Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "Monte Carlo Methods. for Econometric Inference I. Institute on Computational Economics. July 19, John Geweke, University of Iowa"

Transcript

1 Monte Carlo Methods for Econometric Inference I Institute on Computational Economics July 19, 2006 John Geweke, University of Iowa Monte Carlo Methods for Econometric Inference I 1

2 Institute on Computational Economics 2006 Geweke (2005) Sections , pp The problem p (θ, ω I) Distribution of interest θ Θ, ω Ω; I = Information p (θ, ω I) =p (θ I) p (ω θ,i) p (ω θ,i) p (θ I) Tractable for simulation Not so easy Leading example: I = {Model specification} {Data} Monte Carlo Methods for Econometric Inference I 2

3 Institute on Computational Economics 2006 Geweke (2005) Sections , pp Origins of the problem in econometric inference Complete model p (y θ,a) p (θ A) ) = p (θ y o,a) Vector of interest ω p (ω y o, θ,a) Simulation problem θ (m) p (θ y o,a) ω (m) p (ω y o, θ,a) Monte Carlo Methods for Econometric Inference I 3

4 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Direct Sampling Some familiar tools Strong law of large numbers: If ω (m) iid p (ω) and E[h (ω)] = R h (ω) p (ω) dν (ω) exists, then h (M) = M 1 M X m=1 h ³ ω (m) a.s. E[h (ω)] = h; that is, P ½ lim M h (M) ¾ = h =1, a stronger condition than h (M) p h. Monte Carlo Methods for Econometric Inference I 4

5 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Lindeberg-Levy central limit theorem: If in addition σ 2 h =var[h (ω)] exists, then M 1/2 h (M) h d N ³ 0,σ 2 h. Monte Carlo Methods for Econometric Inference I 5

6 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Generic notation for posterior simulation θ p (θ I) ; θ Θ ω p (ω θ,i) ; ω Ω I denotes the distribution of interest. Monte Carlo Methods for Econometric Inference I 6

7 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Direct sampling is possible if there are practical algorithms for θ (m) iid p (θ I) and ω (m) iid p ³ ω θ (m),i. Example: (1) Mother of all random number generators (Geweke 1996): u (m) iid uniform (0, 1) (2) Inverse c.d.f. transformation to simulate θ : P (θ c) =F (c): θ (m) = F 1 ³ u (m) θ (m) c u (m) = F ³ θ (m) F (c) = P ³ θ (m) c = P h u (m) F (c) i = F (c) Monte Carlo Methods for Econometric Inference I 7

8 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp General case: θ (m) p (θ I) and ω (m) θ (m) p ³ ω θ (m),i where θ (m) Θ, ω (m) Ω, andalldrawsareindependent. For given h and M, leth (M) = M 1 P M m=1 h ³ ω (m). Theorem 4.1(a): Theorem 4.1(b): large numbers). ω (m) i.i.d. p (ω I) (M) a.s. If h =E[h (ω) I] exists then h h (strong law of Monte Carlo Methods for Econometric Inference I 8

9 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Theorem 4.1(c): If h =E[h (ω) I] and var [h (ω) I] =σ 2 exist, then M µh 1/2 (M) d ³ h N 0,σ 2 and bσ 2(M) = M 1 X M m=1 h ³ ω (m) h (M) 2 a.s. σ 2. (Lindeberg-Levy central limit theorem and strong law of large numbers) Monte Carlo Methods for Econometric Inference I 9

10 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Theorem 4.1(d): statements If for given p (0, 1), there is a unique h p such that the P [h (ω) h p I] p and P [h (ω) h p I] 1 p are both true, then bh (M) p a.s. h p where b h (M) p is any real number such that M 1 M X m=1 I ³ i h (M) h ³ ω (m) i p; M,b 1 h p M X m=1 I h hh ³ b(m) ω (m) i 1 p h p, (Follows from in Rao (1965), result 6f.2(i).) Monte Carlo Methods for Econometric Inference I 10

11 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Theorem 4.1(e): If for given p (0, 1), there is a unique h p such that the statements P [h (ω) h p I] p and P [h (ω) h p I] 1 p are both true, and moreover p, p [h (ω) =h p I] > 0, then M 1/2 b h (M) p h p d N n 0,p(1 p) /p [h (ω) =hp I] 2o. (Follows from in Rao (1965), result 6f.2(i).) Monte Carlo Methods for Econometric Inference I 11

12 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Approximation of Bayes actions by direct sampling General case The setting: n θ (m), ω (m)o i.i.d. with θ (m) p (θ I), ω (m) ³ θ (m),i p ³ ω θ (m),i. Loss function L (a, ω) 0 defined on Ω A, A an open subset of R q. The risk function R (a) = Z Z Ω Θ L (a, ω) p (θ I) p (ω θ,i) dθdω has a strict global minimum at ba A R m. Monte Carlo Methods for Econometric Inference I 12

13 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Let A M be the set of all roots of M 1 P M m=1 L ³ a, ω (m) / a = 0. Theorem 4.2(a): If (1) M 1 P M m=1 L ³ a, ω (m) almost surely; converges uniformly to R (a) for all a N (ba), (2) L(a, ω) / a exists and is a continuous function of a, forallω Ω and all a N (ba); then for any ε>0 lim P M " inf (a ba) 0 (a ba) >ε I a A M # =0. Monte Carlo Methods for Econometric Inference I 13

14 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp Theorem 4.2 (b): If,inaddition, (3) 2 L (a, ω) / a a 0 exists and is a continuous function of a, forallω Ω and all a N (ba); (4) B =var [ L(a, ω) / a a=ba I] exists and is finite; (5) H =E h 2 L (a, ω) / a a 0 a=ba I i exists and is finite and nonsingular; (6) For any ε>0, thereexistsm ε such that P sup a N(ba) for all i, j, k =1,...,m; 3 L (a, ω) / a i a j a k <Mε I 1 ε Monte Carlo Methods for Econometric Inference I 14

15 Institute on Computational Economics 2006 Geweke (2005) Section 4.1, pp then: 1. M 1/2 (ba M ba) d N ³ 0, H 1 BH 1, 2. M 1 P M m=1 L ³ a, ω (m) / a a=bam L ³ a, ω (m) / a 0 p a=bam B, 3. M 1 P M m=1 2 L ³ a, ω (m) / a a 0 a=bam p H.... This all follows from Amemiya (1985), Chapter 4, in straightforward fashion. Monte Carlo Methods for Econometric Inference I 15

16 Institute on Computational Economics 2006 Section 4.2, p. 110 Acceptance and Importance Sampling Motivation and approach We have no practical method to simulate θ (m) iid p (θ I). We can simulate θ (m) iid p (θ S), wherep (θ S) is similar to p (θ I). Can we use θ (m) iid p (θ S) to simulate from p (θ I)? Yes, but the sense in which p (θ S) is similar to p (θ I) is critical. Monte Carlo Methods for Econometric Inference I 16

17 Institute on Computational Economics 2006 Section 4.2.1, pp Acceptance Sampling Density of interest: p (θ I) We cannot simulate θ (m) iid p (θ I), We can evaluate k (θ I) p (θ I) Source density: p (θ S) We can simulate θ (m) iid p (θ S) We can evaluate k (θ S) p (θ S) Monte Carlo Methods for Econometric Inference I 17

18 Institute on Computational Economics 2006 Section 4.2.1, pp Acceptance sampling: Key idea sup θ p (θ I) /p (θ S) =p (1.16 I) /p (1.16 S) =a =1.86 Draw θ from p (θ S), and accept the draw with probability p (θ I) / [a p (θ S)] Monte Carlo Methods for Econometric Inference I 18

19 Institute on Computational Economics 2006 Section 4.2.1, pp Theorem Acceptance sampling. Let k (θ I) =c I p (θ I) be a kernel of the density of interest p (θ I) and let k (θ S) =c S p (θ S) be a kernel of the source density p (θ S). Letr =sup θ Θ k (θ I) /k (θ S) <. Suppose that θ (m) is drawn as follows. (1) Draw u uniform on [0, 1]. (2) Draw θ p (θ S). (3) If u>k(θ I) / [r k (θ S)] then return to step 1. (4) Set θ (m) = θ. If the draws in steps 1 and 2 are independent, then θ (m) p (θ I). Monte Carlo Methods for Econometric Inference I 19

20 Institute on Computational Economics 2006 Section 4.2.1, pp k (θ I) =c I p (θ I), k (θ S) =c S p (θ S), Θ = {θ :p (θ S) > 0} (1) Draw u uniform on [0, 1]. (2) Draw θ p (θ S). (3) If u>k(θ I) / [r k (θ S)] then return to step 1. (4) Set θ (m) = θ. P [(3) (4)] = P [(3) (4), θ A] = Z Θ {k (θ I) / [rk (θ S)]} p (θ S) dν (θ) =c I/rc S = Z ZA Z {k (θ I) / [rk (θ S)]} p (θ S) dν (θ) A k (θ I) dν (θ) /rc S P [ θ A (3) (4)] = k (θ I) dν (θ) /c I = A = P (θ A I) Z A p (θ I) dν (θ) Monte Carlo Methods for Econometric Inference I 20

21 Institute on Computational Economics 2006 Section 4.2.1, pp Efficiency of acceptance sampling k (θ I) =c I p (θ I), k (θ S) =c S p (θ S), r =sup θ Θ P [(3) (4)] = = Z k (θ I) k (θ S), a =sup θ Θ p (θ I) p (θ S) {k (θ I) / [rk (θ S)]} p (θ S) dν (θ) = c I Θ rc S c I c S sup θ Θ k (θ I) /k (θ S) = inf c I θ Θ c S k (θ I) /k (θ S) = inf θ Θ p (θ S) p (θ I) = a 1 Draws from p (θ S) Draws from p (θ I) a Monte Carlo Methods for Econometric Inference I 21

22 Institute on Computational Economics 2006 Section 4.2.1, pp Example: Sampling from a standard normal distribution truncated to the interval (a, b) Characteristics of the truncation Source distribution a<0 <b< a t 1 and b t 1 Uniform(a, b) a< t 1 or b>t 1 N (0, 1) 0 a<b< φ (a) /φ (b) t 2 Uniform(a, b) φ (a) /φ (b) >t 2 a t 3 N (0, 1) a>t 3 a + exp ³ a 1 b = a t 4 N (0, 1) a>t 4 a + exp ³ a 1 t 1 =0.375, t 2 =2.18, t 3 =0.725, andt 4 =0.45 2to6timesasfastasinversec.d.f.method Monte Carlo Methods for Econometric Inference I 22

23 Institute on Computational Economics 2006 Section 4.2.2, pp Importance Sampling Density of interest: p (θ I) We cannot simulate θ (m) iid p (θ I), We can evaluate k (θ I) p (θ I) Source density: p (θ S) We can simulate θ (m) iid p (θ S) We can evaluate k (θ S) p (θ S) Weighting function: w (θ) =k (θ I) /k (θ S) Monte Carlo Methods for Econometric Inference I 23

24 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.2 (a,b) Approximation of moments by importance sampling. Suppose E[h (ω) I] =h exists, the support of p (θ S) includes Θ, and ω (m) p ³ ω θ (m),i. Then h (M) = P Mm=1 w ³ θ (m) h ³ ω (m) P Mm=1 w ³ θ (m) a.s. h. Proof. w ³ θ (m) i.i.d., E[w (θ) S] = Z Θ k (θ I) k (θ S) p (θ S) dν (θ) =c I c S = w = w (M) = M 1 M X m=1 w ³ θ (m) a.s. w. Monte Carlo Methods for Econometric Inference I 24

25 Institute on Computational Economics 2006 Section 4.2.2, pp Proof (concluded) So far we have P Mm=1 w ³ θ (m) h ³ ω (m) h (M) = P Mm=1 w ³ θ (m), w (M) = M 1 M X m=1 w ³ θ (m) a.s. w Then w (θ) =k (θ I) /k (θ S), n w ³ θ (m), h ³ ω (m) o i.i.d. = E[w (θ) h (ω) S] = w (θ) Θ = (c I /c S ) Z Z Z Θ ΩZ = (c I /c S )E[h(ω) I] =w h = wh (M) = M 1 X M w ³ θ (m) Ω h (ω) p (ω θ,i) dν (ω) p (θ S) dν (θ) h (ω) p (ω θ,i) p (θ I) dν (ω) dν (θ) m=1 h ³ ω (m) a.s. w h Monte Carlo Methods for Econometric Inference I 25

26 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.2 (c,d) Suppose E[h (ω) I] =h and var [h (ω) I] =σ 2 exist, and w (θ) =k (θ I) /k (θ S) is bounded above on Θ. Then µ M 1/2 h (M) d ³ h N 0,τ 2 and bτ 2(M) = M P M m=1 h ³ ω (m) h PMm=1 w ³ θ (m) i 2 h (M) 2 w ³ θ (m) 2 a.s. τ 2. Monte Carlo Methods for Econometric Inference I 26

27 Institute on Computational Economics 2006 Section 4.2.2, pp Proof. E h w (θ) 2 h (ω) 2 S i = = Z Θ k (θ I) w (θ) k (θ S) =(c I /c S ) Z Z w Θ (θ)2 Z Z Z Ω h (ω)2 p (ω θ,i) dν (ω) Ω h (ω)2 p (ω θ,i) dν (ω) p (θ S) dν (θ) w (θ) h Θ Ω (ω)2 p (ω θ,i) dν (ω) p (θ I) dν (θ) (c I /c S )E h h (ω) 2 I i sup w (θ) < θ Θ p (θ S) dν (θ) Substitute h (ω) =1and conclude E h w (θ) 2 S i < as well. Monte Carlo Methods for Econometric Inference I 27

28 Institute on Computational Economics 2006 Section 4.2.2, pp Proof (continued). Now we know V =var " # w (θ) w (θ) h (ω) S is finite. Apply Lindeberg-Levy Central Limit Theorem: M 1/2 "Ã w (M) wh (M)! Ã w wh!# d N (0, V) Monte Carlo Methods for Econometric Inference I 28

29 Institute on Computational Economics 2006 Section 4.2.2, pp Proof (continued) wh (M) M 1/2 "Ã w (M) wh (M) w (M) = wh w + wh(m) wh w = M 1/2 wh(m)! Ã w wh!# d N (0, V), wh ³ w (M) w w 2 w (M) h d N ³ 0,τ 2 + o p ³ M 1/2 with τ 2 = w 2 n var [w (θ) h (ω) S] 2hcov S [w (θ) h (ω),w(θ) S] +h 2 var S [w (θ) S] o = w 2 var nh w (θ) h (ω) hw (θ) i S o. Monte Carlo Methods for Econometric Inference I 29

30 Institute on Computational Economics 2006 Section 4.2.2, pp Proof (concluded) τ 2 = w 2 n var [w (θ) h (ω) S] 2hcov S [w (θ) h (ω),w(θ) S] +h 2 var S [w (θ) S] o = w 2 var nh w (θ) h (ω) hw (θ) i S o bτ 2(M) = = M P M m=1 h ³ ω (m) h PMm=1 w ³ θ (m) i 2 h (M) 2 w ³ θ (m) 2 M 1 P M m=1 w ³ θ (m) h ³ ω (m) h M 1 P M m=1 w ³ θ (m) i 2 h (M) w ³ θ (m) 2 a.s. τ 2 Monte Carlo Methods for Econometric Inference I 30

31 Institute on Computational Economics 2006 Section 4.2.2, pp Example: Reweighting to a different prior distribution Model Prior Likelihood A 1 A 2 p (θ A A 1 ) p (θ A A 2 ) p (y θ A,A) p (y θ A,A) θ (m) A p (θ A y o,a 2 ) = p (θ A I) iid p (θ A y o,a 1 ) = p (θ A S) w (θ A )= p (θ A y o,a 2 ) p (θ A y o,a 1 ) = p (θ A A 1 ) p (y θ A,A) p (θ A A 2 ) p (y θ A,A) = p (θ A A 1 ) p (θ A A 2 ) Monte Carlo Methods for Econometric Inference I 31

32 Institute on Computational Economics 2006 Section 4.2.2, pp A useful summary measure of computational efficiency var [h (ω) I] =σ 2 var h (M) S = τ 2 M w (θ) 1 θ p (θ S) =p (θ I) = τ 2 = σ 2 Relative numerical efficiency (RNE) ofthesimulatoris RNE = σ2 τ 2. σ 2 M = τ 2 M = M M = σ2 τ 2 = RNE Monte Carlo Methods for Econometric Inference I 32

33 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.3 (a) Approximation of Bayes actions by importance sampling. Conditions: (1) θ (m) iid p (θ S), ω (m) θ (m) p ³ ω θ (m),i (2) w (θ) =k (θ I) /k (θ S) <c< θ (3) L (a, ω) 0 defined on Ω A, A R q (4) R (a) = R Ω (5) R (ba) <R(a) a A R Θ L (a, ω) p (θ I) p (ω θ,i) dθdω Monte Carlo Methods for Econometric Inference I 33

34 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.3 (a) (concluded) More conditions: (A1) M 1 P M m=1 L ³ a, ω (m) R (a) uniformly a N (ba) (almost surely) (A2) L(a, ω) / a is a continuous function of a a N (ba) Denote A M = a X M :M 1 m=1 h ³ L a, ω (m) / a i w ³ θ (m) = 0 Then for any ε>0, lim P M " inf (a ba) 0 (a ba) >ε S a A M # =0. Monte Carlo Methods for Econometric Inference I 34

35 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.3 (b) Approximation of Bayes actions by importance sampling. Additional conditions: (B1) 2 L (a, ω) a a 0 is a continuous function of a a N (ba), ω Ω (B2) B =var h L(a, ω) / a a=ba w (θ) 1/2 S i exists and is finite (B3) H =E h 2 L (a, ω) / a a 0 a=ba S i exists and is finite and nonsingular (B4) For any ε>0, thereexistsm ε such that P sup a N(ba) 3 L (a, ω) / a i a j a k <Mε S 1 ε for all i, j, k =1,...,m. Monte Carlo Methods for Econometric Inference I 35

36 Institute on Computational Economics 2006 Section 4.2.2, pp Theorem 4.3 (b) (concluded) Then if ba M is any element of A M such that ba M p ba, (1) M 1/2 (ba M ba) d N ³ 0, H 1 BH 1 (2) M 1 P M m=1 w ³ θ (m) 2 ³ L a, ω (m) / a ³ a=bam L a, ω (m) / a 0 a=bam p B (3) M 1 P M m=1 w ³ θ (m) 2 L ³ a, ω (m) / a a 0 p a=bam H. Monte Carlo Methods for Econometric Inference I 36

37 Institute on Computational Economics 2006 Section 4.3, pp Markov Chain Monte Carlo Methods The central idea θ (m) p ³ θ θ (m 1),C (m =1, 2, 3,...) If C is specified correctly, then θ (m 1) p (θ I), θ (m) p ³ θ θ (m 1),C Better yet, if θ (m 1) p (θ J), θ (m) p ³ θ θ (m 1),C = θ (m) p (θ I). = θ (m) p (θ J) then J = I. And even better, p ³ θ (m) θ (0),C d p (θ I) θ (0) Θ. Monte Carlo Methods for Econometric Inference I 37

38 Institute on Computational Economics 2006 Section 4.3, pp The central idea (continued) If p ³ θ (m) θ (0),C d p (θ I) θ (0) Θ, then we can approximate E[h (ω) I] by (1) iterating the chain B ( burn-in ) times; (2) drawing ω (m) p ³ ω θ (m) (m =1,...,M); (3) computing h (M) = M 1 X M m=1 h ³ ω (m). Monte Carlo Methods for Econometric Inference I 38

39 Institute on Computational Economics 2006 Section pp The Gibbs sampler Blocking: θ 0 = ³ θ 0 (1),...,θ0 (B). Some notation: Corresponding to any subvector θ (b), θ 0 <(b) = ³ θ 0 (1) (b 1),...,θ0 (b =2,...,B), θ<(1) = θ 0 >(b) = ³ θ 0 (b+1),...,θ0 (B) (b =1,...,B 1), θ>(b) = θ 0 (b) = ³ θ 0 <(b), θ0 >(b) Very important: Choose the blocking so that θ (b) p ³ θ (b) θ (b),i is possible. Monte Carlo Methods for Econometric Inference I 39

40 Institute on Computational Economics 2006 Section pp Intuitive argument for the Gibbs sampler Imagine θ (0) p (θ I), and then in succession θ (1) µ (1) p θ (1) θ (0) (1),I, θ (1) (2) p θ (1) (3) p θ (1) (b). p µ θ (2) θ (1) <(2), θ(0) >(2),I, µ θ (3) θ (1) <(3), θ(0) >(3),I, µ θ (b) θ (1) <(b), θ(0) >(b),i. θ (1) µ (B) p θ (B) θ (1) (B),I We have θ (1) p (θ I). Monte Carlo Methods for Econometric Inference I 40

41 Institute on Computational Economics 2006 Section pp Now repeat θ (2) µ (1) p θ (1) θ (1) (1),I θ (2) (2) θ (2) (3) θ (2) (b), µ p θ (2) θ (2) <(2), θ(1) >(2),I, µ p θ (3) θ (2) <(3), θ(1) >(3),I,. p µ θ (b) θ (2) <(b), θ(1) >(b),i. θ (2) µ (B) p θ (B) θ (2) (B),I. We have θ (2) p (θ I). Monte Carlo Methods for Econometric Inference I 41

42 Institute on Computational Economics 2006 Section pp ThegeneralstepintheGibbssampleris θ (m) (b) p µ θ (b) θ (m) <(b), θ(m 1) >(b),i for b =1,...,B and m =1, 2,... This defines the Markov chain p ³ θ (m) θ (m 1),G = BY b=1 p θ (m) (b) θ (m) <(b), θ(m 1) >(b),i. Key property: θ (0) p (θ I) = θ (m) p (θ I) Monte Carlo Methods for Econometric Inference I 42

