C C AIBN. Scheme Pd /Ag. α- C H CHINESE JOURNAL OF APPLIED CHEMISTRY Aug b. CuI /DTBP N- O664

Σχετικά έγγραφα
AIBN Scheme 1 85% CHINESE JOURNAL OF APPLIED CHEMISTRY Nov b AIBN N- 53% ~ 85% C H O664

Electronic Supplementary Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

1.6 Other Intramolecular Decarboxylative Coupling Reactions Decarboxylative Coupling Reaction of Allyl Carboxylates

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

College of Life Science, Dalian Nationalities University, Dalian , PR China.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Vol. 41 No Journal of Jiangxi Normal University Natural Science Mar. 2017

Supporting Information

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supplementary material

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting Information

Studies on Synthesis and Biological Activities of 2( 1 H21,2,42 Triazol212yl)2 2Arylthioethyl Substituted Phenyl Ketones

Supporting Information for

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Asymmetric Transfer Hydrogenation of Ketones Catalyzed by Chiral Carbonyl Iron Systems

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information

SUPPORTING INFORMATION

Supporting Information

Supporting Information

multicomponent synthesis of 5-amino-4-

phase: synthesis of biaryls, terphenyls and polyaryls

Selective mono reduction of bisphosphine

Supporting Information for

Supporting Information. Experimental section

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

The Free Internet Journal for Organic Chemistry

BINOL. Vol. 41 No Journal of Jiangxi Normal University Natural Science Sep C C

Supporting Information

Supplementary Material

Supporting Information. Experimental section

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Reusable Cu 2 O/PPh 3 /TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes. Supporting Information

Supporting information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

LUO, Hong2Qun LIU, Shao2Pu Ξ LI, Nian2Bing

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Supporting information. Palladium nanoparticles generated in situ used as catalysts in carbonylative cross-coupling in aqueous medium

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

-4 6- 许招会, 熊 Vol. 37 No Journal of Jiangxi Normal University Natural Science Jul Scheme 1.

Study of Ne w Chemiluminescence Technique Recognition of Sodium Azide by External Reference Method

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Electronic Supplementary Information

Electronic Supplementary Information (ESI)

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

Available online at shd.org.rs/jscs/

Supporting Information. for

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Transcript:

32 8 Vol. 32 Iss. 8 2015 8 CHINESE JOURNAL OF APPLIED CHEMISTRY Aug. 2015 a a b* a a a a a 416000 b 410083 CuI /DTBP N- α- α- α- C H O664 A DOI 10. 11944 /j. issn. 1000-0518. 2015. 08. 150005 1000-0518 2015 08-0884-08 C C 1-2 - 3-10 AIBN 11 N- 4 α- N- Scheme 1 12 2012 13 / N- - Pd /Ag 14-15 / 120 α-c H - α- α- 16-17 Scheme 2 Scheme 1 Several representative pharmaceutical oxindoles 2015-01-06 2015-04-14 2015-05-06 21462017 JDZ201402 Tel /Fax 0743-8563911 E-mail stang@ jsu. edu. cn

