Matrices and vectors. Matrix and vector. a 11 a 12 a 1n a 21 a 22 a 2n A = b 1 b 2. b m. R m n, b = = ( a ij. a m1 a m2 a mn. def
|
|
- Πάνος Διαμαντόπουλος
- 6 χρόνια πριν
- Προβολές:
Transcript
1 Matrices and vectors Matrix and vector a 11 a 12 a 1n a 21 a 22 a 2n A = a m1 a m2 a mn def = ( a ij ) R m n, b = b 1 b 2 b m Rm
2 Matrix and vectors in linear equations: example E 1 : x 1 + x 2 + 3x 4 = 4, E 2 : 2x 1 + x 2 x 3 + x 4 = 1, E 3 : 3x 1 x 2 x 3 + 2x 4 = 3, E 4 : x 1 + 2x 2 + 3x 3 x 4 = 4 coefficient matrix unknown vector A def = x def = x 1 x 2 x 3 x 4 right hand side vector (RHS) , b def = ,
3 General linear equations E 1 : a 11 x 1 + a 12 x 2 + a 1n x n = b 1, E 2 : a 21 x 1 + a 22 x 2 + a 2n x n = b 2, E n : a n1 x 1 + a n2 x 2 + a nn x n = b n,
4 General linear equations A def = E 1 : a 11 x 1 + a 12 x 2 + a 1n x n = b 1, E 2 : a 21 x 1 + a 22 x 2 + a 2n x n = b 2, E n : a n1 x 1 + a n2 x 2 + a nn x n = b n, a 11 a 12 a 1n b 1 a 21 a 22 a 2n, b def b 2 =, x def = a n1 a n2 a nn b n x 1 x 2 x n
5 General linear equations A def = E 1 : a 11 x 1 + a 12 x 2 + a 1n x n = b 1, E 2 : a 21 x 1 + a 22 x 2 + a 2n x n = b 2, E n : a n1 x 1 + a n2 x 2 + a nn x n = b n, a 11 a 12 a 1n b 1 a 21 a 22 a 2n, b def b 2 =, x def = a n1 a n2 a nn b n equation E j maps to row j of A: ( ) a j1, a j2,, a jn, 1 j n a 1k a 2k variable x k relates to column k of A:, 1 k n a nk x 1 x 2 x n
6 Gaussian Elimination with partial pivoting (I) a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n, x = equation E j maps to row j of A, x 1 relates to pivoting: choose largest entry in absolute value: a 11 a 21 a n1 x 1 x 2 x n piv def = argmax 1 j n a j1, ( a piv,1 = max 1 j n a j1 ) exchange equations E 1 and E piv (E 1 E piv )
7 Gaussian Elimination with partial pivoting (II) A = a 11 a 12 a 1n a 21 a 22 a 2n a n1 a n2 a nn, b = b 1 b 2 b n, x = x 1 x 2 x n elimination of x 1 from E 2 through E n : ( E j a ) j1 E 1 (E j ), a j1 a 11 1, 2 j n new row j of A ( aj1 a j2 a jn ) a j1 a 11 ( a11 a 12 a 1n ) a 11 = ( 0 a j2 a j1 a 11 a 12 a jn a j1 a 11 a 1n ), 2 j n new j th component of b b j a j1 a 11 b 1
8 Gaussian Elimination with partial pivoting (III) new A = a 11 a 12 a 1n 0 a 22 a 2n 0 a n2 a nn overwrite ==== A, where a jk = a jk a j1 a 11 a 1k, 2 j n, 2 k n new b = b 1 b 2 b n overwrite ==== b where b j = b j a j1 a 11 b 1, 2 j n, 2 k n (bold faced entries are computed from elimination process)
9 Gaussian Elimination with partial pivoting (IV) a 11 a 12 a 1n 0 a 22 a 2n A =, b = 0 a n2 a nn b 1 b 2 b n
10 Gaussian Elimination with partial pivoting (IV) a 11 a 12 a 1n 0 a 22 a 2n A =, b = 0 a n2 a nn b 1 b 2 b n repeat same process on E s for s = 2,, n 1: pivoting: choose largest entry in absolute value: piv def = argmax s j n a js, ( a piv,s = max 1 j n a js ) exchange equations E s and E piv (E s E piv )
11 Gaussian Elimination with partial pivoting (IV) a 11 a 12 a 1n 0 a 22 a 2n A =, b = 0 a n2 a nn b 1 b 2 b n repeat same process on E s for s = 2,, n 1: pivoting: choose largest entry in absolute value: piv def = argmax s j n a js, ( a piv,s = max 1 j n a js ) exchange equations E s and E piv (E s E piv ) eliminating x s from E s+1 through E n : ( E j a ) js E s (E j ), s + 1 j n a ss a jk = a jk a js a ss a sk overwrite ==== a jk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s overwrite ==== b j, s + 1 j n