43 Institute on Computational Economics 2006 Section pp Potential problems: Monte Carlo Methods for Econometric Inference I 43

44 Institute on Computational Economics 2006 Section pp The Metropolis-Hastings Algorithm What it does: θ q ³ θ θ (m 1),H Then P ³ θ (m) = θ P ³ θ (m) = θ (m 1) = α ³ θ θ (m 1),H, = 1 α ³ θ θ (m 1),H where α ³ θ θ (m 1),H =min p (θ I) /q ³ θ θ (m 1),H p ³ θ (m 1) I /q ³ θ (m 1) θ 1,H,. Monte Carlo Methods for Econometric Inference I 44

45 Institute on Computational Economics 2006 Section pp Some aspects of the Metropolis-Hastings algorithm If we define u (θ θ,h) =q (θ θ,h) α (θ θ,h) then P ³ θ (m) = θ (m 1) θ (m 1) = θ,h = r (θ H) =1 Z Θ u (θ θ,h) dν (θ ). Notice that P ³ θ (m) A θ (m 1) = θ,h = Z A (θ θ,h) dν (θ )+r (θ H) I A (θ). Monte Carlo Methods for Econometric Inference I 45

46 Institute on Computational Economics 2006 Section pp u (θ θ,h) =q (θ θ,h) α (θ θ,h) We can write the transition density in one line making use of the Dirac delta function, an operator with the property Z A δ θ (θ ) f (θ ) dν (θ )=f (θ) I A (θ). Then p ³ θ (m) θ (m 1),H = u ³ θ (m) θ (m 1),H +r ³ θ (m 1) H δ θ (m 1) ³ θ (m). Monte Carlo Methods for Econometric Inference I 46

47 Institute on Computational Economics 2006 Section pp Special cases of the Metropolis-Hastings algorithm α ³ θ θ (m 1) p (θ,h I) /q ³ θ θ (m 1),H =min p ³ θ (m 1) I /q ³ θ (m 1) θ 1,H, Special case 1, original Metropolis (1953): q (θ θ,h) =q (θ θ,h) = α ³ θ θ (m 1),H =min h p (θ I) /p ³ θ (m 1) I, 1 i Important example: random walk Metropolis chain q (θ θ,h) =q (θ θ H), where q ( H) is symmetric about zero. Monte Carlo Methods for Econometric Inference I 47

48 Institute on Computational Economics 2006 Section pp Special cases of the Metropolis-Hastings algorithm α ³ θ θ (m 1) p (θ,h I) /q ³ θ θ (m 1),H =min p ³ θ (m 1) I /q ³ θ (m 1) θ 1,H, Special case 2, Metropolis independence chain: = α ³ θ θ (m 1),H =min q (θ θ,h) =q (θ H) =min p (θ I) /q (θ H) p ³ θ (m 1) I /q ³ θ (m 1) 1 H, w (θ ) w ³ θ (m 1), 1 where w (θ) =p (θ I) /q (θ H). Monte Carlo Methods for Econometric Inference I 48

49 Institute on Computational Economics 2006 Section pp Why does the Metropolis-Hastings algorithm work? A two part argument Part 1: Suppose any transition probability density function p ³ θ (m) θ (m 1),T satisfies the reversibility condition p ³ θ (m 1) I p ³ θ (m) θ (m 1),T = p ³ θ (m) I p ³ θ (m 1) θ (m),t with respect to p (θ I). Then ZΘ p ³ θ (m 1) I p ³ θ (m) θ (m 1),T dν ³ θ (m 1) = ZΘ p ³ θ (m) I p ³ θ (m 1) θ (m),t dν ³ θ (m 1) = p ³ θ (m) Z I p ³ θ (m 1) θ (m),t dν ³ θ (m 1) = p ³ θ (m) I. Θ and so p (θ I) is an invariant density of the Markov chain. Monte Carlo Methods for Econometric Inference I 49

50 Institute on Computational Economics 2006 Section pp Part 2 of the argument (How Hastings did it): Suppose we don t know the probability α ³ θ θ (m 1),H, butwewant p ³ θ (m) θ (m 1),H to be reversible with respect to p (θ I): p ³ θ (m 1) I p ³ θ (m) θ (m 1),H = p ³ θ (m) I p ³ θ (m 1) θ (m),h. Trivial if θ (m 1) = θ (m). For θ (m 1) 6= θ (m) we need p ³ θ (m 1) I q ³ θ θ (m 1),H α ³ θ θ (m 1),H = p (θ I) q ³ θ (m 1) θ,h α ³ θ (m 1) θ,h. Monte Carlo Methods for Econometric Inference I 50

51 Institute on Computational Economics 2006 Section pp p ³ θ (m 1) I q ³ θ θ (m 1),H α ³ θ θ (m 1),H = p (θ I) q ³ θ (m 1) θ,h α ³ θ (m 1) θ,h Suppose without loss of generality that p ³ θ (m 1) I q ³ θ θ (m 1),H >p(θ I) q ³ θ (m 1) θ,h. Set α ³ θ (m 1) θ,h =1and α ³ θ θ (m 1),H = p (θ I) q ³ θ (m 1) θ,h p ³ θ (m 1) I q ³ θ θ (m 1),H. Monte Carlo Methods for Econometric Inference I 51

Other Test Constructions: Likelihood Ratio & Bayes Tests

Other Test Constructions: Likelihood Ratio & Bayes Tests Other Test Constructions: Likelihood Ratio & Bayes Tests Side-Note: So far we have seen a few approaches for creating tests such as Neyman-Pearson Lemma ( most powerful tests of H 0 : θ = θ 0 vs H 1 :

Διαβάστε περισσότερα

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit Ting Zhang Stanford May 11, 2001 Stanford, 5/11/2001 1 Outline Ordinal Classification Ordinal Addition Ordinal Multiplication Ordinal

Διαβάστε περισσότερα

Statistical Inference I Locally most powerful tests

Statistical Inference I Locally most powerful tests Statistical Inference I Locally most powerful tests Shirsendu Mukherjee Department of Statistics, Asutosh College, Kolkata, India. shirsendu st@yahoo.co.in So far we have treated the testing of one-sided

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Fractional Colorings and Zykov Products of graphs

Fractional Colorings and Zykov Products of graphs Fractional Colorings and Zykov Products of graphs Who? Nichole Schimanski When? July 27, 2011 Graphs A graph, G, consists of a vertex set, V (G), and an edge set, E(G). V (G) is any finite set E(G) is

Διαβάστε περισσότερα

2 Composition. Invertible Mappings

2 Composition. Invertible Mappings Arkansas Tech University MATH 4033: Elementary Modern Algebra Dr. Marcel B. Finan Composition. Invertible Mappings In this section we discuss two procedures for creating new mappings from old ones, namely,

Διαβάστε περισσότερα

Every set of first-order formulas is equivalent to an independent set

Every set of first-order formulas is equivalent to an independent set Every set of first-order formulas is equivalent to an independent set May 6, 2008 Abstract A set of first-order formulas, whatever the cardinality of the set of symbols, is equivalent to an independent

Διαβάστε περισσότερα

EE512: Error Control Coding

EE512: Error Control Coding EE512: Error Control Coding Solution for Assignment on Finite Fields February 16, 2007 1. (a) Addition and Multiplication tables for GF (5) and GF (7) are shown in Tables 1 and 2. + 0 1 2 3 4 0 0 1 2 3

Διαβάστε περισσότερα

ST5224: Advanced Statistical Theory II

ST5224: Advanced Statistical Theory II ST5224: Advanced Statistical Theory II 2014/2015: Semester II Tutorial 7 1. Let X be a sample from a population P and consider testing hypotheses H 0 : P = P 0 versus H 1 : P = P 1, where P j is a known

Διαβάστε περισσότερα

Homework 3 Solutions

Homework 3 Solutions Homework 3 Solutions Igor Yanovsky (Math 151A TA) Problem 1: Compute the absolute error and relative error in approximations of p by p. (Use calculator!) a) p π, p 22/7; b) p π, p 3.141. Solution: For

Διαβάστε περισσότερα

Uniform Convergence of Fourier Series Michael Taylor

Uniform Convergence of Fourier Series Michael Taylor Uniform Convergence of Fourier Series Michael Taylor Given f L 1 T 1 ), we consider the partial sums of the Fourier series of f: N 1) S N fθ) = ˆfk)e ikθ. k= N A calculation gives the Dirichlet formula

Διαβάστε περισσότερα

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R + Chapter 3. Fuzzy Arithmetic 3- Fuzzy arithmetic: ~Addition(+) and subtraction (-): Let A = [a and B = [b, b in R If x [a and y [b, b than x+y [a +b +b Symbolically,we write A(+)B = [a (+)[b, b = [a +b

Διαβάστε περισσότερα

C.S. 430 Assignment 6, Sample Solutions

C.S. 430 Assignment 6, Sample Solutions C.S. 430 Assignment 6, Sample Solutions Paul Liu November 15, 2007 Note that these are sample solutions only; in many cases there were many acceptable answers. 1 Reynolds Problem 10.1 1.1 Normal-order

Διαβάστε περισσότερα

Mean-Variance Analysis

Mean-Variance Analysis Mean-Variance Analysis Jan Schneider McCombs School of Business University of Texas at Austin Jan Schneider Mean-Variance Analysis Beta Representation of the Risk Premium risk premium E t [Rt t+τ ] R1

Διαβάστε περισσότερα

Lecture 21: Properties and robustness of LSE

Lecture 21: Properties and robustness of LSE Lecture 21: Properties and robustness of LSE BLUE: Robustness of LSE against normality We now study properties of l τ β and σ 2 under assumption A2, i.e., without the normality assumption on ε. From Theorem

Διαβάστε περισσότερα

Example Sheet 3 Solutions

Example Sheet 3 Solutions Example Sheet 3 Solutions. i Regular Sturm-Liouville. ii Singular Sturm-Liouville mixed boundary conditions. iii Not Sturm-Liouville ODE is not in Sturm-Liouville form. iv Regular Sturm-Liouville note

Διαβάστε περισσότερα

Lecture 34 Bootstrap confidence intervals

Lecture 34 Bootstrap confidence intervals Lecture 34 Bootstrap confidence intervals Confidence Intervals θ: an unknown parameter of interest We want to find limits θ and θ such that Gt = P nˆθ θ t If G 1 1 α is known, then P θ θ = P θ θ = 1 α

Διαβάστε περισσότερα

4.6 Autoregressive Moving Average Model ARMA(1,1)

4.6 Autoregressive Moving Average Model ARMA(1,1) 84 CHAPTER 4. STATIONARY TS MODELS 4.6 Autoregressive Moving Average Model ARMA(,) This section is an introduction to a wide class of models ARMA(p,q) which we will consider in more detail later in this

Διαβάστε περισσότερα

Finite Field Problems: Solutions

Finite Field Problems: Solutions Finite Field Problems: Solutions 1. Let f = x 2 +1 Z 11 [x] and let F = Z 11 [x]/(f), a field. Let Solution: F =11 2 = 121, so F = 121 1 = 120. The possible orders are the divisors of 120. Solution: The

Διαβάστε περισσότερα

5. Choice under Uncertainty

5. Choice under Uncertainty 5. Choice under Uncertainty Daisuke Oyama Microeconomics I May 23, 2018 Formulations von Neumann-Morgenstern (1944/1947) X: Set of prizes Π: Set of probability distributions on X : Preference relation

Διαβάστε περισσότερα

12. Radon-Nikodym Theorem

12. Radon-Nikodym Theorem Tutorial 12: Radon-Nikodym Theorem 1 12. Radon-Nikodym Theorem In the following, (Ω, F) is an arbitrary measurable space. Definition 96 Let μ and ν be two (possibly complex) measures on (Ω, F). We say

Διαβάστε περισσότερα

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Chapter 6: Systems of Linear Differential. be continuous functions on the interval Chapter 6: Systems of Linear Differential Equations Let a (t), a 2 (t),..., a nn (t), b (t), b 2 (t),..., b n (t) be continuous functions on the interval I. The system of n first-order differential equations

Διαβάστε περισσότερα

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science. Bayesian statistics DS GA 1002 Probability and Statistics for Data Science http://www.cims.nyu.edu/~cfgranda/pages/dsga1002_fall17 Carlos Fernandez-Granda Frequentist vs Bayesian statistics In frequentist

Διαβάστε περισσότερα

Problem Set 3: Solutions

Problem Set 3: Solutions CMPSCI 69GG Applied Information Theory Fall 006 Problem Set 3: Solutions. [Cover and Thomas 7.] a Define the following notation, C I p xx; Y max X; Y C I p xx; Ỹ max I X; Ỹ We would like to show that C

Διαβάστε περισσότερα

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- -----------------

Inverse trigonometric functions & General Solution of Trigonometric Equations. ------------------ ----------------------------- ----------------- Inverse trigonometric functions & General Solution of Trigonometric Equations. 1. Sin ( ) = a) b) c) d) Ans b. Solution : Method 1. Ans a: 17 > 1 a) is rejected. w.k.t Sin ( sin ) = d is rejected. If sin

Διαβάστε περισσότερα

Solution Series 9. i=1 x i and i=1 x i.

Solution Series 9. i=1 x i and i=1 x i. Lecturer: Prof. Dr. Mete SONER Coordinator: Yilin WANG Solution Series 9 Q1. Let α, β >, the p.d.f. of a beta distribution with parameters α and β is { Γ(α+β) Γ(α)Γ(β) f(x α, β) xα 1 (1 x) β 1 for < x

Διαβάστε περισσότερα

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3 1 State vector space and the dual space Space of wavefunctions The space of wavefunctions is the set of all

Διαβάστε περισσότερα

Numerical Analysis FMN011

Numerical Analysis FMN011 Numerical Analysis FMN011 Carmen Arévalo Lund University carmen@maths.lth.se Lecture 12 Periodic data A function g has period P if g(x + P ) = g(x) Model: Trigonometric polynomial of order M T M (x) =

Διαβάστε περισσότερα

Congruence Classes of Invertible Matrices of Order 3 over F 2

Congruence Classes of Invertible Matrices of Order 3 over F 2 International Journal of Algebra, Vol. 8, 24, no. 5, 239-246 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.2988/ija.24.422 Congruence Classes of Invertible Matrices of Order 3 over F 2 Ligong An and

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr T t N n) Pr max X 1,..., X N ) t N n) Pr max

Διαβάστε περισσότερα

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required) Phys460.nb 81 ψ n (t) is still the (same) eigenstate of H But for tdependent H. The answer is NO. 5.5.5. Solution for the tdependent Schrodinger s equation If we assume that at time t 0, the electron starts

Διαβάστε περισσότερα

Section 8.3 Trigonometric Equations

Section 8.3 Trigonometric Equations 99 Section 8. Trigonometric Equations Objective 1: Solve Equations Involving One Trigonometric Function. In this section and the next, we will exple how to solving equations involving trigonometric functions.

Διαβάστε περισσότερα

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8  questions or comments to Dan Fetter 1 Eon : Fall 8 Suggested Solutions to Problem Set 8 Email questions or omments to Dan Fetter Problem. Let X be a salar with density f(x, θ) (θx + θ) [ x ] with θ. (a) Find the most powerful level α test

Διαβάστε περισσότερα

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X. Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequalit for metrics: Let (X, d) be a metric space and let x,, z X. Prove that d(x, z) d(, z) d(x, ). (ii): Reverse triangle inequalit for norms:

Διαβάστε περισσότερα

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University

Estimation for ARMA Processes with Stable Noise. Matt Calder & Richard A. Davis Colorado State University Estimation for ARMA Processes with Stable Noise Matt Calder & Richard A. Davis Colorado State University rdavis@stat.colostate.edu 1 ARMA processes with stable noise Review of M-estimation Examples of

Διαβάστε περισσότερα

Lecture 2. Soundness and completeness of propositional logic

Lecture 2. Soundness and completeness of propositional logic Lecture 2 Soundness and completeness of propositional logic February 9, 2004 1 Overview Review of natural deduction. Soundness and completeness. Semantics of propositional formulas. Soundness proof. Completeness

Διαβάστε περισσότερα

6.3 Forecasting ARMA processes

6.3 Forecasting ARMA processes 122 CHAPTER 6. ARMA MODELS 6.3 Forecasting ARMA processes The purpose of forecasting is to predict future values of a TS based on the data collected to the present. In this section we will discuss a linear

Διαβάστε περισσότερα

derivation of the Laplacian from rectangular to spherical coordinates

derivation of the Laplacian from rectangular to spherical coordinates derivation of the Laplacian from rectangular to spherical coordinates swapnizzle 03-03- :5:43 We begin by recognizing the familiar conversion from rectangular to spherical coordinates (note that φ is used

Διαβάστε περισσότερα

Approximation of distance between locations on earth given by latitude and longitude

Approximation of distance between locations on earth given by latitude and longitude Approximation of distance between locations on earth given by latitude and longitude Jan Behrens 2012-12-31 In this paper we shall provide a method to approximate distances between two points on earth

Διαβάστε περισσότερα

A Note on Intuitionistic Fuzzy. Equivalence Relation

A Note on Intuitionistic Fuzzy. Equivalence Relation International Mathematical Forum, 5, 2010, no. 67, 3301-3307 A Note on Intuitionistic Fuzzy Equivalence Relation D. K. Basnet Dept. of Mathematics, Assam University Silchar-788011, Assam, India dkbasnet@rediffmail.com

Διαβάστε περισσότερα

6. MAXIMUM LIKELIHOOD ESTIMATION

6. MAXIMUM LIKELIHOOD ESTIMATION 6 MAXIMUM LIKELIHOOD ESIMAION [1] Maximum Likelihood Estimator (1) Cases in which θ (unknown parameter) is scalar Notational Clarification: From now on, we denote the true value of θ as θ o hen, view θ

Διαβάστε περισσότερα

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER ORDINAL ARITHMETIC JULIAN J. SCHLÖDER Abstract. We define ordinal arithmetic and show laws of Left- Monotonicity, Associativity, Distributivity, some minor related properties and the Cantor Normal Form.

Διαβάστε περισσότερα

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =? Teko Classes IITJEE/AIEEE Maths by SUHAAG SIR, Bhopal, Ph (0755) 3 00 000 www.tekoclasses.com ANSWERSHEET (TOPIC DIFFERENTIAL CALCULUS) COLLECTION # Question Type A.Single Correct Type Q. (A) Sol least

Διαβάστε περισσότερα

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ. Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο The time integral of a force is referred to as impulse, is determined by and is obtained from: Newton s 2 nd Law of motion states that the action

Διαβάστε περισσότερα

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y Stat 50 Homework Solutions Spring 005. (a λ λ λ 44 (b trace( λ + λ + λ 0 (c V (e x e e λ e e λ e (λ e by definition, the eigenvector e has the properties e λ e and e e. (d λ e e + λ e e + λ e e 8 6 4 4

Διαβάστε περισσότερα

Chapter 3: Ordinal Numbers

Chapter 3: Ordinal Numbers Chapter 3: Ordinal Numbers There are two kinds of number.. Ordinal numbers (0th), st, 2nd, 3rd, 4th, 5th,..., ω, ω +,... ω2, ω2+,... ω 2... answers to the question What position is... in a sequence? What

Διαβάστε περισσότερα

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM

: Monte Carlo EM 313, Louis (1982) EM, EM Newton-Raphson, /. EM, 2 Monte Carlo EM Newton-Raphson, Monte Carlo EM, Monte Carlo EM, /. 3, Monte Carlo EM 2008 6 Chinese Journal of Applied Probability and Statistics Vol.24 No.3 Jun. 2008 Monte Carlo EM 1,2 ( 1,, 200241; 2,, 310018) EM, E,,. Monte Carlo EM, EM E Monte Carlo,. EM, Monte Carlo EM,,,,. Newton-Raphson.

Διαβάστε περισσότερα

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example:

P AND P. P : actual probability. P : risk neutral probability. Realtionship: mutual absolute continuity P P. For example: (B t, S (t) t P AND P,..., S (p) t ): securities P : actual probability P : risk neutral probability Realtionship: mutual absolute continuity P P For example: P : ds t = µ t S t dt + σ t S t dw t P : ds

Διαβάστε περισσότερα

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018 Journal of rogressive Research in Mathematics(JRM) ISSN: 2395-028 SCITECH Volume 3, Issue 2 RESEARCH ORGANISATION ublished online: March 29, 208 Journal of rogressive Research in Mathematics www.scitecresearch.com/journals

Διαβάστε περισσότερα

Matrices and Determinants

Matrices and Determinants Matrices and Determinants SUBJECTIVE PROBLEMS: Q 1. For what value of k do the following system of equations possess a non-trivial (i.e., not all zero) solution over the set of rationals Q? x + ky + 3z

Διαβάστε περισσότερα

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Partial Differential Equations in Biology The boundary element method. March 26, 2013 The boundary element method March 26, 203 Introduction and notation The problem: u = f in D R d u = ϕ in Γ D u n = g on Γ N, where D = Γ D Γ N, Γ D Γ N = (possibly, Γ D = [Neumann problem] or Γ N = [Dirichlet

Διαβάστε περισσότερα

An Inventory of Continuous Distributions

An Inventory of Continuous Distributions Appendi A An Inventory of Continuous Distributions A.1 Introduction The incomplete gamma function is given by Also, define Γ(α; ) = 1 with = G(α; ) = Z 0 Z 0 Z t α 1 e t dt, α > 0, >0 t α 1 e t dt, α >

Διαβάστε περισσότερα

The challenges of non-stable predicates

The challenges of non-stable predicates The challenges of non-stable predicates Consider a non-stable predicate Φ encoding, say, a safety property. We want to determine whether Φ holds for our program. The challenges of non-stable predicates

Διαβάστε περισσότερα

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics Fourier Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Introduction Not all functions can be represented by Taylor series. f (k) (c) A Taylor series f (x) = (x c)

Διαβάστε περισσότερα

Tridiagonal matrices. Gérard MEURANT. October, 2008

Tridiagonal matrices. Gérard MEURANT. October, 2008 Tridiagonal matrices Gérard MEURANT October, 2008 1 Similarity 2 Cholesy factorizations 3 Eigenvalues 4 Inverse Similarity Let α 1 ω 1 β 1 α 2 ω 2 T =......... β 2 α 1 ω 1 β 1 α and β i ω i, i = 1,...,

Διαβάστε περισσότερα

Homework 8 Model Solution Section

Homework 8 Model Solution Section MATH 004 Homework Solution Homework 8 Model Solution Section 14.5 14.6. 14.5. Use the Chain Rule to find dz where z cosx + 4y), x 5t 4, y 1 t. dz dx + dy y sinx + 4y)0t + 4) sinx + 4y) 1t ) 0t + 4t ) sinx

Διαβάστε περισσότερα

Bounding Nonsplitting Enumeration Degrees

Bounding Nonsplitting Enumeration Degrees Bounding Nonsplitting Enumeration Degrees Thomas F. Kent Andrea Sorbi Università degli Studi di Siena Italia July 18, 2007 Goal: Introduce a form of Σ 0 2-permitting for the enumeration degrees. Till now,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

The Simply Typed Lambda Calculus

The Simply Typed Lambda Calculus Type Inference Instead of writing type annotations, can we use an algorithm to infer what the type annotations should be? That depends on the type system. For simple type systems the answer is yes, and

Διαβάστε περισσότερα

w o = R 1 p. (1) R = p =. = 1

w o = R 1 p. (1) R = p =. = 1 Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have:

Διαβάστε περισσότερα

The circle theorem and related theorems for Gauss-type quadrature rules

The circle theorem and related theorems for Gauss-type quadrature rules OP.circle p. / The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu Purdue University OP.circle p. 2/ Web Site http : //www.cs.purdue.edu/ archives/22/wxg/codes

Διαβάστε περισσότερα

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS CHAPTER 5 SOLVING EQUATIONS BY ITERATIVE METHODS EXERCISE 104 Page 8 1. Find the positive root of the equation x + 3x 5 = 0, correct to 3 significant figures, using the method of bisection. Let f(x) =

Διαβάστε περισσότερα

Space-Time Symmetries

Space-Time Symmetries Chapter Space-Time Symmetries In classical fiel theory any continuous symmetry of the action generates a conserve current by Noether's proceure. If the Lagrangian is not invariant but only shifts by a

Διαβάστε περισσότερα

Concrete Mathematics Exercises from 30 September 2016

Concrete Mathematics Exercises from 30 September 2016 Concrete Mathematics Exercises from 30 September 2016 Silvio Capobianco Exercise 1.7 Let H(n) = J(n + 1) J(n). Equation (1.8) tells us that H(2n) = 2, and H(2n+1) = J(2n+2) J(2n+1) = (2J(n+1) 1) (2J(n)+1)

Διαβάστε περισσότερα

Reminders: linear functions

Reminders: linear functions Reminders: linear functions Let U and V be vector spaces over the same field F. Definition A function f : U V is linear if for every u 1, u 2 U, f (u 1 + u 2 ) = f (u 1 ) + f (u 2 ), and for every u U

Διαβάστε περισσότερα

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013 Notes on Average Scattering imes and Hall Factors Jesse Maassen and Mar Lundstrom Purdue University November 5, 13 I. Introduction 1 II. Solution of the BE 1 III. Exercises: Woring out average scattering

Διαβάστε περισσότερα

Abstract Storage Devices

Abstract Storage Devices Abstract Storage Devices Robert König Ueli Maurer Stefano Tessaro SOFSEM 2009 January 27, 2009 Outline 1. Motivation: Storage Devices 2. Abstract Storage Devices (ASD s) 3. Reducibility 4. Factoring ASD

Διαβάστε περισσότερα

5.4 The Poisson Distribution.

5.4 The Poisson Distribution. The worst thing you can do about a situation is nothing. Sr. O Shea Jackson 5.4 The Poisson Distribution. Description of the Poisson Distribution Discrete probability distribution. The random variable

Διαβάστε περισσότερα

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

6.1. Dirac Equation. Hamiltonian. Dirac Eq. 6.1. Dirac Equation Ref: M.Kaku, Quantum Field Theory, Oxford Univ Press (1993) η μν = η μν = diag(1, -1, -1, -1) p 0 = p 0 p = p i = -p i p μ p μ = p 0 p 0 + p i p i = E c 2 - p 2 = (m c) 2 H = c p 2

Διαβάστε περισσότερα

Section 9.2 Polar Equations and Graphs

Section 9.2 Polar Equations and Graphs 180 Section 9. Polar Equations and Graphs In this section, we will be graphing polar equations on a polar grid. In the first few examples, we will write the polar equation in rectangular form to help identify

Διαβάστε περισσότερα

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016

ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 ECE598: Information-theoretic methods in high-dimensional statistics Spring 06 Lecture 7: Information bound Lecturer: Yihong Wu Scribe: Shiyu Liang, Feb 6, 06 [Ed. Mar 9] Recall the Chi-squared divergence

Διαβάστε περισσότερα

SOME PROPERTIES OF FUZZY REAL NUMBERS

SOME PROPERTIES OF FUZZY REAL NUMBERS Sahand Communications in Mathematical Analysis (SCMA) Vol. 3 No. 1 (2016), 21-27 http://scma.maragheh.ac.ir SOME PROPERTIES OF FUZZY REAL NUMBERS BAYAZ DARABY 1 AND JAVAD JAFARI 2 Abstract. In the mathematical

Διαβάστε περισσότερα

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality

The Probabilistic Method - Probabilistic Techniques. Lecture 7: The Janson Inequality The Probabilistic Method - Probabilistic Techniques Lecture 7: The Janson Inequality Sotiris Nikoletseas Associate Professor Computer Engineering and Informatics Department 2014-2015 Sotiris Nikoletseas,

Διαβάστε περισσότερα

Areas and Lengths in Polar Coordinates

Areas and Lengths in Polar Coordinates Kiryl Tsishchanka Areas and Lengths in Polar Coordinates In this section we develop the formula for the area of a region whose boundary is given by a polar equation. We need to use the formula for the

Διαβάστε περισσότερα

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in : tail in X, head in A nowhere-zero Γ-flow is a Γ-circulation such that

Διαβάστε περισσότερα

TMA4115 Matematikk 3

TMA4115 Matematikk 3 TMA4115 Matematikk 3 Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet Trondheim Spring 2010 Lecture 12: Mathematics Marvellous Matrices Andrew Stacey Norges Teknisk-Naturvitenskapelige Universitet

Διαβάστε περισσότερα

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is

Pg The perimeter is P = 3x The area of a triangle is. where b is the base, h is the height. In our case b = x, then the area is Pg. 9. The perimeter is P = The area of a triangle is A = bh where b is the base, h is the height 0 h= btan 60 = b = b In our case b =, then the area is A = = 0. By Pythagorean theorem a + a = d a a =

Διαβάστε περισσότερα

Local Approximation with Kernels

Local Approximation with Kernels Local Approximation with Kernels Thomas Hangelbroek University of Hawaii at Manoa 5th International Conference Approximation Theory, 26 work supported by: NSF DMS-43726 A cubic spline example Consider

Διαβάστε περισσότερα

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β 3.4 SUM AND DIFFERENCE FORMULAS Page Theorem cos(αβ cos α cos β -sin α cos(α-β cos α cos β sin α NOTE: cos(αβ cos α cos β cos(α-β cos α -cos β Proof of cos(α-β cos α cos β sin α Let s use a unit circle

Διαβάστε περισσότερα

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review

Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Harvard College Statistics 104: Quantitative Methods for Economics Formula and Theorem Review Tommy MacWilliam, 13 tmacwilliam@college.harvard.edu March 10, 2011 Contents 1 Introduction to Data 5 1.1 Sample

Διαβάστε περισσότερα

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM Solutions to Question 1 a) The cumulative distribution function of T conditional on N n is Pr (T t N n) Pr (max (X 1,..., X N ) t N n) Pr (max

Διαβάστε περισσότερα

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch: HOMEWORK 4 Problem a For the fast loading case, we want to derive the relationship between P zz and λ z. We know that the nominal stress is expressed as: P zz = ψ λ z where λ z = λ λ z. Therefore, applying

Διαβάστε περισσότερα

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω

ω ω ω ω ω ω+2 ω ω+2 + ω ω ω ω+2 + ω ω+1 ω ω+2 2 ω ω ω ω ω ω ω ω+1 ω ω2 ω ω2 + ω ω ω2 + ω ω ω ω2 + ω ω+1 ω ω2 + ω ω+1 + ω ω ω ω2 + ω 0 1 2 3 4 5 6 ω ω + 1 ω + 2 ω + 3 ω + 4 ω2 ω2 + 1 ω2 + 2 ω2 + 3 ω3 ω3 + 1 ω3 + 2 ω4 ω4 + 1 ω5 ω 2 ω 2 + 1 ω 2 + 2 ω 2 + ω ω 2 + ω + 1 ω 2 + ω2 ω 2 2 ω 2 2 + 1 ω 2 2 + ω ω 2 3 ω 3 ω 3 + 1 ω 3 + ω ω 3 +

Διαβάστε περισσότερα

Generating Set of the Complete Semigroups of Binary Relations

Generating Set of the Complete Semigroups of Binary Relations Applied Mathematics 06 7 98-07 Published Online January 06 in SciRes http://wwwscirporg/journal/am http://dxdoiorg/036/am067009 Generating Set of the Complete Semigroups of Binary Relations Yasha iasamidze

Διαβάστε περισσότερα

Μηχανική Μάθηση Hypothesis Testing

Μηχανική Μάθηση Hypothesis Testing ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Μηχανική Μάθηση Hypothesis Testing Γιώργος Μπορμπουδάκης Τμήμα Επιστήμης Υπολογιστών Procedure 1. Form the null (H 0 ) and alternative (H 1 ) hypothesis 2. Consider

Διαβάστε περισσότερα

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1 Conceptual Questions. State a Basic identity and then verify it. a) Identity: Solution: One identity is cscθ) = sinθ) Practice Exam b) Verification: Solution: Given the point of intersection x, y) of the

Διαβάστε περισσότερα

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p) Uppsala Universitet Matematiska Institutionen Andreas Strömbergsson Prov i matematik Funktionalanalys Kurs: F3B, F4Sy, NVP 2005-03-08 Skrivtid: 9 14 Tillåtna hjälpmedel: Manuella skrivdon, Kreyszigs bok

Διαβάστε περισσότερα

Math221: HW# 1 solutions

Math221: HW# 1 solutions Math: HW# solutions Andy Royston October, 5 7.5.7, 3 rd Ed. We have a n = b n = a = fxdx = xdx =, x cos nxdx = x sin nx n sin nxdx n = cos nx n = n n, x sin nxdx = x cos nx n + cos nxdx n cos n = + sin

Διαβάστε περισσότερα

Solutions to Exercise Sheet 5

Solutions to Exercise Sheet 5 Solutions to Eercise Sheet 5 jacques@ucsd.edu. Let X and Y be random variables with joint pdf f(, y) = 3y( + y) where and y. Determine each of the following probabilities. Solutions. a. P (X ). b. P (X

Διαβάστε περισσότερα

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation

DiracDelta. Notations. Primary definition. Specific values. General characteristics. Traditional name. Traditional notation DiracDelta Notations Traditional name Dirac delta function Traditional notation x Mathematica StandardForm notation DiracDeltax Primary definition 4.03.02.000.0 x Π lim ε ; x ε0 x 2 2 ε Specific values

Διαβάστε περισσότερα

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions SCHOOL OF MATHEMATICAL SCIENCES GLMA Linear Mathematics 00- Examination Solutions. (a) i. ( + 5i)( i) = (6 + 5) + (5 )i = + i. Real part is, imaginary part is. (b) ii. + 5i i ( + 5i)( + i) = ( i)( + i)

Διαβάστε περισσότερα

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2

ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 ΤΜΗΜΑ ΗΛΕΚΤΡΟΛΟΓΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ ΜΗΧΑΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΥΠΡΟΥ ΗΜΥ 220: ΣΗΜΑΤΑ ΚΑΙ ΣΥΣΤΗΜΑΤΑ Ι Ακαδημαϊκό έτος 2007-08 -- Εαρινό Εξάμηνο Κατ οίκον εργασία αρ. 2 Ημερομηνία Παραδόσεως: Παρασκευή

Διαβάστε περισσότερα

CRASH COURSE IN PRECALCULUS

CRASH COURSE IN PRECALCULUS CRASH COURSE IN PRECALCULUS Shiah-Sen Wang The graphs are prepared by Chien-Lun Lai Based on : Precalculus: Mathematics for Calculus by J. Stuwart, L. Redin & S. Watson, 6th edition, 01, Brooks/Cole Chapter

Διαβάστε περισσότερα

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1. Exercises 0 More exercises are available in Elementary Differential Equations. If you have a problem to solve any of them, feel free to come to office hour. Problem Find a fundamental matrix of the given

Διαβάστε περισσότερα

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices Chi-Kwong Li Department of Mathematics The College of William and Mary Williamsburg, Virginia 23187-8795

Διαβάστε περισσότερα

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1

General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 General 2 2 PT -Symmetric Matrices and Jordan Blocks 1 Qing-hai Wang National University of Singapore Quantum Physics with Non-Hermitian Operators Max-Planck-Institut für Physik komplexer Systeme Dresden,

Διαβάστε περισσότερα

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ ΕΛΕΝΑ ΦΛΟΚΑ Επίκουρος Καθηγήτρια Τµήµα Φυσικής, Τοµέας Φυσικής Περιβάλλοντος- Μετεωρολογίας ΓΕΝΙΚΟΙ ΟΡΙΣΜΟΙ Πληθυσµός Σύνολο ατόµων ή αντικειµένων στα οποία αναφέρονται

Διαβάστε περισσότερα

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007 Οδηγίες: Να απαντηθούν όλες οι ερωτήσεις. Αν κάπου κάνετε κάποιες υποθέσεις να αναφερθούν στη σχετική ερώτηση. Όλα τα αρχεία που αναφέρονται στα προβλήματα βρίσκονται στον ίδιο φάκελο με το εκτελέσιμο

Διαβάστε περισσότερα

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation Overview Transition Semantics Configurations and the transition relation Executions and computation Inference rules for small-step structural operational semantics for the simple imperative language Transition

Διαβάστε περισσότερα

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008 Sequent Calculi for the Modal µ-calculus over S5 Luca Alberucci, University of Berne Logic Colloquium Berne, July 4th 2008 Introduction Koz: Axiomatisation for the modal µ-calculus over K Axioms: All classical

Διαβάστε περισσότερα