8 885 α- Scheme 2 Synthesis of oxindoles bearing α-cyano quarterary carbon center 1 1. 1 AIBN 1 1- -1- AVANCE 400 MHz Bruker TMS GC-MS-QP2010 XT5A 1. 2 N- 5 1. 3 3 3a 87. 5 mg 0. 5 mmol N- 1a 2 ml 9. 6 mg 0. 05 mmol 244 mg 1. 0 mmol 1 1- -1-146 mg 1. 0 mmol 80 12 h TLC - 3a 3a mp 158 ~ 159 1 H NMR 400 MHz CDCl 3 δ 7. 32 ~ 7. 28 m 2H 7. 06 t J = 7. 6 Hz 1H 6. 87 d J = 8. 0 Hz 1H 3. 21 s 3H 2. 39 d J = 14. 4 Hz 1H 2. 14 d J = 14. 4Hz 1H 1. 64 ~ 1. 03 m. 10H 1. 31 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 8 143. 0 131. 3 128. 5 124. 6 122. 4 122. 1 108. 5 46. 7 46. 6 38. 1 37. 0 35. 0 27. 7 26. 4 24. 8 22. 8 22. 5 IR KBr σ /cm - 1 2231 1701 1614 1471 HRMS m /z ESI C 18 H 23 N 2 O M + H + 283. 1805 283. 1808 3b mp 145 ~ 146 1 H NMR 400 MHz CDCl 3 δ 7. 11 s 1H 7. 07 d J = 7. 6 Hz 1H 6. 74 d J = 8. 0 Hz 1H 3. 17 s 3H 2. 31 s 3H 2. 25 d J = 14. 8 Hz 1H 2 11 d J = 14. 8 Hz 1H 1. 28 ~ 1. 09 m 10H 1. 28 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 8 140. 6 131. 8 131. 2 128. 6 125. 5 122. 2 108. 1 46. 7 46. 5 38. 1 37. 0 34. 8 27. 8 26. 4 24. 8 22. 7 22. 5 21. 2 IR KBr σ /cm - 1 2233 1706 1617 1496 HRMS m /z ESI C 19 H 25 N 2 O M + H + 297. 1962 297. 1965 3c mp 150 ~ 151 1 H NMR 400 MHz CDCl 3 δ 7. 05 ~ 6. 97 m 2H 6. 81 ~ 6. 77 m 1H 3. 20 s 3H 2. 39 d 14. 8 Hz 1H 2. 19 d J = 14. 8 Hz 1H 1. 52 ~ 0. 99 m 10H 1. 31 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 4 159. 1 d J = 241 Hz 139. 0 133. 0 d J = 7. 8 Hz 121. 9 114. 6 112. 6 d J = 24. 5 Hz 108. 9 d J = 7. 1 Hz 47. 1 46. 6 38. 1 36. 9 35. 3 27. 6 26. 5 24. 5 22. 7 22. 5 IR KBr σ /cm - 1 2234 1713 1621

886 32 1451 HRMS m /z ESI C 18 H 22 FN 2 O M + H + 301. 1711 301. 1714 3d mp 140 ~ 141 1 H NMR 400 MHz CDCl 3 δ 8. 05 dd J = 8. 4 Hz 1. 6 Hz 1H 7. 90 s 1H 6. 90 d J = 8. 4 Hz 1H 4. 34 q J = 6. 8 Hz 2H 3. 25 s 3H 2. 32 d J = 14. 4 Hz 1H 2. 25 d J = 14. 4 Hz 1H 1. 61 ~ 0. 98 m 10H 1. 37 t J = 7. 2 Hz 3H 1. 35 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 9 166. 3 147. 2 131. 5 131. 1 125. 4 124. 6 121. 6 108. 0 60. 9 46. 7 46. 6 37. 9 36. 9 36. 1 27. 5 26. 6 24. 8 22. 7 22. 5 14. 3 IR KBr σ /cm - 1 2235 1726 1701 1612 1475 HRMS m /z ESI C 21 H 27 N 2 O 3 M + H + 355. 2017 355. 2019 3f mp 100 ~ 101 1 H NMR 400 MHz CDCl 3 δ 7. 40 ~ 7. 25 m 2H 7. 09 t J = 6. 0 Hz 1H 6. 90 d J = 6. 4 Hz 1H 3. 23 s 3H 2. 32 d J = 11. 6 Hz 1H 2. 16 d J = 11. 6 1H 1. 34 s 3H 1. 13 s 3H 1. 08 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 5 143. 1 130. 9 128. 6 124. 6 123. 9 122. 4 108. 5 47. 0 46. 5 30. 7 29. 6 27. 4 26. 8 26. 4 IR KBr σ /cm - 1 2234 1716 1610 1432 1378 1335 HRMS m /z ESI C 15 H 19 N 2 O M + H + 243. 1492 243. 1495 3g mp 80 ~ 81 1 H NMR 400 MHz CDCl 3 δ 7. 40 ~ 7. 20 m 7H 7. 05 t J = 7. 2 Hz 1H 6. 83 d J = 8. 0 Hz 2H 5. 12 d J = 15. 6 Hz 1H 4. 72 d J = 15. 6 Hz 1H 2. 36 d J = 14. 8 Hz 1H 2. 22 d J = 14. 4 Hz 1H 1. 40 s 3H 1. 19 s 3H 1. 03 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 7 142. 3 130. 8 128. 7 128. 5 127. 7 127. 6 124. 8 124. 1 122. 4 119. 9 109. 5 47. 0 46. 2 44. 1 30. 8 29. 7 28. 1 26. 3 MS IR KBr σ /cm - 1 2233 1701 1610 1432 1376 1332 HRMS m /z ESI C 21 H 23 N 2 O M + H + 319. 1805 319. 1801 3h mp 121 ~ 122 1 H NMR 400 MHz CDCl 3 δ 7. 50 ~ 7. 48 m 7H 7. 18 t J = 8. 0 Hz 1H 6. 96 d J = 8. 0 Hz 1H 3. 22 s 3H 2. 82 d J = 14. 4 Hz 1H 2. 49 d J = 14. 4 Hz 1H 1. 23 s 3H 1. 18 s 3H 13 C NMR 101 MHz CDCl 3 δ 177. 4 144. 1 140. 7 140. 4 129. 4 128. 0 127. 5 125. 4 124. 2 123. 8 122. 5 108. 9 54. 6 46. 6 30. 7 30. 2 29. 0 28. 7 IR KBr σ /cm - 1 2234 1713 1611 1470 1372 1341 HRMS m /z ESI C 17 H 21 N 2 O M + H + 269. 1649 269. 1653 301. 1547 301. 1546 3i 1 H NMR 400 MHz CDCl 3 δ 7. 37 m 2H 7. 07 t J = 7. 6 Hz 1H 6. 90 d J = 8. 4 Hz 1H 4. 34 d J = 10. 4 Hz 1H 4. 00 d J = 10. 8 Hz 1H 3. 24 s 3H 2. 28 s 2H 1. 90 s 3H 1. 17 s 3H 1. 10 s 3H 13 C NMR 101 MHz CDCl 3 δ 176. 3 170. 2 143. 9 129. 4 125. 9 123. 7 122. 5 108. 5 68. 5 50. 9 41. 6 30. 3 27. 8 26. 8 26. 5 20. 5 IR KBr σ /cm - 1 2234 1732 1710 1614 1491 1378 1340 HRMS m /z ESI C 17 H 21 N 2 O 3 M + H + 3j 1 H NMR 400 MHz CDCl 3 δ 7. 20 d J = 7. 2 Hz 1H 7. 13 d J = 7. 6 Hz 1H 7. 04 t J = 7. 6 Hz 1H 3. 85 ~ 3. 74 m 2H 2. 93 ~ 2. 79 m 2H 2. 38 d J = 14. 4 Hz 1H 2. 19 d J = 14. 4 Hz 1H 2. 11 ~ 2. 09 m 2H 1. 41 s 3H 1. 22 s 3H 1. 18 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 3 139. 8 130. 3 128. 1 124. 8 123. 3 122. 6 121. 4 49. 1 47. 2 31. 6 30. 4 27. 9 27. 7 25. 4 21. 9 IR KBr σ /cm - 1 2232 1710 1608 1473 1372 1341 HRMS m /z ESI C 17 H 21 N 2 O M + H + 269. 1649 269. 1653

8 887 3k mp 128 ~ 129 1 H NMR 400 MHz CDCl 3 δ 7. 31 ~ 7. 25 m 2H 6. 81 d J = 8. 0 Hz 1H 3. 21 s 3H 2. 32 d J = 14. 4 Hz 1H 2. 10 d J = 14. 4 Hz 1H 1. 34 s 3H 1. 15 s 3H 1. 10 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 0 141. 7 132. 7 127. 9 125. 0 123. 9 123. 6 109. 4 47. 2 46. 6 30. 5 29. 6 27. 3 27. 1 26. 5 IR KBr σ /cm - 1 2233 1715 1610 1432 1383 1345 HRMS m /z ESI C 15 H 18 ClN 2 O M + H + 277. 1103 277. 1106 3l mp 107 ~ 108 1 H NMR 400 MHz CDCl 3 δ 7. 10 ~ 7. 00 m 2H 6. 60 ~ 6. 71 m 1H 3. 21 s 3H 2. 32 d J = 14. 8 Hz 1H 2. 11 d J = 14. 8 Hz 1H 1. 34 s 3H 1. 16 s 3H 1. 10 s 3H 13 C NMR 101 MHz CDCl 3 δ 179. 2 159. 2 d J = 204. 4 Hz 139. 1 132. 6 123. 7 114. 8 d J = 23. 4Hz 112. 7 d J = 24. 5 Hz 109. 0 47. 4 46. 5 30. 6 29. 1 23. 3 26. 9 26. 5 IR KBr σ /cm - 1 2234 1718 1617 1435 1383 1335 HRMS m /z ESI C 15 H 18 FN 2 O M + H + 261. 1397 261. 1399 3m mp 114 ~ 115 1 H NMR 400 MHz CDCl 3 δ 7. 60 d J = 8. 4 Hz 1H 7. 52 s 1H 6. 96 d J = 8. 4 Hz 1H 3. 26 s 3H 2. 33 d J = 14. 8 Hz 1H 2. 15 d J = 14. 8 Hz 1H 1. 37 s 3H 1. 11 s 6H 13 C NMR 101 MHz CDCl 3 δ 179. 4 146. 1 131. 6 126. 3 q J = 3. 9 Hz 124. 0 q J = 32. 8 Hz 123. 4 121. 6 q J = 3. 5 Hz 120. 2 108. 3 47. 0 46. 5 30. 5 29. 5 27. 2 27. 1 26. 6 IR KBr σ /cm - 1 2235 1715 1624 1432 1385 1327 HRMS m /z ESI C 16 H 18 F 3 N 2 O M + H + 311. 1366 311. 1367 1. 4 4 3c 150 mg 0. 5 mmol LiAlH 4 76 mg 2. 0 mmol 10 ml N 2 1 h 0. 5 h THF /H 2 O 10 1 2 ml 0 0. 5 h 1 mol /L HCl 5 ml 5 min K 2 CO 3 Na 2 SO 4-4 105 mg 73% 4 1 H NMR 400 MHz CDCl 3 δ 6. 83 ~ 6. 73 m 2H 6. 41 dd J = 8. 0 Hz 4. 0 Hz 1H 3. 87 s 1H 2. 77 s 3H 2. 69 d J = 12. 8 Hz 1H 2. 58 d J = 12. 8 Hz 1H 1. 97 br 1H 1. 70 ~ 1. 50 m 10H 1. 39 s 3H 1. 17 ~ 1. 04 m 2H 13 C NMR 101 MHz CDCl 3 δ 157. 4 d J = 234. 4 Hz 146. 5 141. 4 113. 5 d J = 23. 4 Hz 110. 1 d J = 23. 7 Hz 107. 9 d J = 7. 1 Hz 87. 5 49. 1 45. 3 41. 4 38. 5 35. 9 32. 8 32. 1 27. 4 26. 9 22. 6 22. 3 HRMS m /z ESI C 18 H 26 FN 2 M + H + 289. 2075 289. 2079 2 2. 1 N- -N- 1a 1 1-2a 1 23% 3a 1 entry 1 92% 3a 1 entries 2 ~ 5 FeSO 4 7H 2 O Fe NH 4 2 SO 4 2 6H 2 O 65%

888 32 70% 1 entries 6 ~ 8 DTBP TBHP DTBP 76% 1 entry 9 70% 1 entry 10 PhI OAc 2 PhI OTFA 2 DTBP 1 entries 11 ~ 12 14% 1 entry 13 90% 1 entry 14 1 entries 15 ~ 16 60 42% 1 entry 17 110 64% 1 entry 18 N- 1 0. 5 mmol a- 1 mmol CuI 0. 05mmol DTBP 1 mmol 80 12 h Table 1 1 Screening of optimal reaction conditions a Entry Metal Oxidant Solvent Yield /% b 1 none DTBP CH 3 CN 23 2 CuCl DTBP CH 3 CN 85 3 CuBr DTBP CH 3 CN 74 4 CuI DTBP CH 3 CN 92 5 CuCN DTBP CH 3 CN 87 6 FeSO 4 7H 2 O DTBP CH 3 CN 65 7 FeBr 2 DTBP CH 3 CN 75 8 Fe NH 4 2 SO 4 2 6H 2 O DTBP CH 3 CN 70 9 CuI TBHP CH 3 CN 76 10 CuI K 2 S 2 O 8 CH 3 CN 70 11 CuI PhI OAc 2 CH 3 CN 66 12 CuI PhI OTFA 2 CH 3 CN 62 13 CuI none CH 3 CN 14 14 CuI DTBP dioxane 90 15 CuI DTBP toluene 80 16 CuI DTBP DCE 78 17 c CuI DTBP CH 3 CN 42 18 d CuI DTBP CH 3 CN 64 a. Reaction conditions 1a 0. 5 mmol 2a 1 mmol oxidant 1 mmol metal 0. 05 mmol solvent 2 ml at 80 for 12 h. DTBP = Di-tert-butyl peroxide TBHP = tert-butyl hydrogenoxide 70% aqueous solution DCE = 1 2-dichloroethane b. isolated yield c. 60 d. 100. 2. 2 Scheme 3 1 1- -1-2a N- Me H F CO 2 Et N- 95% 3e

8 889 AIBN 2 2'- -2 2'- 81% 3f AIBN N- N 70% 3g CH 2 OAc 73% 66% 3h 3i 3j Scheme 3 Scope of N-arylacrylamide 1 Reaction conditions 1 0. 5 mmol 2 1 mmol DTBP 1 mmol CuI 0. 05 mmol and CH 3 CN 2 ml at 80 for 12 h. a. run on 5 mmol scale 2. 3 3c LiALH 4 73% 4 4 Scheme 4 Scheme 4 Synthetic transformation of oxindole 3c Reagent and conditions a LiAlH 4 4 equiv THF 1 h then reflux 0. 5 h

890 32 Scheme 5 Proposed mechanism for the formation of oxindoles 2. 4 3-10 Scheme 5 1a A A N- B C C Cu Ⅰ t BuO-Cu Ⅱ t BuO 8 3a 3 CuI 5% DTBP 2 80 N- 1 Posner G H. Multicomponent One-pot Annulations Forming 3 to 6 Bonds J. Chem Rev 1986 86 5 831-834. 2 Lu L Q Chen J R Xiao W J. Development of Cascade Reactions for the Concise Construction of Diverse Heterocyclic Architectures J. Acc Chem Res 2012 45 8 1278-1293. 3 Mai W Wang J Yang L et al. Progress in Synthesis of Oxindoles by Radical Addition-Cyclization J. Chinese J Org Chem 2014 14 10 1958-1965. 4 Tang S Zhou D Deng Y et al. Copper-catalyzed Meerwein Carboarylation of Alkenes with Anilines to Form 3-Benzyl-3- Alkyloxindole J. Sci China Chem 2014 58 4 684-688. 5 Shen T Yuan Y Jiao N. Metal-Free Nitro-Carbocyclization of Activated Alkenes A Direct Approach to Synthesize Oxindoles by Cascade C N and C C Bond Formation J. Chem Commun 2014 50 5 554-556. 6 Zhou M Song R Ouyang X et al. Metal-free Oxidative Tandem Coupling of Activated Alkenes with Carbonyl C Sp2 -H Bonds and Aryl C Sp2 -H Bonds using TBHP J. Chem Sci 2013 4 6 2690-2694. 7 Ouyang X Song R Li J. Iron-Catalyzed Oxidative 1 2-Carboacylation of Activated Alkenes with Alcohols A Tandem Route to 3-2-Oxoethyl indolin-2-ones J. Eur J Org Chem 2014 2014 16 3395-3401. 8 Dai Q Yu J Jiang Y et al. The Carbomethylation of Arylacrylamides Leading to 3-Ethyl-3-Substituted Indolin-2-One by Cascade Radical Addition /Cyclization J. Chem Commun 2014 50 29 3865-3867. 9 Zhou M Wang C Song R et al. Oxidative 1 2-Difunctionalization of Activated Alkenes with Benzylic C sp3 -H Bonds and Aryl C sp2 -H Bonds J. Chem Commun 2013 49 92 10817-10819. 10 Chen J Yu X Xiao W. Tandem Radical Cyclization of N-Arylacrylamides An Emerging Platform for the Construction of 3 3-Disubstituted Oxindoles J. Synthesis 2015 47 5 604-629.

8 891 11 Yu W Sit W N Lai K et al. Palladium-Catalyzed Oxidative Ethoxycarbonylation of Aromatic C H Bond with Diethyl Azodicarboxylate J. J Am Chem Soc 2008 130 11 3304-3305. 12 Klein J Taylor R. Transition-Metal-Mediated Routes to 3 3-Disubstituted Oxindoles through Anilide Cyclisation J. Eur J Org Chem 2011 2011 34 6821-6841. 13 Wu T Mu X Liu G S. Palladium-Catalyzed Oxidative Arylalkylation of Activated Alkenes Dual C H Bond Cleavage of an Arene and Acetonitrile J. Angew Chem Int Ed 2011 50 52 12578-12581. 14 Li J Wang Z Wu N et al. Oxindoles J. Chem Commun 2014 50 95 15049-15051. Radical Cascade Cyanomethylation of Activated Alkenes to Construct Cyano Substituted 15 Pan C Zhang H Zhu C. Fe-promoted Radical Cyanomethylation / Arylation of Arylacrylamides to Access Oxindoles via Cleavage of the sp3c H of Acetonitrile and the sp2c H of the Phenyl Group J. Org Biomol Chem 2015 13 2 361-364. 16 Tang S Yu Q Peng P et al. Palladium-catalyzed Carbonylative Annulation Reaction of 2-1-Alkynyl benzenamines Selective Synthesis of 3- Halomethylene indolin-2-ones J. Org Lett 2007 9 17 3413-3416. 17 Tang S Zhou D Wang Y. Metal-Free Meerwein Carboarylation of Alkenes with Anilines A Straightforward Approach to 3-Benzyl-3-alkyloxindoles J. Eur J Org Chem 2014 2014 17 3656-3661. 18 Tang S Li S Zhou D et al. Stereoselective C sp 3 C sp 2 Negishi Coupling of 2-Amido-1-phenylpropyl zinc Compounds Through the Steric Control of β-amido Group J. Sci Chinese Chem 2014 56 9 1293-1300. Copper-catalyzed Cyanoalkylation of Alkenes to Form Cyano- containing Oxindoles LI Zhihao a TANG Shi a b* ZHOU Dong a DENG Youlin a LI Yuhua a LI Shuhua a a Key Laboratory of Hu'nan Forest Product and Chemical Industry Engineering Jishou University Zhangjiajie Hu'nan 416000 China b College of Chemistry and Chemical Engineering Central South University Changsha 410083 China Abstract A practical mild and highly efficient cyanoalkylation reaction of activated alkenes by copper catalysis has been developed. In the presence of CuI /DTBP Di-tert-butyl peroxide N-arylacrylamide undergoes radical cyclization smoothly and affords a series of pharmaceutically important oxindoles bearing an α-cyano quaternary carbon center. The protocol features broad substrate scope simplicity of operation and handling and inexpensive catalytic systems. In addition the synthetic application and possible mechanism process in the cyclization reaction were also demonstrated. Keywords α-cyano azo compounds cyano-containing oxindoles C H cyclization radical copper catalysis Received 2015-01-06 Revised 2015-04-14 Accepted 2015-05-06 Supported by the National Natural Science Foundation of China NSFC No. 21462017 Key Laboratory of Hunan Forest Product and Chemical Industry Engineering No. JDZ201402 Research-Based Learning and Innovative Experiment Project of Jishou University Corresponding author TANG Shi associate professor Tel /Fax 0743-8563911 E-mail stang@ jsu. edu. cn Research interests transitionmetal catalysis and synthesis