12 Gaussian Elimination with partial pivoting: summary a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n
13 Gaussian Elimination with partial pivoting: summary a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n for s = 1, 2,, n 1: pivoting: choose largest entry in absolute value: piv def = argmax s j n a js, E s E piv
14 Gaussian Elimination with partial pivoting: summary a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n for s = 1, 2,, n 1: pivoting: choose largest entry in absolute value: piv def = argmax s j n a js, E s E piv eliminating xs from E s+1 through E n : a jk = a jk a js a ss a sk overwrite ==== a jk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s overwrite ==== b j, s + 1 j n
15 Equations after Gaussian Elimination, backward substitution A = a 11 a 12 a 1n 0 a 22 a 2n 0 0 a nn, b = b 1 b 2 b n
16 Equations after Gaussian Elimination, backward substitution A = a 11 a 12 a 1n 0 a 22 a 2n 0 0 a nn, b = b 1 b 2 b n for s = n, n 1,, 1: x s = b s n k=s+1 a skx k a ss matlab command x = A\b
17 Gaussian Elimination: cost analysis (I) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv
18 Gaussian Elimination: cost analysis (I) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv eliminating x s from E s+1 through E n : a jk = a jk a js a ss a sk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s, s + 1 j n Counting operations compute piv for each s, and perform swaps E s E piv for each s, compute ratios a js a ss for each j s + 1 for each s, compute a jk for each pair of j, k s + 1 for each s, compute b j for each j s + 1 Do not count integer operations; do not count memory costs
19 Gaussian Elimination: cost analysis (II) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv (total comparisons: n 1 n(n+1) s=1 (n s + 1) = 2 1 )
20 Gaussian Elimination: cost analysis (II) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv (total comparisons: n 1 n(n+1) s=1 (n s + 1) = 2 1 ) eliminating xs from E s+1 through E n : a jk = a jk a js a ss a sk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s, s + 1 j n (total cost for computing { a js a ss }: n 1 n(n 1) s=1 (n s) = 2 ) (total cost for computing {a jk }: n 1 s=1 2(n s)2 = n(n 1)(2n 1) (total cost for computing {b j }: n 1 s=1 2(n s) = n(n 1) ) 3 )
21 Gaussian Elimination: cost analysis (II) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv
22 Gaussian Elimination: cost analysis (II) for s = 1, 2,, n 1: pivoting: (n s + 1 comparisons) piv = argmax s j n a js, E s E piv eliminating xs from E s+1 through E n : a jk = a jk a js a ss a sk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s, s + 1 j n about 2(n s) 2 additions and multiplications for each s grand total, up to n 3 term: 2 3 n3 additions and multiplications
23 Gaussian Elimination: performance on mac desktop, in octave, GEPPruntime n 3
24 NO scaled partial pivoting
25 Gaussian Elimination with partial pivoting blue: A R n n, b R n random
26 Gaussian Elimination with partial pivoting blue: A R n n, b R n random red: A R n n is Wilkinson matrix A = , b R n random
27 Gaussian Elimination with complete pivoting, A R 2 2 ( a11 a A = 12 a 21 a 22 ) ( b1, b = b 2 ) ( x1, x = x 2 ) pivoting: choose largest entry in absolute value: (ip, jp) def = argmax 1 i,j 2 a ij, ( a ip,jp = max 1 j n a ij ) exchange equations E 1 and E ip (E 1 E ip ) exchange columns/variables 1 and jp perform Gaussian Elimination without pivoting on the resulting 2 2 system
28 Gaussian Elimination with complete pivoting a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n
29 Gaussian Elimination with complete pivoting a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n for s = 1, 2,, n 1: pivoting: choose largest entry in absolute value: (ip, jp) def = argmax s i,j n a ij, E s E ip swap matrix columns/ variables s and jp
30 Gaussian Elimination with complete pivoting a 11 a 12 a 1n a 21 a 22 a 2n A =, b = a n1 a n2 a nn b 1 b 2 b n for s = 1, 2,, n 1: pivoting: choose largest entry in absolute value: (ip, jp) def = argmax s i,j n a ij, E s E ip swap matrix columns/ variables s and jp eliminating xs from E s+1 through E n : a jk = a jk a js a ss a sk overwrite ==== a jk, s + 1 j n, s + 1 k n, b j = b j a js a ss b s overwrite ==== b j, s + 1 j n more numerically stable, but too expensive in practice
31 Matrix Algebra Definition: Let a 1,1 a 1,2 a 1,m a 2,1 a 2,2 a 2,m A = a n,1 a n,2 a n,m b 1,1 b 1,2 b 1,m b 2,1 b 2,2 b 2,m B = b n,1 b n,2 b n,m C def = def = (a ij ) R n m, def = (b ij ) R n m, then α a 1,1 + β b 1,1 α a 1,2 + β b 1,2 α a 1,m + β b 1,m α a 2,1 + β b 2,1 α a 2,2 + β b 2,2 α a 2,m + β b 2,m α a n,1 + β b n,1 α a n,2 + β b n,2 α a n,m + β b n,m = α A + β B R n m
32 Matrix Algebra: example Let A = ( ) ( 4 2 8, B = ) R 2 3, then C ( def = A 2B = ) R 2 3
33 Matrix Algebra Let A, B, C R n m, and let λ, µ R
34 Matrix-vector product vs linear equations a 11 x 1 + a 12 x 2 + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + a 2n x n = b 2, a n1 x 1 + a n2 x 2 + a nn x n = b n,
35 Matrix-vector product vs linear equations A = a 11 x 1 + a 12 x 2 + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + a 2n x n = b 2, a n1 x 1 + a n2 x 2 + a nn x n = b n, a 11 a 12 a 1n b 1 a 21 a 22 a 2n, b = b 2, x = a n1 a n2 a nn b n x 1 x 2 x n
36 Matrix-vector product vs linear equations a 11 x 1 + a 12 x 2 + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + a 2n x n = b 2, a n1 x 1 + a n2 x 2 + a nn x n = b n, a 11 a 12 a 1n b 1 x 1 a 21 a 22 a 2n A =, b = b 2, x = x 2 a n1 a n2 a nn b n x n a 11 x 1 + a 12 x 2 + a 1n x n A x def a 21 x 1 + a 22 x 2 + a 2n x n =, for any A Rn m, x R m a n1 x 1 + a n2 x 2 + a nn x n equations become: A x = b
37 Matrix-vector product is dot product A x def = a 11 x 1 + a 12 x 2 + a 1n x n a 21 x 1 + a 22 x 2 + a 2n x n a n1 x 1 + a n2 x 2 + a nn x n (A x) j = ( ) ( ) a j1 x 1 + a j2 x 2 + a jn x n = aj1 a j2 a jn x 1 x 2 x n
38 Matrix-vector product, example A = A x = , x = ( 3 1 ( 3 1 ) = )
39 Matrix-matrix product Let a 11 a 12 a 1m b 11 b 12 b 1p a 21 a 22 a 2m A= b 21 b 22 b 2p Rn m, B= Rm p a n1 a n2 a nm b m1 b m2 b mp
40 Matrix-matrix product Let a 11 a 12 a 1m b 11 b 12 b 1p a 21 a 22 a 2m A= b 21 b 22 b 2p Rn m, B= Rm p a n1 a n2 a nm b m1 b m2 b mp Column partition: b 1j B = ( ) def b 2j b 1 b 2 b p, bj = Rm, j = 1,, p b mj
41 Matrix-matrix product Let a 11 a 12 a 1m b 11 b 12 b 1p a 21 a 22 a 2m A= b 21 b 22 b 2p Rn m, B= Rm p a n1 a n2 a nm b m1 b m2 b mp Column partition: b 1j B = ( ) def b 2j b 1 b 2 b p, bj = Rm, j = 1,, p Definition: A B = A ( b 1 b 2 b p ) def = ( A b 1 A b 2 A b p ) R n p b mj
42 Matrix-matrix product Let a 11 a 12 a 1m b 11 b 12 b 1p a 21 a 22 a 2m A= b 21 b 22 b 2p Rn m, B= Rm p a n1 a n2 a nm b m1 b m2 b mp Column partition: b 1j B = ( ) def b 2j b 1 b 2 b p, bj = Rm, j = 1,, p Definition: A B = A ( b 1 b 2 b p ) def = ( A b 1 A b 2 A b p ) R n p b mj entry-wise formula: (A B) jk = (A b k ) j = ( a j1 a j2 a jm ) bk = m a ji b ik i=1
43 Matrix-matrix product, example Let A = R 3 2, B = ( ) R 2 3 C = A B = R 3 3
44 Theorem: Let A R n m, B R m p, C R p k, Then A (B C) = (A B) C Proof: (A (B C)) st = = = = m a si (B C) it i=1 m i=1 a si p b ij c jt j=1 ( p m ) a si b ij j=1 i=1 p (A B) sj c jt j=1 = ((A B) C) st c jt
45 Special matrices square matrix A R n n d 1 d diagonal matrix D = 2 dn identity matrix I = upper-triangular matrix U = lower-triangular matrix L = l 11 l 21 l 22 u 11 u 12 u 1n u 22 u 2n l n1 l n2 l nn u nn
SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions
SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)
Numerical Analysis FMN011
Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =
TMA4115 Matematikk 3
TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3
Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems
ES440/ES911: CFD Chapter 5. Solution of Linear Equation Systems Dr Yongmann M. Chung http://www.eng.warwick.ac.uk/staff/ymc/es440.html Y.M.Chung@warwick.ac.uk School of Engineering & Centre for Scientific
Reminders: linear functions
Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U
g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King
Ole Warnaar Department of Mathematics g-selberg integrals The Selberg integral corresponds to the following k-dimensional generalisation of the beta integral: D Here and k t α 1 i (1 t i ) β 1 1 i
Jordan Form of a Square Matrix
Jordan Form of a Square Matrix Josh Engwer Texas Tech University josh.engwer@ttu.edu June 3 KEY CONCEPTS & DEFINITIONS: R Set of all real numbers C Set of all complex numbers = {a + bi : a b R and i =
3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β
3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle
Tutorial on Multinomial Logistic Regression
Tutorial on Multinomial Logistic Regression Javier R Movellan June 19, 2013 1 1 General Model The inputs are n-dimensional vectors the outputs are c-dimensional vectors The training sample consist of m
Matrices and Determinants
Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z
Chapter 6: Systems of Linear Differential. be continuous functions on the interval
Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations
Lecture 21: Properties and robustness of LSE
Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in
Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that
Partial Differential Equations in Biology The boundary element method. March 26, 2013
The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet
Distances in Sierpiński Triangle Graphs
Distances in Sierpiński Triangle Graphs Sara Sabrina Zemljič joint work with Andreas M. Hinz June 18th 2015 Motivation Sierpiński triangle introduced by Wac law Sierpiński in 1915. S. S. Zemljič 1 Motivation
MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81
1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81 We know that KA = A If A is n th Order 3AB =3 3 A. B = 27 1 3 = 81 3 2. If A= 2 1 0 0 2 1 then
( ) 2 and compare to M.
Problems and Solutions for Section 4.2 4.9 through 4.33) 4.9 Calculate the square root of the matrix 3!0 M!0 8 Hint: Let M / 2 a!b ; calculate M / 2!b c ) 2 and compare to M. Solution: Given: 3!0 M!0 8
New bounds for spherical two-distance sets and equiangular lines
New bounds for spherical two-distance sets and equiangular lines Michigan State University Oct 8-31, 016 Anhui University Definition If X = {x 1, x,, x N } S n 1 (unit sphere in R n ) and x i, x j = a
The Simply Typed Lambda Calculus
Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and
Tridiagonal matrices. Gérard MEURANT. October, 2008
Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,
Srednicki Chapter 55
Srednicki Chapter 55 QFT Problems & Solutions A. George August 3, 03 Srednicki 55.. Use equations 55.3-55.0 and A i, A j ] = Π i, Π j ] = 0 (at equal times) to verify equations 55.-55.3. This is our third
= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y
Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4
ST5224: Advanced Statistical Theory II
ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known
2 Composition. Invertible Mappings
Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,
Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics
Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS
CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS EXERCISE 01 Page 545 1. Use matrices to solve: 3x + 4y x + 5y + 7 3x + 4y x + 5y 7 Hence, 3 4 x 0 5 y 7 The inverse of 3 4 5 is: 1 5 4 1 5 4 15 8 3
MATRIX INVERSE EIGENVALUE PROBLEM
English NUMERICAL MATHEMATICS Vol.14, No.2 Series A Journal of Chinese Universities May 2005 A STABILITY ANALYSIS OF THE (k) JACOBI MATRIX INVERSE EIGENVALUE PROBLEM Hou Wenyuan ( ΛΠ) Jiang Erxiong( Ξ)
MATRICES
MARICES 1. Matrix: he arrangement of numbers or letters in the horizontal and vertical lines so that each horizontal line contains same number of elements and each vertical row contains the same numbers
Lecture 2. Soundness and completeness of propositional logic
Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness
The ε-pseudospectrum of a Matrix
The ε-pseudospectrum of a Matrix Feb 16, 2015 () The ε-pseudospectrum of a Matrix Feb 16, 2015 1 / 18 1 Preliminaries 2 Definitions 3 Basic Properties 4 Computation of Pseudospectrum of 2 2 5 Problems
Computing Gradient. Hung-yi Lee 李宏毅
Computing Gradient Hung-yi Lee 李宏毅 Introduction Backpropagation: an efficient way to compute the gradient Prerequisite Backpropagation for feedforward net: http://speech.ee.ntu.edu.tw/~tkagk/courses/mlds_05_/lecture/
x j (t) = e λ jt v j, 1 j n
9.5: Fundamental Sets of Eigenvector Solutions Homogenous system: x 8 5 10 = Ax, A : n n Ex.: A = Characteristic Polynomial: (degree n) p(λ) = det(a λi) Def.: The multiplicity of a root λ i of p(λ) is
Section 8.3 Trigonometric Equations
99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.
Arithmetical applications of lagrangian interpolation. Tanguy Rivoal. Institut Fourier CNRS and Université de Grenoble 1
Arithmetical applications of lagrangian interpolation Tanguy Rivoal Institut Fourier CNRS and Université de Grenoble Conference Diophantine and Analytic Problems in Number Theory, The 00th anniversary
Laplace Expansion. Peter McCullagh. WHOA-PSI, St Louis August, Department of Statistics University of Chicago
Laplace Expansion Peter McCullagh Department of Statistics University of Chicago WHOA-PSI, St Louis August, 2017 Outline Laplace approximation in 1D Laplace expansion in 1D Laplace expansion in R p Formal
6.3 Forecasting ARMA processes
122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear
Fractional Colorings and Zykov Products of graphs
Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is
Optimal Impartial Selection
Optimal Impartial Selection Max Klimm Technische Universität Berlin Head of Junior Research Group Optimization under Uncertainty Einstein-Zentrum für Mathematik Introduction select member of a set of agents
CRASH COURSE IN PRECALCULUS
CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter
Nondifferentiable Convex Functions
Nondifferentiable Convex Functions DS-GA 1013 / MATH-GA 2824 Optimization-based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_fall17/index.html Carlos Fernandez-Granda Applications Subgradients
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C
DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C By Tom Irvine Email: tomirvine@aol.com August 6, 8 Introduction The obective is to derive a Miles equation which gives the overall response
department listing department name αχχουντσ ϕανε βαλικτ δδσϕηασδδη σδηφγ ασκϕηλκ τεχηνιχαλ αλαν ϕουν διξ τεχηνιχαλ ϕοην µαριανι
She selects the option. Jenny starts with the al listing. This has employees listed within She drills down through the employee. The inferred ER sttricture relates this to the redcords in the databasee
Parametrized Surfaces
Parametrized Surfaces Recall from our unit on vector-valued functions at the beginning of the semester that an R 3 -valued function c(t) in one parameter is a mapping of the form c : I R 3 where I is some
Lecture 10 - Representation Theory III: Theory of Weights
Lecture 10 - Representation Theory III: Theory of Weights February 18, 2012 1 Terminology One assumes a base = {α i } i has been chosen. Then a weight Λ with non-negative integral Dynkin coefficients Λ
Other Test Constructions: Likelihood Ratio & Bayes Tests
Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :
PARTIAL NOTES for 6.1 Trigonometric Identities
PARTIAL NOTES for 6.1 Trigonometric Identities tanθ = sinθ cosθ cotθ = cosθ sinθ BASIC IDENTITIES cscθ = 1 sinθ secθ = 1 cosθ cotθ = 1 tanθ PYTHAGOREAN IDENTITIES sin θ + cos θ =1 tan θ +1= sec θ 1 + cot
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 24/3/2007
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Όλοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα μικρότεροι του 10000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Αν κάπου κάνετε κάποιες υποθέσεις
A Bonus-Malus System as a Markov Set-Chain. Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics
A Bonus-Malus System as a Markov Set-Chain Małgorzata Niemiec Warsaw School of Economics Institute of Econometrics Contents 1. Markov set-chain 2. Model of bonus-malus system 3. Example 4. Conclusions
Statistics 104: Quantitative Methods for Economics Formula and Theorem Review
Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample
Θεωρία Πληροφορίας και Κωδίκων
Θεωρία Πληροφορίας και Κωδίκων Δρ. Νικόλαος Κολοκοτρώνης Λέκτορας Πανεπιστήμιο Πελοποννήσου Τμήμα Επιστήμης και Τεχνολογίας Υπολογιστών Τέρμα Οδού Καραϊσκάκη, 22100 Τρίπολη E mail: nkolok@uop.gr Web: http://www.uop.gr/~nkolok/
CORDIC Background (2A)
CORDIC Background 2A Copyright c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
derivation of the Laplacian from rectangular to spherical coordinates
derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used
Ανάκτηση Πληροφορίας
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 8: Λανθάνουσα Σημασιολογική Ανάλυση (Latent Semantic Analysis) Απόστολος Παπαδόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +
Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b
Homework 3 Solutions
Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For
Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)
Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts
CORDIC Background (4A)
CORDIC Background (4A Copyright (c 20-202 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version.2 or any later
Analytical Expression for Hessian
Analytical Expession fo Hessian We deive the expession of Hessian fo a binay potential the coesponding expessions wee deived in [] fo a multibody potential. In what follows, we use the convention that
The Jordan Form of Complex Tridiagonal Matrices
The Jordan Form of Complex Tridiagonal Matrices Ilse Ipsen North Carolina State University ILAS p.1 Goal Complex tridiagonal matrix α 1 β 1. γ T = 1 α 2........ β n 1 γ n 1 α n Jordan decomposition T =
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ
ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται
From the finite to the transfinite: Λµ-terms and streams
From the finite to the transfinite: Λµ-terms and streams WIR 2014 Fanny He f.he@bath.ac.uk Alexis Saurin alexis.saurin@pps.univ-paris-diderot.fr 12 July 2014 The Λµ-calculus Syntax of Λµ t ::= x λx.t (t)u
Homework 8 Model Solution Section
MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx
Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.
Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given
w o = R 1 p. (1) R = p =. = 1
Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:
Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications
4th RART, July 17-20 2017, Universidad Complutense de Madrid Horizontal and Vertical Recurrence Relations for Exponential Riordan Matrices and Their Applications Ji-Hwan Jung Sungkyunkwan University, Korea
Example Sheet 3 Solutions
Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note
Rectangular Polar Parametric
Harold s Precalculus Rectangular Polar Parametric Cheat Sheet 15 October 2017 Point Line Rectangular Polar Parametric f(x) = y (x, y) (a, b) Slope-Intercept Form: y = mx + b Point-Slope Form: y y 0 = m
Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik
Affine Weyl Groups Gabriele Nebe Lehrstuhl D für Mathematik Summerschool GRK 1632, September 2015 Crystallographic root systems. Definition A crystallographic root system Φ is a finite set of non zero
Math 6 SL Probability Distributions Practice Test Mark Scheme
Math 6 SL Probability Distributions Practice Test Mark Scheme. (a) Note: Award A for vertical line to right of mean, A for shading to right of their vertical line. AA N (b) evidence of recognizing symmetry
On Numerical Radius of Some Matrices
International Journal of Mathematical Analysis Vol., 08, no., 9-8 HIKARI Ltd, www.m-hikari.com https://doi.org/0.988/ijma.08.75 On Numerical Radius of Some Matrices Shyamasree Ghosh Dastidar Department
The challenges of non-stable predicates
The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates
Major Concepts. Multiphase Equilibrium Stability Applications to Phase Equilibrium. Two-Phase Coexistence
Major Concepts Multiphase Equilibrium Stability Applications to Phase Equilibrium Phase Rule Clausius-Clapeyron Equation Special case of Gibbs-Duhem wo-phase Coexistence Criticality Metastability Spinodal
2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)
Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok
Abstract Storage Devices
Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD
Congruence Classes of Invertible Matrices of Order 3 over F 2
International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and
Product Identities for Theta Functions
Product Identities for Theta Functions Zhu Cao April 7, 008 Defining Products of Theta Functions n 1 (a; q) 0 = 1, (a; q) n = (1 aq k ), n 1, k=0 (a; q) = lim (a; q) n, q < 1. n Jacobi s triple product
Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =
Mock Eam 7 Mock Eam 7 Section A. Reference: HKDSE Math M 0 Q (a) ( + k) n nn ( )( k) + nk ( ) + + nn ( ) k + nk + + + A nk... () nn ( ) k... () From (), k...() n Substituting () into (), nn ( ) n 76n 76n
ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 6/5/2006
Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Ολοι οι αριθμοί που αναφέρονται σε όλα τα ερωτήματα είναι μικρότεροι το 1000 εκτός αν ορίζεται διαφορετικά στη διατύπωση του προβλήματος. Διάρκεια: 3,5 ώρες Καλή
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM
SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max
A Hierarchy of Theta Bodies for Polynomial Systems
A Hierarchy of Theta Bodies for Polynomial Systems Rekha Thomas, U Washington, Seattle Joint work with João Gouveia (U Washington) Monique Laurent (CWI) Pablo Parrilo (MIT) The Theta Body of a Graph G
Solutions to Exercise Sheet 5
Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X
Probability and Random Processes (Part II)
Probability and Random Processes (Part II) 1. If the variance σ x of d(n) = x(n) x(n 1) is one-tenth the variance σ x of a stationary zero-mean discrete-time signal x(n), then the normalized autocorrelation
2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.
EAMCET-. THEORY OF EQUATIONS PREVIOUS EAMCET Bits. Each of the roots of the equation x 6x + 6x 5= are increased by k so that the new transformed equation does not contain term. Then k =... - 4. - Sol.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM. by Zoran VARGA, Ms.C.E.
DETERMINATION OF DYNAMIC CHARACTERISTICS OF A 2DOF SYSTEM by Zoran VARGA, Ms.C.E. Euro-Apex B.V. 1990-2012 All Rights Reserved. The 2 DOF System Symbols m 1 =3m [kg] m 2 =8m m=10 [kg] l=2 [m] E=210000
Appendix A. Curvilinear coordinates. A.1 Lamé coefficients. Consider set of equations. ξ i = ξ i (x 1,x 2,x 3 ), i = 1,2,3
Appendix A Curvilinear coordinates A. Lamé coefficients Consider set of equations ξ i = ξ i x,x 2,x 3, i =,2,3 where ξ,ξ 2,ξ 3 independent, single-valued and continuous x,x 2,x 3 : coordinates of point
The Determinant of a Hypergeometric Period Matrix and a Generalization of Selberg s Integral
The Determinant of a Hypergeometric Period Matrix and a Generalization of Selberg s Integral Donald Richards a,,1 Qifu Zheng b, a Department of Statistics, Penn State University, University Park, PA 1680,
6. MAXIMUM LIKELIHOOD ESTIMATION
6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ
9.09. # 1. Area inside the oval limaçon r = cos θ. To graph, start with θ = 0 so r = 6. Compute dr
9.9 #. Area inside the oval limaçon r = + cos. To graph, start with = so r =. Compute d = sin. Interesting points are where d vanishes, or at =,,, etc. For these values of we compute r:,,, and the values
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων
ΜΑΣ 473/673: Μέθοδοι Πεπερασμένων Στοιχείων Ένα δυσδιάστατο παράδειγμα με το λογισμικό MATLAB Θεωρούμε το εξής Π.Σ.Τ.: Να βρεθεί η u(x, y) έτσι ώστε όπου f (x, y) = 1. u u f ( x, y), x ( 1,1) ( 1,1) x
Quadratic Expressions
Quadratic Expressions. The standard form of a quadratic equation is ax + bx + c = 0 where a, b, c R and a 0. The roots of ax + bx + c = 0 are b ± b a 4ac. 3. For the equation ax +bx+c = 0, sum of the roots
6.1. Dirac Equation. Hamiltonian. Dirac Eq.
6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2
Durbin-Levinson recursive method
Durbin-Levinson recursive method A recursive method for computing ϕ n is useful because it avoids inverting large matrices; when new data are acquired, one can update predictions, instead of starting again
ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ
ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ Εργαστήριο Θερμικών Στροβιλομηχανών Μονάδα Παράλληλης ης Υπολογιστικής Ρευστοδυναμικής & Βελτιστοποίησης ΜΕΘΟΔΟΙ ΑΕΡΟΔΥΝΑΜΙΚΗΣ ΒΕΛΤΙΣΤΟΠΟΙΗΣΗΣ (7 ο Εξάμηνο Σχολής Μηχ.Μηχ. ΕΜΠ)
Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------
Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin
Second Order RLC Filters
ECEN 60 Circuits/Electronics Spring 007-0-07 P. Mathys Second Order RLC Filters RLC Lowpass Filter A passive RLC lowpass filter (LPF) circuit is shown in the following schematic. R L C v O (t) Using phasor
Lecture 13 - Root Space Decomposition II
Lecture 13 - Root Space Decomposition II October 18, 2012 1 Review First let us recall the situation. Let g be a simple algebra, with maximal toral subalgebra h (which we are calling a CSA, or Cartan Subalgebra).
Bayesian modeling of inseparable space-time variation in disease risk
Bayesian modeling of inseparable space-time variation in disease risk Leonhard Knorr-Held Laina Mercer Department of Statistics UW May, 013 Motivation Ohio Lung Cancer Example Lung Cancer Mortality Rates
HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:
HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying