. All rights reserved.

6 Problem Solving, xpressions, and quations. a. (x) (x)(x)(x) 8x b. (x) (x)(x)(x) 8x c. (y) (y)(y)(y)(y) 8y d. (xy) (xy)(xy)(xy)(xy) x y e. (xy) (xy)(xy)(xy)(xy) x y f. 0 (y) (y)(y)(y) (8)y 8y 7. a. b. Multiply x x x x x x () x Factor a b a a a(a) ab a(b) 9. a. (x ) (x) () x b. y 0 (y) () (y ). a. x(x ) x(x) x() x x b. ab bc b(a) b(c) b(a c). a. ( x) ()() ()(x) 8x b. a(b c) (a)(b) (a)(c) ab ac c. x(x x ) (x)(x ) (x)(x) (x)() x x x. a. x ()(x) ()(9); greatest common factor (gcf) is ; (x 9) b. x ()(x) ()(); gcf is ; (x ) c. a 8a (a)(a) (a)(); gcf is a; a(a ) 7. a. ab b (a)(b) (b)(b); gcf is b; b(a b) b. xy x y (xy)() (xy)(x); gcf is xy; xy( x) c. (xy) xy (xy )(x) (xy )(); gcf is xy ; xy (x ) 9. a. ab a ()(ab) ()(a) ()(); gcf is ; (ab a ) b. ac a ()(ac) ()(a) ()(); gcf is ; (ac a ). a. gcf is ; c. gcf is 0; b. gcf is ; a. gcf is be; c. x abe a be a b. gcf is ab; ben be n n cannot be simplified a ab b a ab ab b a b Copyright by Houghton Mifflin Company. All rights reserved.

7 CHAPTR. a. gcf is x; ( y z) xy xz x y z xy x y y b. gcf is x; ( x ) x x x x x x x c. gcf is xy; xy xy y y xy xy 7. a. There are (x ) tiles, (x) tiles, and () tiles; total is x x. b. There are (a ) tiles, (ab) tiles, and (b ) tiles; total is a ab b. 9. a. ac ab ca 7bc ac ac ab 7bc ac( ) ab 7bc 8ac ab 7bc b. x( x) x(x ) x x x x x x x x x 8x. a. (7) (7) 9 b. (7 ) 8. a. (9) (7) 8 9 b. (9 7). a. 9 [(8) ] 9 () b. [(8) ] () 7. a. C 9 [() ] b. C 9 [(0) ] C 9 (0) C 9 (7) C 0 C 0 c. C 9 [(98.) ] C 9 (.) C 7 9. a. V π(. cm) b. V π( cm) V π(.7) cm V π(7) cm V.π cm V π cm V. cm V. cm c. V π( cm) V π() cm V 88π cm V 90.8 cm Copyright by Houghton Mifflin Company. All rights reserved. 7

8 Problem Solving, xpressions, and quations a. S {() [(00) ]()} b. S {() [(00) ]()} S 0[ (99)] S 0[ (99)] S 0( 98) S 0( 98) S 0(00) S 0(0) S 0,000 S 0,00 00 c. S {() [(00) ]()} S 0[0 (99)] S 0(0 9) S 0(0) S,0. a. D D [ ( )] [ ( )] b. D ( 8) () D ( ) [ ( ( ) () )] D D D 00 D 9 D 0 D c. D [( ) )] [ ( )] D ( ) (8) D D 89 D 7. a. A 9. ( T 9.) ( ( S) 0.0S) A 9. ( 9.) ( () 0.0()) A 9. (.) ( ) A 9. (.) (.0) A 9. ( 9.78). F b. A 9. ( 9.) ( (0) 0.0(0)) A 9. (.) ( ) A 9. (.) (.) A 9. ( 8.7) F 8 Copyright by Houghton Mifflin Company. All rights reserved.

9 CHAPTR c. A 9. ( 9.) ( () 0.0()) A 9. (.) ( ) A 9. (.) (.) A 9. ( 89.).8 F d. A 9. ( 9.) ( (0) 0.0(0)) A 9. (.) (0.78) A 9. (.79) 9. 0 F The limitation on this model is with no wind, the apparent temperature is greater than the current temperature. e. A 9. ( 9.) ( (0) 0.0(0)) A 9. ( 9.) ( ) A 9. ( 9.) (.) A 9. ( 8.7) F f. Using Table from section., if T -º and S 0 mph, then the apparent temperature is 0. A 9. ( 9.) ( (0) 0.0(0)) A 9. ( 9.) (0.78) A 9. (.079).08 F This does not match the table. 7. a. One term containing three factors, w, x, and y b. One term containing three factors, x, y, and x ; third factor contains two terms. c. Two terms each containing two factors; is the common factor. d. One term with three factors 9,, and a ; is the common factor. xercise.. Change in x x y 8 Change in y The changes in x and y are constant. Working backwards in the table, when x 0, y. Using the change in y as the coefficient on x, the equation is y x. Copyright by Houghton Mifflin Company. All rights reserved. 9

10 Problem Solving, xpressions, and quations. Change in x x y 7 9 Change in y The changes in x and y are constant. Working backwards in the table, when x 0, y. Using the change in y as the coefficient on x, the equation is y x.. Change in x x y 8 Change in y The changes is x and y are constant. Working backwards in the table, when x 0, y 0. Using the change in y as the coefficient on x, the equation is y x. 7. Change in x x y 0 7 Change in y 7 The change in y is not constant. We can observe that y is close to the value of x, but something more is needed. When x, y, which is more than. Checking a different combination, when x, y 0; again, more than. The equation is y x. 9. Input 0 n Output 0. n. Input 0 n Output n. The difference between x and seven.. The quotient of x and seven. 0 Copyright by Houghton Mifflin Company. All rights reserved.

11 CHAPTR 7. The difference between seven and x. 9. The quotient of x and five.. The quotient of seven and the sum of x and two.. The quotient of the sum of x and two and the difference between x and two.. 0 x y 7. y x 0 9. x y. y 7x. The output is five less than the product of and the input.. The sum of the input and the output is eleven. 7. The difference between two times the input and the output is. 9. The output is the quotient of the input and 8.. y.9x y. 0.0x. y x 8 7. a. 0.7, % b. 0.0, % c % d % 0 9. a. 0% b..% c. 0.00% d. 00% 00. x season ticket cost, y daily cost, % 0.0; y 0.0x. x wages, y amount of tax,.% 0.0; y 0.0x. x amount of loan, y one cost, % 0.0; y 0.0x Copyright by Houghton Mifflin Company. All rights reserved.

12 Problem Solving, xpressions, and quations 7. x amount of wages, y net pay, 7.% 0.07, 0% 0.0, n% n 00 ; x (0.07x 0.0x n 00 x) 9. The group is a woman with her mother and her daughter. Mid-Chapter Test. a. () () () 8 b. ( ) c d a b. (7)() () c. (8)() (0) 0 d. ( )( ) ()()() ()()()() (). a. ()() b. () ()() c. 0 ()() d. 8 (8 ) 8 () 0 e. ( 7) 7 9 f. ( ) ( ) ()( ) () g. ( ( 7)) ( ) 9 ( ) h a b (9 ) 9(0) 90 Copyright by Houghton Mifflin Company. All rights reserved.

13 CHAPTR c. 8(8 8 ) 8(8) 8( 8 ) 7 d..7(9).(9) 9(.7.) 9(0) 90 e f. ( 7) (7 7) a. x will be negative because x is always positive when x is a real number. b. x could be positive or negative, negative x sounds like always negative. c. x could be positive or negative, negative x sounds like always negative. d. x will be negative because x is always positive.. a. (x ) x () x b. (x ) x ()() x c. 7 (x ) 7 x ()() 7 x 0 x 0 7 x d. 8 ( x) 8 ()() ()(x) 8 8 x x 7. a. gcf is ; x 8 (x) ()(9) (x 9) b. gcf is x; x x x(x ) c. gcf is n; mn np n(mn p ) d. gcf is 7xy; x y 9xy 7xy(9x 7y) 8. a. The variable is x, the constant term is, and the numerical coefficient is. b. The variable is x, there is no constant term, and the numerical coefficients are and. 9. a. (x x ) x(x x ) x 9x x x x x x b. a(a ab b ) b(a ab b ) a a b ab a b ab b a a b ab b 0. a. x yz xy z xxyz xyyz x y b. x yz xxyz ( xy) z xyxyz y c. xy yz y( x z) xy xy x z x. a. C x 0.087x or C.087x b. A x 0.0x or A.0x c. C.9x 0.0 Copyright by Houghton Mifflin Company. All rights reserved.

14 Problem Solving, xpressions, and quations. a. # of pairs of pens Total # of panels b. The change in y is constant at. Working backwards in the table, when x 0, y. The equation is y x.. j, x. a, x. g, x. h, 0.x 7. i, x 8. b, x 9. e, x 0. c, x xercise... a. solution set b. evaluate c. scale d. dependent variable e. independent variable. a. (7, 7), J b. (0, 0), c. (7, 98.), G d. (00, ), K 7. a. B (8, 0) b. A, (0, 0) 9. In A s, s is the independent variable and A is the dependent variable.. In A s, s is the independent variable and A is the dependent variable. Copyright by Houghton Mifflin Company. All rights reserved.

15 CHAPTR. A is the independent variable and is the dependent variable.. Independent variable, weight of package; dependent variable, cost of shipping. 7. Independent variable, temperature (a cooler day might bring more kittens); dependent variable, number of kittens. 9. x y x () () 8 () 0 (0) () () () 7.. x y x () 0 () 8 () 0 (0) () () 0 () x y x () () 0 () 0 (0) () () () Copyright by Houghton Mifflin Company. All rights reserved.

16 Problem Solving, xpressions, and quations. x y x x () () () () 8 () () 0 (0) (0) 0 () () () () 0 () () 7. x y x () () () 0 (0) () () () 9. a. 9,, and are straight lines. b. and 7 are parabolas. c. y ax b makes a straight line Copyright by Houghton Mifflin Company. All rights reserved.

17 CHAPTR 9.. On the input axes, use $0 to $00 with a scale of $0; on the output axes, use $0 to $0 with a scale of $.. On the input axes, use 0 to hours with a scale of hours; on the output axes, use low temperature to high temperature with a scale of 0% of the difference. 7. a. b. x y xy ()() ()() ()( ) x y x y () () () () () () c. d. x y x y ()() 8 ()() 8 ()() x y x y () () 7 () 7 e. f. x y x y () () () () () () x y x y () () () xercise.. Guesses will vary. quation is y.07x $.9. When y $0, x $0.79 Copyright by Houghton Mifflin Company. All rights reserved. 7

18 Problem Solving, xpressions, and quations. Guesses will vary. quation is y ($7() $0.0x)0.9. When y $.0, x miles. Guesses will vary. quations are x first, x $0,000 second, and x $0,000 third. x (x $0,000) (x $0,000) $,000,000; shares are $0,000, $0,000, and $0, x y x 0 (0) () () () x when y x when y 9.. x y x () () 0 0 (0) () () 8 () x y 0.x a. 0.() 0 0.(0) b. 0.() () 0. x when y x when y For exercises through, use calculator graphs and tables to solve for x. Answers are given for reference only.. a. x. b. x.. a. x b. x 7. a. x 0 or x b. x or x c. no real number solution d. x 0. 8 Copyright by Houghton Mifflin Company. All rights reserved.

19 CHAPTR 9. a. x or x b. no real number solution c. x or x d. x 0. a. x or x 0 b. x or x c. no real number solution d. x or x. a. {0, } b. {., 0.8} c. {., } d. no real number solutions. 7. Weight (lb) Index I W(70.) H 00 (00)(70.) () 8. 0 (0)(70.) () 0. 0 (0)(70.) ().0 0 (0)(70.) ().8 0 (0)(70.) ().7 Weight (lb) Index I W(70.) H 0 (0)(70.) (70) (0)(70.) (70) 0. 0 (0)(70.) (70). 0 (0)(70.) (70).0 70 (70)(70.) (70). 9. a. W 0 lb b. W 0 lb. a. W 0 lb b. W 70 lb. a. 0 F b F c. 0 F d. 9 0 F e F. Solving the equation x is finding the independent variable. 7. Locating y, given the graph and x, is finding the dependent variable. 9. Locating x, given the graph and y, is finding the independent variable. xercise.7. a. () 0 b. () c. ( ) d e. f. 8 Copyright by Houghton Mifflin Company. All rights reserved. 9

20 Problem Solving, xpressions, and quations. a. () 0 b. ( ) c. () d. 8 (0) 0 e. 7 8 f a. x 8 b. x x x x x 9 x c. x 8 d. x 8 x x x x x e. f. ( )( x 8 ) ( )() )( x 8 ) ( )( ) 8 ( 8 x 8 x g. x h. x 8 ( )( ) ( x ) )( x ) ( )(8) ( x x 7 i. x 8 8 ( )( x ) ( 7) x 0 7. Inverse: take off jacket, take off vest, take off shirt. Dressing and undressing. 9. Inverse is not meaningful. Taking pictures.. Order is not important (unless you want to dig the hole within range of the sprinkler).. a. x 8 b. x x 8 x x x 0 x x 0 x x c. x d. x 0 x x 0 0 Copyright by Houghton Mifflin Company. All rights reserved.

21 CHAPTR x x x x x x. a. 9 (x ) b. 9 (x ) (x ) 9 (x ) 0 x x 8 x x 8 x x 0 c. 9 (x ) d. 9 (x ) (x ) 9 (x ) 0 x 9 x x 9 x x x x 7. x 0 9. x x 0 x x x x x x.. 8 x 8 x 8 x 8 x 8 8 x x x x x. a. is an Identity. b. 8 is a Contradiction. 7. a. x x x is a Contradiction. b. x x x is an Identity. 9. a. x(x ) x is an Identity. Copyright by Houghton Mifflin Company. All rights reserved.

22 Problem Solving, xpressions, and quations x b. x( 0.) is an Identity ( ).. x ( x) 7. x ( x) x 8 x 7 x x x 8 7 x x x x 9 x 8 x 9 x 8 x x 9. x ( x) (9 x). x x x. x 9 x 9. x 9 x x x. x x. x x. 9. 9(x ).. 7. x 0.07x 9x x 9x x.07 9x. x 9x 9. x 9x x...7 x 0.x 0.0x. (x ) x.7.x x x.7..x. x x x x 8 x x x. x 7. (x ) (x ) 9. (x ) x x x x x x x x x x x x x x x x x Copyright by Houghton Mifflin Company. All rights reserved.

23 CHAPTR x x x x x x x. y x x y 7 x y 7 y x x y x 7 x x y y 7 y y x 7 y 7 x x 7 7 y 7 x 7 y y x 7 x y 7 is not equivalent to the other equations. y x is not equivalent to the other equations.. x y 8 y x 8 y x 8 x y x 8 x y x x 8 x y 8 x y x 8 y x 8 y x 8 is not equivalent to the other equations.. D rt 7. y mx b D rt r r y mx mx b mx D t r b y mx 9. πr V. pn V πr pn π π N N V r p π N. A h( a b ). a n a (n )d A ( h( a b )) h h a n (n )d a (n )d (n )d A a a b a h a n (n )d a Copyright by Houghton Mifflin Company. All rights reserved.

24 Problem Solving, xpressions, and quations A b a h a b c A 9. S n(a a n ) ( a b c) S A ( n( a a n )) n n A b c a b c b c S an a an n a A b c a S an a n T T T h c 7. V 0.(T 0) Th T ( T T ) h h c h V 0.(T 0) Th T h T c T h T c T c V 0.( T 0) T c T h T h T h T h V 0 T T c T h T h V 0 T 0. I 77. R 0.V T R R Se 0. V Se I T I R I T Se T 0. V R S e I T a S r r S S r a r r S a S S e n Copyright by Houghton Mifflin Company. All rights reserved.

25 CHAPTR Copyright by Houghton Mifflin Company. All rights reserved. S a r S S a S S S a r or S a r 8. t t D D, D D 8. ) ( b a b a A A, A A 8. T T T c c c T T T c c c ) ( T T T c c c ) ( c c T T ) ( (, Review xercises. Associative properties for addition and multiplication, commutative properties for addition and multiplication, distributive property for multiplication over addition.. Absolute value, braces, brackets, fraction bar, parentheses, square root.. Assumption, condition. 7. Sum, difference, product, quotient. 9. Input-output rule, independent variable, dependent variable.. valuate, simplify, factor, and solve an equation.

26 Problem Solving, xpressions, and quations. Input Input Output Output x y x y x y a b. 7 (7) (7) 0 c. 7 7 y 7 0 y Answers on which property was used may vary on exercise. One possible solution is given. ; Associative property for addition. ( ) ( ) 7. x (x) x ( x) x x x x x x x x 0 9. a. x y x xy x xy y xy y xy x y x x b. ( ) y y x y xy x y xy. ( ) (). π(. in.) π(. in.)( in.) π(. in.)(. in.. in.) π(. in.)(. in.).π in..8 in π 0. π 0 π π 7 π π π 7 9 π π π The ratio is approximately to a. The difference between three and the product of two and a number. b. The product of three and the difference between a number and. x 9. 8 Copyright by Houghton Mifflin Company. All rights reserved.

27 CHAPTR. 9 (x y) (x y) 9 x y 0x y x 0x y y 9 x 7y 9. () (). A π(. in.) A.π in. 7. x y x () () 0 (0) 0 () (). x (.). 0 9 (F ) x 9 (0) 9 [ 9 (F )] x 8 7 F x 0 F. 0 (n )(.7) I Prt 0 (n )(.7) ( n )(.7) n n I Pt I Pt r Ptr Pt 9. C a by C a a by a C a by y y C a y b Copyright by Houghton Mifflin Company. All rights reserved. 7

28 Problem Solving, xpressions, and quations. a. gcf x; x x x(x) x() x(x ) b. gcf x; x x x x x x. a. x b. x x x x x x x x x 0 x x 0. a. x b. x x x x x x x..x. x x 7. a. b. x y 7 x y 0 8 Constant difference on y is. Constant difference on y is 7. When x 0, y 0; y x 0. When x 0, y 7; y 7x x x is the intersection(s) of the two graphs; x and x.. a. Number of quarters; parking time b. Speed; distance traveled b. Size of luggage; cost. escrow balance, x total payments from account, 0. 7 ; 0.7x; For $7.0, $ x $ x 0.7 x $00 8 Copyright by Houghton Mifflin Company. All rights reserved.

29 CHAPTR. Formula π r x S 80 Angle Arc, S (for circle of r 0 in.) 0 0 (π)(0)(0) (π)(0)(80) (π)(0)(90) 80.7 (π)(0)() (π)(0)(7) (π)(0)(8) (π)(0)(7.) (π)(0)(7.) The digits as a single number is the sum of 9 and 9,7. Chapter Test. Another name for additive inverse is opposite.. An ordered pair is used to locate a point on the coordinate graph.. An independent variable is the input, x, or set of numbers on the horizontal axis... a. 7 () 0 7 () 7 (7)() 8 (7) () 9 7 b (0.) (.)(0.) 0.7 (.) (0.) c. ( ) 7 ( ) ( ) ( ) ( ) ( ) ( ) )( ) ( ) )( 8 ( Copyright by Houghton Mifflin Company. All rights reserved. 9

30 Problem Solving, xpressions, and quations. a. (8 9) 0 8 (9 0) ; associative property for addition b ; commutative property for addition 7. a. { [ ( )] } { [ ()] } { [ ()] } { [] } { } {0} 0 b. ()() 9 c. () ()() 9 d. (7 ) (0) e. x (8 x) x 8 x x 8 f. 8. The product of four and the difference between a number and three. 9. a b c h A 0. A ( a b) A a b c A a b h A a c b A a b h. a. x y x x y 9xy x y y gcf xy b. x y 9xy xy(x) xy(y) xy(x y) c. x y 9xy xy x xy y x y. a. graph crosses y 0 (x-axis) at x b. graph intersects y at x c. graphs intersect at x. a. x 0 b. x ( x ) (0) ( x ) ( ) x 0 x 8 0 Copyright by Houghton Mifflin Company. All rights reserved.

31 CHAPTR x 0 x 8 x x x x c. x x ( ) ( x x ) x 0 9x x 0 0 9x 9x 0 9x x x x. Zero is not a positive integer or a natural number... A (..) m A 0.(.0) m A. m. 7. x y x y 9 7 xtending the table gives x 7, Difference in y is a constant. when y. xtending the table backwards, xtending the table backwards, when x 0, y ; equation is y x. when x 0, y 0; equation is y x. Copyright by Houghton Mifflin Company. All rights reserved.

32 Problem Solving, xpressions, and quations 8. a. C cost, x months; C $87x $800x; C $7x b. $0,000 $7x x $0,000 $7; x 8 months or years 8 months c. Costs for apartment and care; amount of savings d. No change in cost; no other costs or income 9. a. b. 7 c. In b, the set of parentheses in the denominator is incomplete, so the calculator assumes a parenthesis at the end of the expression, dividing by instead of by. 0. Formula is:.9() 0.9x 0.07(.9() 0.9x) 0.97() x x x (0) (0) (9) 9.0 Copyright by Houghton Mifflin Company. All rights reserved.

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Section 7.6 Double and Half Angle Formulas

Section 7.6 Double and Half Angle Formulas 09 Section 7. Double and Half Angle Fmulas To derive the double-angles fmulas, we will use the sum of two angles fmulas that we developed in the last section. We will let α θ and β θ: cos(θ) cos(θ + θ)

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Quadratic Expressions

Quadratic Expressions Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits. EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES,

CHAPTER 12: PERIMETER, AREA, CIRCUMFERENCE, AND 12.1 INTRODUCTION TO GEOMETRIC 12.2 PERIMETER: SQUARES, RECTANGLES, CHAPTER : PERIMETER, AREA, CIRCUMFERENCE, AND SIGNED FRACTIONS. INTRODUCTION TO GEOMETRIC MEASUREMENTS p. -3. PERIMETER: SQUARES, RECTANGLES, TRIANGLES p. 4-5.3 AREA: SQUARES, RECTANGLES, TRIANGLES p.

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

Srednicki Chapter 55

Srednicki Chapter 55 Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third

Διαβάστε περισσότερα

PARTIAL NOTES for 6.1 Trigonometric Identities

PARTIAL NOTES for 6.1 Trigonometric Identities PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3

Διαβάστε περισσότερα

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Review Test 3. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Review Test MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact value of the expression. 1) sin - 11π 1 1) + - + - - ) sin 11π 1 ) ( -

Διαβάστε περισσότερα

Math 6 SL Probability Distributions Practice Test Mark Scheme

Math 6 SL Probability Distributions Practice Test Mark Scheme Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2

If we restrict the domain of y = sin x to [ π, π ], the restrict function. y = sin x, π 2 x π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

If we restrict the domain of y = sin x to [ π 2, π 2

If we restrict the domain of y = sin x to [ π 2, π 2 Chapter 3. Analytic Trigonometry 3.1 The inverse sine, cosine, and tangent functions 1. Review: Inverse function (1) f 1 (f(x)) = x for every x in the domain of f and f(f 1 (x)) = x for every x in the

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0. DESIGN OF MACHINERY SOLUTION MANUAL -7-1! PROBLEM -7 Statement: Design a double-dwell cam to move a follower from to 25 6, dwell for 12, fall 25 and dwell for the remader The total cycle must take 4 sec

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

Trigonometric Formula Sheet

Trigonometric Formula Sheet Trigonometric Formula Sheet Definition of the Trig Functions Right Triangle Definition Assume that: 0 < θ < or 0 < θ < 90 Unit Circle Definition Assume θ can be any angle. y x, y hypotenuse opposite θ

Διαβάστε περισσότερα

is like multiplying by the conversion factor of. Dividing by 2π gives you the

is like multiplying by the conversion factor of. Dividing by 2π gives you the Chapter Graphs of Trigonometric Functions Answer Ke. Radian Measure Answers. π. π. π. π. 7π. π 7. 70 8. 9. 0 0. 0. 00. 80. Multipling b π π is like multipling b the conversion factor of. Dividing b 0 gives

Διαβάστε περισσότερα

Second Order Partial Differential Equations

Second Order Partial Differential Equations Chapter 7 Second Order Partial Differential Equations 7.1 Introduction A second order linear PDE in two independent variables (x, y Ω can be written as A(x, y u x + B(x, y u xy + C(x, y u u u + D(x, y

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) = Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011

ΚΥΠΡΙΑΚΟΣ ΣΥΝΔΕΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY 21 ος ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ Δεύτερος Γύρος - 30 Μαρτίου 2011 Διάρκεια Διαγωνισμού: 3 ώρες Απαντήστε όλες τις ερωτήσεις Μέγιστο Βάρος (20 Μονάδες) Δίνεται ένα σύνολο από N σφαιρίδια τα οποία δεν έχουν όλα το ίδιο βάρος μεταξύ τους και ένα κουτί που αντέχει μέχρι

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Instruction Execution Times

Instruction Execution Times 1 C Execution Times InThisAppendix... Introduction DL330 Execution Times DL330P Execution Times DL340 Execution Times C-2 Execution Times Introduction Data Registers This appendix contains several tables

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l =

Answers - Worksheet A ALGEBRA PMT. 1 a = 7 b = 11 c = 1 3. e = 0.1 f = 0.3 g = 2 h = 10 i = 3 j = d = k = 3 1. = 1 or 0.5 l = C ALGEBRA Answers - Worksheet A a 7 b c d e 0. f 0. g h 0 i j k 6 8 or 0. l or 8 a 7 b 0 c 7 d 6 e f g 6 h 8 8 i 6 j k 6 l a 9 b c d 9 7 e 00 0 f 8 9 a b 7 7 c 6 d 9 e 6 6 f 6 8 g 9 h 0 0 i j 6 7 7 k 9

Διαβάστε περισσότερα

Review Problems for Basic Algebra I Students

Review Problems for Basic Algebra I Students Review Problems for Basic Algebra I Students Note: It is very important that you practice and master the following types of problems in order to be successful in this course. Problems similar to these

Διαβάστε περισσότερα

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι

department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations

10/3/ revolution = 360 = 2 π radians = = x. 2π = x = 360 = : Measures of Angles and Rotations //.: Measures of Angles and Rotations I. Vocabulary A A. Angle the union of two rays with a common endpoint B. BA and BC C. B is the vertex. B C D. You can think of BA as the rotation of (clockwise) with

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ. Chemistry 362 Dr Jean M Standard Problem Set 9 Solutions The ˆ L 2 operator is defined as Verify that the angular wavefunction Y θ,φ) Also verify that the eigenvalue is given by 2! 2 & L ˆ 2! 2 2 θ 2 +

Διαβάστε περισσότερα

the total number of electrons passing through the lamp.

the total number of electrons passing through the lamp. 1. A 12 V 36 W lamp is lit to normal brightness using a 12 V car battery of negligible internal resistance. The lamp is switched on for one hour (3600 s). For the time of 1 hour, calculate (i) the energy

Διαβάστε περισσότερα

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

[1] P Q. Fig. 3.1

[1] P Q. Fig. 3.1 1 (a) Define resistance....... [1] (b) The smallest conductor within a computer processing chip can be represented as a rectangular block that is one atom high, four atoms wide and twenty atoms long. One

Διαβάστε περισσότερα

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then

Διαβάστε περισσότερα

Spherical Coordinates

Spherical Coordinates Spherical Coordinates MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Spherical Coordinates Another means of locating points in three-dimensional space is known as the spherical

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 0 5 1 0 3 4 8 7 8 5 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 May/June 2013 Candidates answer on the

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/2006 ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 11/3/26 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι το 1 εκτός αν ορίζεται διαφορετικά στη διατύπωση

Διαβάστε περισσότερα

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών

ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ. Ψηφιακή Οικονομία. Διάλεξη 10η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Οικονομία Διάλεξη 0η: Basics of Game Theory part 2 Mαρίνα Μπιτσάκη Τμήμα Επιστήμης Υπολογιστών Best Response Curves Used to solve for equilibria in games

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Solution to Review Problems for Midterm III

Solution to Review Problems for Midterm III Solution to Review Problems for Mierm III Mierm III: Friday, November 19 in class Topics:.8-.11, 4.1,4. 1. Find the derivative of the following functions and simplify your answers. (a) x(ln(4x)) +ln(5

Διαβάστε περισσότερα

( ) 2 and compare to M.

( ) 2 and compare to M. Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy

ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ. www.cms.org.cy ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΕΤΑΙΡΕΙΑ IΔ ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ 2013 21 ΑΠΡΙΛΙΟΥ 2013 Β & Γ ΛΥΚΕΙΟΥ www.cms.org.cy ΘΕΜΑΤΑ ΣΤΑ ΕΛΛΗΝΙΚΑ ΚΑΙ ΑΓΓΛΙΚΑ PAPERS IN BOTH GREEK AND ENGLISH ΚΥΠΡΙΑΚΗ ΜΑΘΗΜΑΤΙΚΗ ΟΛΥΜΠΙΑΔΑ

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

1 String with massive end-points

1 String with massive end-points 1 String with massive end-points Πρόβλημα 5.11:Θεωρείστε μια χορδή μήκους, τάσης T, με δύο σημειακά σωματίδια στα άκρα της, το ένα μάζας m, και το άλλο μάζας m. α) Μελετώντας την κίνηση των άκρων βρείτε

Διαβάστε περισσότερα

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example:

UDZ Swirl diffuser. Product facts. Quick-selection. Swirl diffuser UDZ. Product code example: UDZ Swirl diffuser Swirl diffuser UDZ, which is intended for installation in a ventilation duct, can be used in premises with a large volume, for example factory premises, storage areas, superstores, halls,

Διαβάστε περισσότερα

Derivations of Useful Trigonometric Identities

Derivations of Useful Trigonometric Identities Derivations of Useful Trigonometric Identities Pythagorean Identity This is a basic and very useful relationship which comes directly from the definition of the trigonometric ratios of sine and cosine

Διαβάστε περισσότερα

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes

Paper Reference. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced. Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Centre No. Candidate No. Paper Reference(s) 6665/01 Edexcel GCE Core Mathematics C3 Advanced Thursday 11 June 2009 Morning Time: 1 hour 30 minutes Materials required for examination Mathematical Formulae

Διαβάστε περισσότερα

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level * 6 3 1 7 7 7 6 4 0 6 * MATHEMATICS (SYLLABUS D) 4024/21 Paper 2 October/November 2013 Candidates answer

Διαβάστε περισσότερα

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is

Volume of a Cuboid. Volume = length x breadth x height. V = l x b x h. The formula for the volume of a cuboid is Volume of a Cuboid The formula for the volume of a cuboid is Volume = length x breadth x height V = l x b x h Example Work out the volume of this cuboid 10 cm 15 cm V = l x b x h V = 15 x 6 x 10 V = 900cm³

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

Dr. D. Dinev, Department of Structural Mechanics, UACEG

Dr. D. Dinev, Department of Structural Mechanics, UACEG Lecture 4 Material behavior: Constitutive equations Field of the game Print version Lecture on Theory of lasticity and Plasticity of Dr. D. Dinev, Department of Structural Mechanics, UACG 4.1 Contents

Διαβάστε περισσότερα

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET

Aquinas College. Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Aquinas College Edexcel Mathematical formulae and statistics tables DO NOT WRITE ON THIS BOOKLET Pearson Edexcel Level 3 Advanced Subsidiary and Advanced GCE in Mathematics and Further Mathematics Mathematical

Διαβάστε περισσότερα

UNIT-1 SQUARE ROOT EXERCISE 1.1.1

UNIT-1 SQUARE ROOT EXERCISE 1.1.1 UNIT-1 SQUARE ROOT EXERCISE 1.1.1 1. Find the square root of the following numbers by the factorization method (i) 82944 2 10 x 3 4 = (2 5 ) 2 x (3 2 ) 2 2 82944 2 41472 2 20736 2 10368 2 5184 2 2592 2

Διαβάστε περισσότερα

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr

9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr 9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Trigonometry 1.TRIGONOMETRIC RATIOS

Trigonometry 1.TRIGONOMETRIC RATIOS Trigonometry.TRIGONOMETRIC RATIOS. If a ray OP makes an angle with the positive direction of X-axis then y x i) Sin ii) cos r r iii) tan x y (x 0) iv) cot y x (y 0) y P v) sec x r (x 0) vi) cosec y r (y

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Section 8.2 Graphs of Polar Equations

Section 8.2 Graphs of Polar Equations Section 8. Graphs of Polar Equations Graphing Polar Equations The graph of a polar equation r = f(θ), or more generally F(r,θ) = 0, consists of all points P that have at least one polar representation

Διαβάστε περισσότερα

Chapter 6 BLM Answers

Chapter 6 BLM Answers Chapter 6 BLM Answers BLM 6 Chapter 6 Prerequisite Skills. a) i) II ii) IV iii) III i) 5 ii) 7 iii) 7. a) 0, c) 88.,.6, 59.6 d). a) 5 + 60 n; 7 + n, c). rad + n rad; 7 9,. a) 5 6 c) 69. d) 0.88 5. a) negative

Διαβάστε περισσότερα

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with

forms This gives Remark 1. How to remember the above formulas: Substituting these into the equation we obtain with Week 03: C lassification of S econd- Order L inear Equations In last week s lectures we have illustrated how to obtain the general solutions of first order PDEs using the method of characteristics. We

Διαβάστε περισσότερα

Notes on the Open Economy

Notes on the Open Economy Notes on the Open Econom Ben J. Heijdra Universit of Groningen April 24 Introduction In this note we stud the two-countr model of Table.4 in more detail. restated here for convenience. The model is Table.4.

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Ιστορία νεότερων Μαθηματικών

Ιστορία νεότερων Μαθηματικών Ιστορία νεότερων Μαθηματικών Ενότητα 3: Παπασταυρίδης Σταύρος Σχολή Θετικών Επιστημών Τμήμα Μαθηματικών Περιγραφή Ενότητας Ιταλοί Αβακιστές. Αλγεβρικός Συμβολισμός. Άλγεβρα στην Γαλλία, Γερμανία, Αγγλία.

Διαβάστε περισσότερα

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6)

*H31123A0228* 1. (a) Find the value of at the point where x = 2 on the curve with equation. y = x 2 (5x 1). (6) C3 past papers 009 to 01 physicsandmathstutor.comthis paper: January 009 If you don't find enough space in this booklet for your working for a question, then pleasecuse some loose-leaf paper and glue it

Διαβάστε περισσότερα

Second Order RLC Filters

Second Order RLC Filters ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor

Διαβάστε περισσότερα

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία

ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ. Πτυχιακή εργασία ΤΕΧΝΟΛΟΓΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΣΧΟΛΗ ΓΕΩΤΕΧΝΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΚΑΙ ΔΙΑΧΕΙΡΙΣΗΣ ΠΕΡΙΒΑΛΛΟΝΤΟΣ Πτυχιακή εργασία ΑΝΑΛΥΣΗ ΚΟΣΤΟΥΣ-ΟΦΕΛΟΥΣ ΓΙΑ ΤΗ ΔΙΕΙΣΔΥΣΗ ΤΩΝ ΑΝΑΝΕΩΣΙΜΩΝ ΠΗΓΩΝ ΕΝΕΡΓΕΙΑΣ ΣΤΗΝ ΚΥΠΡΟ ΜΕΧΡΙ ΤΟ 2030

Διαβάστε περισσότερα

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3) 1. MATH43 String Theory Solutions 4 x = 0 τ = fs). 1) = = f s) ) x = x [f s)] + f s) 3) equation of motion is x = 0 if an only if f s) = 0 i.e. fs) = As + B with A, B constants. i.e. allowe reparametrisations

Διαβάστε περισσότερα

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής

Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Πρόβλημα 1: Αναζήτηση Ελάχιστης/Μέγιστης Τιμής Να γραφεί πρόγραμμα το οποίο δέχεται ως είσοδο μια ακολουθία S από n (n 40) ακέραιους αριθμούς και επιστρέφει ως έξοδο δύο ακολουθίες από θετικούς ακέραιους

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

Lifting Entry (continued)

Lifting Entry (continued) ifting Entry (continued) Basic planar dynamics of motion, again Yet another equilibrium glide Hypersonic phugoid motion Planar state equations MARYAN 1 01 avid. Akin - All rights reserved http://spacecraft.ssl.umd.edu

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα