β-borylallylsilanes as a New Tool for Convenient Synthesis of Alkenylboranes

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Divergent synthesis of various iminocyclitols from D-ribose

Electronic Supplementary Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Supporting Information for

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

The Free Internet Journal for Organic Chemistry

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information. Experimental section

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for. Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides to Norbornenes

Supplementary information

Supporting Information. Experimental section

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information

Supporting Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information for

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

gem-dichloroalkenes for the Construction of 3-Arylchromones

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Experimental procedure

Supplementary Information for

Supporting information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Department of Applied Chemistry, Kyushu Institute of Technology, Sensui-cho, Tobata, Kitakyushu , Japan

Supporting Information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Construction of 1,3-Dithio-Substituted Tetralins by [1,5]-Alkylthio Group Transfer Mediated Skeletal Rearrangement

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information

New Glucuronic Acid Donors for the Modular Synthesis of Heparan Sulfate Oligosaccharides

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supporting information

One-pot β-substitution of enones with alkyl groups to β-alkyl enones

Electronic Supplementary Information (ESI)

Supporting Information. for. Angew. Chem. Int. Ed. Z Wiley-VCH 2003

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

IV. ANHANG 179. Anhang 178

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Electronic Supplementary Information

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Transcript:

Supporting Information β-borylallylsilanes as a New Tool for Convenient Synthesis of Alkenylboranes Michinori Suginome,* Yutaka Ohmori, and Yoshihiko Ito * Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 606-8501, Japan CONTENTS p1 9: Experimental procedures and characterization data for the new compounds p10 13: Details of a single-crystal X-ray analysis of 7. 1

Experimental Procedures General. All reactions were performed under a nitrogen atmosphere with magnetic stirring. Column chromatography was performed with Cosmosil 140C 18 -OPN (silica gel endcapped with ODS, Nacalai) or Wakogel C-200 (silica gel, 75-150 µm, Wako). 1 H and 13 C NMR spectra were recorded on a Varian Gemini 2000 ( 1 H at 200.01 MHz and 13 C at 75.46 MHz) spectrometer using the solvent as internal standard. High resolution mass spectra were recorded on a JEOL JMS-HX110A (FAB) or a JEOL JMS-SX102A (EI) spectrometer. Infrared spectra were recorded on a Hitachi 270-30 spectrometer. Anhydrous THF and CH 2 Cl 2 were purchased from Kanto Chemical Co., Inc. Benzene (LiAlH 4 ), octane (CaH 2 ) and diglyme (LiAlH 4 ) were distilled from the indicated drying agents under nitrogen. Pd(acac) 2 (Mitsuwa), TiCl 4 (Kishida), AlCl 3 (Wako), (E)-bromopropene (Aldrich), p-iodonitrobenzene (Tokyo Kasei), trimethylamine oxide dihydrate (Tokyo Kasei), sodium ethoxide (Wako), Rh(CO) 2 (acac) (Aldrich), acetic anhydride (Wako), pinacol (Tokyo Kasei), and 1,4- bis(diphenylphosphino)butane (dppb, Kanto) were used as received from the commercial sources. TMSOTf (Nacalai), 2a (Aldrich), 2d (Nacalai), propionaldehyde (Wako), heptanal (Wako), cyclohexanecarboxaldehyde (Tokyo Kasei), pivalaldehyde (Aldrich), benzaldehyde (Nacalai), benzyloxyacetaldehyde (Aldrich), triethylamine (Wako), triethylphosphite (Nacalai), and methyl vinyl ketone (Wako) were obtained from the commercial sources and purified by distillation. Acetals 2b and 2c were prepared by reactions of methanol with cyclohexanecarboxaldehyde and dihydropyran, respectively, in the presence of an acid catalyst. Tetrakis(triphenylphosphine)- palladium, i dimethylphenylsilylpinacol borane, ii β-borylallylsilanes 1a-c, iii and allenes 8 and 9 iv were prepared according to the literature method. General Procedure for the reaction of β-borylallylsilanes 1 with acetals (eq 2, Table 1). To a solution of 1 (0.12 mmol) and acetal (0.15 mmol) in CH 2 Cl 2 (0.12 ml) was added Lewis acid (0.15 mmol; TiCl 4 : 2.0 M in CH 2 Cl 2, 74 µl; AlCl 3 : 19.7 mg) at 78 C. The mixture was stirred for 3 h at the temperature indicated in Table 1. To the mixture was added saturated NaHCO 3 aq. at the (i) Coulson, D. R. Inorg. Synth. 1972, 13, 121. (ii) Suginome, M.; Matsuda, T.; Ito, Y. Organometallics 2000, 19, 4647. (iii) Suginome, M.; Ohmori, Y.; Ito, Y. J. Organomet. Chem. 2000, 611, 403. (iv) Price, W. A.; Patten, T. E. J. Chem. Ed. 1991, 68, 257. 2

temperature ( 78 or 20 C), and the mixture was warmed to room temperature. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to column chromatography on ODS-endcapped silica gel (hexane:etoac = 300/1 ~ 50/1) to give homoallyl ethers 3. (E)-6-Ethoxy-1-phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-octene (3aa). 1 H NMR (CDCl 3 ) δ 0.88 (t, J = 7.2 Hz, 3H), 1.15 (t, J = 6.9 Hz, 3H), 1.25 (s, 12H), 1.33 (sextet, J = 7.2 Hz, 1H), 1.40-1.53 (m, 1H), 2.13 (dd, J = 6.9, 12.9 Hz, 1H), 2.37 (dd, J = 5.7, 12.9 Hz, 1H), 2.59-2.71 (m, 4H), 3.12-3.20 (m, 1H), 3.43 (dq, J = 6.9, 9.3 Hz, 1H), 3.53 (dq, J = 6.9, 9.3 Hz, 1H), 6.10 (m, 1H), 7.13-7.29 (m, 5H); 13 C NMR (CDCl 3 ) δ 9.8, 15.5, 24.7, 24.9, 26.5, 33.0, 36.4, 41.5, 64.3, 80.8, 82.9, 125.6, 128.2, 128.5, 142.3, 147.6; IR (neat) 2984, 1636, 1410, 1146 cm -1. HRMS calcd. for C 22 H 35 BO 3 (M + ): 358.2679. Found: 358.2666. (E)-1-Cyclohexyl-1-methoxy-6-phenyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-hexene (3ab). 1 H NMR (CDCl 3 ) δ 1.01-1.48 (m, 5H), 1.26 (s, 12H), 1.55-1.75 (m, 6H), 2.19-2.31 (m, 2H), 2.58-2.72 (m, 4H), 2.88-2.94 (m, 1H), 3.29 (s, 3H), 6.08 (t, J = 6.9 Hz, 1H), 7.14-7.30 (m, 5H); 13 C NMR (CDCl 3 ) δ 24.7, 24.9, 26.36, 26.39, 26.6, 27.7, 29.2, 33.1, 36.4, 38.3, 40.8, 58.2, 82.9, 86.3, 125.6, 128.2, 128.5, 142.4, 146.4; IR (neat) 2936, 1636, 1410, 1146 cm -1. Anal. calcd. for C 25 H 39 BO 3 : C, 75.37; H, 9.87. Found: C, 75.45; 9.66. (E)-2-[5-Phenyl-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)penten-1-yl]tetrahydrofuran (3ac). 1 H NMR (CDCl 3 ) δ 1.10-1.30 (m, 1H), 1.25 (s, 12H), 1.36-1.58 (m, 4H), 1.73-1.84 (m, 1H), 2.16 (dd, J = 6.6, 13.2 Hz, 1H), 2.35 (dd, J = 6.6, 13.2 Hz, 1H), 2.56-2.70 (m, 4H), 3.27 (ddt, J = 2.1, 6.6, 10.8 Hz, 1H), 3.37 (dt, J = 2.7, 11.4 Hz, 1H), 3.94 (m, 1H), 6.07 (m, 1H), 7.13-7.30 (m, 5H); 13 C NMR (CDCl 3 ) δ 23.5, 24.7, 26.1, 31.2, 33.0, 36.4, 43.9, 68.4, 78.0, 82.9, 125.6, 128.2, 128.6, 142.4, 146.8; IR (neat) 2944, 1636, 1410, 1148 cm -1. Anal. calcd. for C 22 H 33 BO 3 : C, 74.16; H, 9.34. Found: C, 74.11; 9.53. (E)-6-Methoxy-1,6-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-hexene (3ad). 1 H NMR (CDCl 3 ) δ 1.26 (s, 12H), 2.38 (dd, J = 5.7, 12.9 Hz, 1H), 2.51-2.64 (m, 5H), 3.18 (s, 3H), 4.18 (dd, J = 5.7, 7.5 Hz, 1H), 5.90-5.99 (m, 1H), 7.14-7.34 (m, 10H); 13 C NMR (CDCl 3 ) δ 24.7, 24.9, 33.0, 36.3, 45.6, 56.6, 82.9, 84.5, 125.6, 127.0, 127.2, 128.1, 128.2, 128.5, 142.4, 147.6; IR (neat) 2988, 1636, 1410, 1146 cm -1. Anal. calcd. for C 25 H 33 BO 3 : C, 76.53; H, 8.48. Found: C, 76.83; H, 8.37. 4-Ethoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-hexene (3ba). 1 H NMR (CDCl 3 ) δ 0.89 (t, J = 7.2 Hz, 3H), 1.16 (t, J = 6.9 Hz, 3H), 1.26 (s, 12H), 1.39 (sextet, J = 7.2 Hz, 1H), 1.44-1.57 (m, 3

1H), 2.23 (dd, J = 6.6, 13.2 Hz, 1H), 2.41 (dd, J = 6.6, 13.2 Hz, 1H), 3.30 (dq, J = 4.8, 6.6 Hz, 1H), 3.47 (dq, J = 6.9, 9.3 Hz, 1H), 3.52 (dq, J = 6.9, 9.3 Hz, 1H), 5.64 (d, J = 3.3 Hz, 1H), 5.82 (d, J = 3.3 Hz, 1H); 13 C NMR (CDCl 3 ) δ 9.7, 15.5, 24.6, 24.7, 26.6, 44.2, 64.3, 80.2, 83.3, 131.3; IR (neat) 2988, 1620, 1374, 1146 cm -1. Anal calcd for C 14 H 27 BO 3 : C, 66.16; H, 10.71. Found: C, 66.24; H, 10.43. (E)-1-Cyclohexyl-4-ethoxy-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-1-hexene (3ca). NMR (CDCl 3 ) δ 0.88 (t, J = 7.2 Hz, 3H), 0.95-1.39 (m, 6H), 1.15 (t, J = 6.9 Hz, 3H), 1.26 (s, 12H), 1.44-1.54 (m, 1H), 1.56-1.73 (m, 5H), 2.10 (dd, J = 6.6, 13.2 Hz, 1H), 2.32 (dd, J = 6.6, 13.2 Hz, 1H), 2.52-2.66 (m, 1H), 3.14 (dq, J = 4.2, 6.6 Hz, 1H), 3.43 (dq, J = 6.9, 9.3 Hz, 1H), 3.55 (dq, J = 6.9, 9.3 Hz, 1H), 5.84 (d, J = 9.0 Hz, 1H); 13 C NMR (CDCl 3 ) δ 9.9, 15.5, 24.6, 24.8, 25.8, 25.9, 26.0, 26.6, 33.6, 39.6, 41.7, 64.4, 80.9, 82.8, 154.1; IR (neat) 2936, 1634, 1146, 866 cm -1. Anal. calcd. for C 20 H 37 BO 3 : C, 71.42; H, 11.09. Found: C, 71.56; 11.34. 1 H Synthesis of (E)-6-Chloro-1,6-diphenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3-hexene (4ad) (eq 3). By the procedure same as that for the synthesis of 3, the title compound was prepared. 1 H NMR (CDCl 3 ) δ 1.24 (s, 12H), 2.52-2.67 (m, 4H), 2.76-2.90 (m, 2H), 5.03 (t, J = 7.5 Hz, 1H), 6.09 (t, J = 7.2 Hz, 1H), 7.13-7.36 (m, 10H); 13 C NMR (CDCl 3 ) δ 24.8, 32.8, 36.2, 47.3, 64.0, 83.0, 125.7, 127.4, 128.0, 128.2, 128.4, 128.6, 142.0, 142.2, 150.9; IR (neat) 2988, 1636, 1412, 1144 cm -1. Anal. calcd. for C 24 H 30 BClO 2 : C, 72.65; H, 7.62. Found: C, 72.80; H, 7.71. Synthesis of 8-Phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-5-octen-3-yl acetate (6) (eq 4). To a solution of 1a (48 mg, 0.12 mmol) and propionaldehyde (8.6 mg, 0.15 mmol) in CH 2 Cl 2 (0.12 ml) was added TiCl 4 (2.0 M in CH 2 Cl 2, 74 µl, 0.15 mmol) at 78 C. The mixture was stirred at 78 C for 3 h. To the mixture was added saturated NaHCO 3 aq. at 78 C, and the mixture was warmed to room temperature. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. To the residue was added pinacol (29 mg, 0.25 mmol), THF (0.5 ml), Et 3 N (37 mg, 51 µl, 0.37 mmol), Ac 2 O (63 mg, 0.62 mmol), and 4-(dimethylamino)pyridine (5 mg) at room temperature. The mixture was stirred for 9 h at room temperature. Addition of water to the mixture followed by extractive workup with EtOAc gave crude material. The residue was subjected to column chromatography on ODS-endcapped silica gel (hexane:etoac = 300/1 ~ 30/1) to give 6 (30 mg, 69%). 1 H NMR (CDCl 3 ) δ 0.86 (t, J = 7.5 Hz, 3H), 1.26 (s, 12H), 1.41-1.60 (m, 2H), 1.97 (s, 3H), 2.20 (dd, J = 7.8, 13.2 Hz, 1H), 2.38 (dd, J = 5.1, 13.2 Hz, 1H), 2.65 (d, J = 3.9 Hz, 4H), 4

4.88 (tt, J = 5.1, 7.8 Hz, 1H), 6.11 (m, 1H), 7.13-7.29 (m, 5H); 13 C NMR (CDCl 3 ) δ 9.6, 21.2, 24.7, 24.8, 26.7, 32.9, 36.3, 41.1, 75.3, 83.0, 125.7, 128.2, 128.5, 142.3, 148.7, 170.8; IR (neat) 2984, 1740, 1246, 1146 cm -1. Anal. calcd. for C 22 H 33 BO 4 : C, 70.97; H, 8.93. Found: C, 70.69; H, 8.70. Synthesis of (2R *,4S *,4aR *,10bS * )-2,4-Diethyl-1,4,4a,5,6,10b-hexahydro-10b-(4,4,5,5-tetramethyl- 1,3,2-dioxaborolan-2-yl)-2H-naphtho[2,1-c]pyran (7). To a solution of 1a (48 mg, 0.12 mmol) and aldehyde (21 mg, 0.37 mmol) in CH 2 Cl 2 (0.12 ml) was added TMSOTf (82 mg, 0.37 mmol) at 78 C. The mixture was stirred at 0 C for 3 h. To the mixture was added saturated NaHCO 3 aq. at 0 C, and the mixture was warmed to room temperature. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to column chromatography on ODS-endcapped silica gel (hexane:etoac = 300/1) to give 7 (41 mg, 92%). 1 H NMR (CDCl 3 ) δ 0.99 (t, J = 7.5 Hz, 3H), 1.00 (t, J = 7.5 Hz, 3H), 1.09 (s, 12H), 1.19-1.45 (m, 3H), 1.51-1.65 (m, 2H), 1.72-1.80 (m, 2H), 2.10 (tt, J = 8.7, 12.3 Hz, 1H), 2.59 (dd, J = 2.1, 12.3 Hz, 1H), 2.83-2.88 (m, 2H), 3.30 (ddd, J = 2.7, 8.4, 9.6 Hz, 1H), 3.37-3.46 (m, 1H), 7.03-7.13 (m, 3H), 7.26 (d, J = 7.5 Hz, 1H); 13 C NMR (CDCl 3 ) δ 9.6, 10.2, 21.1, 24.3, 24.4, 25.8, 28.6, 29.6, 33.8 (br), 41.1, 45.9, 77.6, 80.7, 82.9, 124.9, 125.3, 125.7, 128.7, 136.8, 142.1; IR (KBr) 2984, 1314, 1142, 856 cm -1. HRMS calcd. for C 23 H 35 BO 3 (M + ): 370.2679. Found: 370.2678. Synthesis of 3-(Dimethylphenylsilyl)-4-(dimethylphenylsilyloxy)-2-(4,4,5,5-tetramethyl-1,3,2- dioxaborolan-2-yl)-1-butene (10) (Scheme 1). To a solution of (η 5 -cyclopentadienyl)(πallyl)palladium (48 mg, 0.23 mmol) and P(OEt) 3 (75 mg, 0.45 mmol) in octane (6.0 ml) were added (dimethylphenylsilyl)pinacolborane (3.4 g, 13 mmol) and 4-(dimethylphenylsilyloxy)-1,2-butadiene (8) (2.3 g, 11 mmol). The mixture was stirrred at 120 C for 2 h. After the mixture was cooled to room temperature, the solvent was evaporated. The residue was subjected to silica gel column chromatography (hexane:acoet:meoh = 100/1/1) to give 10 (3.9 g, 74%). 1 H NMR (CDCl 3 ) δ 0.26 (s, 3H), 0.28 (s, 3H), 1.19 (s, 6H), 1.20 (s, 6H), 2.42 (dd, J = 6.0, 8.1 Hz, 1H), 3.80 (dd, J = 6.0, 9.9 Hz, 1H), 3.88 (dd, J = 8.1, 9.9 Hz, 1H), 5.44 (d, J = 3.0 Hz, 1H), 5.10 (d, J = 3.0 Hz, 1H), 7.27-7.40 (m, 6H), 7.47-7.53 (m, 4H); 13 C NMR (CDCl 3 ) δ 4.3, 3.3, 1.9, 1.8, 24.65, 24.73, 37.3, 64.0, 83.3, 127.5, 127.7, 127.9, 128.7, 129.3, 133.6, 134.3, 138.3, 138.5; IR (neat) 2988, 1604, 1432, 1254 cm -1. Anal calcd. for C 26 H 39 BO 3 Si 2 : C, 66.93; H, 8.43. Found: C, 66.77; H, 8.61. 3-(Dimethylphenylsilyl)-5-(dimethylphenylsilyloxy)-2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2- yl)-1-pentene (11). By a procedure similar to that for the synthesis of 10, the title compound 11 was prepared. 1 H NMR (CDCl 3 ) δ 0.22 (s, 3H), 0.25 (s, 3H), 0.30 (s, 6H), 1.17 (s, 12H), 1.68-1.80 (m, 5

1H), 1.83-1.96 (m, 1H), 2.11 (dd, J = 3.0, 12.0 Hz, 1H), 3.39 (ddd, J = 6.9, 8.1, 9.6 Hz, 1H), 5.33 (d, J = 2.7 Hz, 1H), 5.77 (d, J = 2.7 Hz, 1H), 7.29-7.40 (m, 6H), 7.46-7.57 (m, 4H); 13 C NMR (CDCl 3 ) δ 5.4, 3.9, 1.9, 1.8, 24.67, 24.71, 29.6, 31.5, 62.6, 83.3, 126.9, 127.5, 127.8, 128.8, 129.5, 133.5, 134.3, 138.3, 138.4; IR (neat) 2988, 1615, 1144, 832 cm -1. Anal. calcd. for C 27 H 41 BO 3 Si 2 : C, 67.48; H, 8.60. Found: C, 67.32; 8.48. General procedure for the synthesis of 12 by reaction of 10 with aldehyde (six-membered ring formation; Table 2, entries 1 4). To a solution of 10 (80 mg, 0.17 mmol) and aldehyde (0.17 mmol) in CH 2 Cl 2 (4.0 ml) was added TMSOTf (19 mg, 0.086 mmol) at 78 C. The mixture was stirred at 78 C for 1 h. To the mixture was added saturated NaHCO 3 aq. at 78 C, and the mixture was warmed to room temperature. The organic materials were extracted with EtOAc, and the extract was dried over MgSO 4, filtered, and evaporated. The residue was subjected to column chromatography on ODS-endcapped silica gel (hexane ~ hexane:etoac = 29/1) to give six-membered cyclic ether 12. 2-Hexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyran (12a). 1 H NMR (CDCl 3 ) δ 0.86 (t, J = 6.6 Hz, 3H), 1.10-1.61 (m, 10H), 1.25 (s, 12H), 1.94-2.19 (m, 2H), 3.32-3.43 (m, 1H), 4.20-4.26 (m, 2H), 6.49-6.54 (m, 1H); 13 C NMR (CDCl 3 ) δ 14.0, 22.5, 24.65, 24.73, 25.3, 29.3, 31.8, 35.9, 66.7, 73.6, 83.3, 141.0; IR (neat) 2940, 1646, 1322, 1148 cm -1. HRMS calcd. for C 17 H 31 BO 3 (M + ): 294.2366. Found: 294.2377. 2-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyran (12b). NMR (CDCl 3 ) δ 0.92-1.46 (m, 6H), 1.25 (s, 12H), 1.59-1.78 (m, 4H), 1.88-1.96 (m, 1H), 2.06-2.12 (m, 2H), 3.13 (dt, J = 6.3, 7.2 Hz, 1H), 4.14-4.31 (m, 2H), 6.50-6.53 (m, 1H); 13 C NMR (CDCl 3 ) δ 24.6, 24.7, 26.0, 26.1, 26.6, 28.3, 28.7, 29.0, 42.8, 67.1, 78.0, 83.3, 141.1; IR (neat) 2936, 1648, 1320, 1148 cm -1. HRMS calcd. for C 17 H 29 BO 3 (M + ): 292.2210. Found: 292.2211. 2-t-Butyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyran (12c). 1 H NMR (CDCl 3 ) δ 0.91 (s, 9H), 1.26 (s, 12H), 1.99-2.20 (m, 2H), 3.04 (dd, J = 3.9, 10.2 Hz, 1H), 4.14-4.34 (m, 2H), 6.51-6.56 (m, 1H); 13 C NMR (CDCl 3 ) δ 24.68, 24.71, 25.7, 26.1, 33.8, 67.7, 81.6, 83.3, 141.3; IR (KBr) 2984, 1648, 1360, 1148 cm -1. HRMS calcd. for C 15 H 27 BO 3 (M + ): 266.2053. Found: 266.2053. 2-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-3,6-dihydro-2H-pyran (12d). 1 H NMR (CDCl 3 ) δ 1.26 (s, 6H), 1.27 (s, 6H), 2.31-2.49 (m, 2H), 4.43 (d, J = 2.7 Hz, 1H), 4.45 (d. J = 2.7 Hz, 1H), 4.48 (dd, J = 4.8, 12.0 Hz, 1H), 6.61 (m, 1H), 7.22-7.39 (m, 5H); 13 C NMR (CDCl 3 ) δ 24.7, 24.8, 1 H 6

33.7, 67.4, 75.6, 83.4, 125.9, 127.4, 128.3, 140.7, 142.7; IR (neat) 2988, 1646, 1356, 1146 cm -1. HRMS calcd. for C 17 H 23 BO 3 (M + ): 286.1740. Found: 286.1741. General procedure for the synthesis of 13 by reaction of 11 with aldehyde (seven-membered ring formation; Table 2, entries 5 9). To a solution of 11 (81 mg, 0.17 mmol) and aldehyde (0.18 mmol) in CH 2 Cl 2 (4.0 ml) was added TMSOTf (41 mg, 0.18 mmol) at 78 C. The mixture was stirred at 78 C for 1 h. To the mixture was added saturated NaHCO 3 aq. at 78 C, and the mixture was warmed to room temperature. The organic materials were extracted with EtOAc, and the extract was dried over MgSO 4, filtered, and evaporated. The residue was subjected to silica gel column chromatography (hexane:meoh = 100/1 ~ hexane:etoac:meoh = 20/1/1) to give seven-membered cyclic ether 13. 2-Hexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,6,7-tetrahydrooxepine (13a). NMR (CDCl 3 ) δ 0.87 (t, J = 6.9 Hz, 3H), 1.15-1.63 (m, 10H), 1.25 (s, 12H), 2.25-2.36 (m, 2H), 2.44-2.58 (m, 2H), 3.23-3.32 (m, 1H), 3.39 (ddd, J = 1.8, 7.2, 9.3 Hz, 1H), 3.98 (dt, J = 3.9, 12.3 Hz, 1H), 6.73-6.79 (m, 1H); 13 C NMR (CDCl 3 ) δ 14.0, 22.6, 24.7, 25.8, 29.3, 31.8, 34.1, 36.9, 38.1, 68.5, 80.3, 83.4, 146.4; IR (neat) 2940, 1650, 1330, 1148 cm -1. HRMS calcd. for C 18 H 33 BO 3 (M + ): 308.2523. Found: 308.2523. 2-Cyclohexyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,6,7-tetrahydrooxepine (13b). 1 H NMR (CDCl 3 ) δ 1.07-1.47 (m, 6H), 1.24 (s, 12H), 1.50-1.87 (m, 5H), 2.25-2.38 (m, 2H), 2.42-2.54 (m, 2H), 3.09 (ddd, J = 1.5, 5.1, 9.0 Hz, 1H), 3.38 (ddd, J = 1.8, 9.9, 12.0 Hz, 1H), 3.95 (dt, J = 5.1, 12.0 Hz, 1H), 6.74 (ddd, J = 2.4, 5.2, 6.9 Hz, 1H); 13 C NMR (CDCl 3 ) δ 24.7, 26.3, 26.4, 26.5, 28.0, 29.5, 33.9, 34.8, 43.5, 68.2, 83.4, 84.4, 146.2. IR (KBr) 2936, 1638, 1146, 860. HRMS calcd. for C 18 H 31 BO 3 (M + ): 306.2366. Found: 306.2365. 2-t-Butyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,6,7-tetrahydrooxepine (13c). NMR (CDCl 3 ) δ 0.91 (s, 9H), 1.24 (s, 6H), 1.26 (s, 6H), 2.16-2.33 (m, 2H), 2.46-2.58 (m, 1H), 2.60 (d, J = 15.9 Hz, 1H), 2.87 (d, J = 9.6 Hz, 1H), 3.37 (ddd, J = 1.5, 10.2, 12.0 Hz, 1H), 4.01 (dt, J = 4.2, 12.0 Hz, 1H), 6.74 (dt, J = 3.6, 7.2 Hzz, 1H); 13 C NMR (CDCl 3 ) δ 24.6, 24.9, 26.2, 32.4, 33.8, 35.1, 69.1, 83.3, 88.6, 145.8; IR (neat) 2984, 1636, 1148, 862 cm -1. HRMS calcd. for C 16 H 29 BO 3 (M + ): 280.2210. Found: 280.2212. 2-Phenyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,6,7-tetrahydrooxepine (13d). NMR (CDCl 3 ) δ 1.24 (s, 6H), 1.25 (s, 6H), 2.36-2.47 (m, 1H), 2.60-2.75 (m, 3H), 3.58 (ddd, J = 1.5, 1 H 1 H 1 H 7

10.8, 12.0 Hz, 1H), 4.13 (dt, J = 3.9, 12.0 Hz, 1H), 4.40 (dd, J = 4.8, 6.9 Hz, 1H), 6.85 (dd, J = 3.0, 6.9 Hz, 1H), 7.21-7.42 (m, 5H); 13 C NMR (CDCl 3 ) δ 24.67, 24.75, 34.0, 39.9, 68.8, 82.5, 83.5, 126.1, 127.2, 128.3, 144.0, 146.6; IR (KBr) 2984, 1636, 1326, 1142 cm -1. Anal. calcd. for C 18 H 25 BO 3 : C, 72.02; H, 8.39. Found: C, 71.73; H, 8.56. 2-Benzyloxymethyl-4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-2,3,6,7-tetrahydrooxepine (13e). 1 H NMR (CDCl 3 ) δ 1.25 (s, 12H), 2.29-2.38 (m, 2H), 2.48-2.61 (m, 2H), 3.41-3.51 (m, 3H), 3.54-3.61 (m, 1H), 4.06 (dt, J = 3.9, 12.0 Hz, 1H), 4.53 (d, J = 12.3 Hz, 1H), 4.61 (d, J = 12.3 Hz, 1H), 6.77 (dt, J = 3.6, 7.2 Hz, 1H), 7.24-7.39 (m, 5H); 13 C NMR (CDCl 3 ) δ 24.68, 24.73, 33.8, 34.4, 68.6, 73.3, 73.8, 79.0, 83.4, 127.5, 127.8, 128.3, 138.4, 146.6. IR (neat) 2988, 1742, 1636, 1148 cm -1. HRMS calcd. for C 20 H 29 BO 4 (M + ): 344.2159. Found: 344.2159. Synthesis of (E)-2-Hexyl-4-(propen-1-yl)-3,6-dihydro-2H-pyran (14) (Scheme 2). A mixture of Pd(PPh 3 ) 4 (6.3 mg, 5.1 10-3 mmol), (E)-1-bromopropene (25 mg, 0.20 mmol), 12a (51 mg, 0.17 mmol), and NaOEt (20% in EtOH, 116 mg, 0.34 mmol) in benzene (0.7 ml) was stirred under reflux for 2.5 h. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to silica gel column chromatography (hexane:etoac = 70/1) to give 14 (27 mg, 76%). 1 H NMR (CDCl 3 ) δ 0.88 (t, J = 6.9 Hz, 3H), 1.01-1.68 (m, 10H), 1.76 (d, J = 6.0 Hz, 3H), 1.93-2.05 (m, 1H), 2.12-2.19 (m, 1H), 3.41-3.50 (m, 1H), 4.17-4.31 (m, 2H), 5.57 (s, 1H), 5.63 (dq, J = 6.0, 15.6 Hz, 1H), 6.06 (d, J = 15.6 Hz, 1H); 13 C NMR (CDCl 3 ) δ 14.0, 18.0, 22.5, 25.4, 29.3, 30.7, 31.8, 36.0, 66.0, 73.7, 122.8, 123.7, 132.9, 133.4; IR (neat) 2940, 1732, 1136, 966 cm -1. HRMS calcd. for C 14 H 24 O (M + ): 208.1827. Found: 208.1831. 2-Hexyl-4-(4-nitrophenyl)-3,6-dihydro-2H-pyran (15) (Scheme 2). A mixture of Pd(PPh 3 ) 4 (6.3 mg, 5.1 10-3 mmol), p-iodonitrobenzene (64 mg, 0.26 mmol), 12a (51 mg, 0.17 mmol), and NaOEt (20% in EtOH, 116 mg, 0.34 mmol) in benzene (0.7 ml) was stirred under reflux for 3 h. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to preparative TLC (hexane:etoac = 9/1) to give 15 (36 mg, 75%). 1 H NMR (CDCl 3 ) δ 0.89 (t, J = 6.9 Hz, 3H), 1.10-1.77 (m, 10H), 2.36-2.40 (m, 2H), 3.55-3.63 (m, 1H), 4.31-4.49 (m, 2H), 6.31-6.34 (m, 1H), 7.50-7.54 (m, 2H), 8.17-8.21 (m, 2H); 13 C NMR (CDCl 3 ) δ 14.0, 22.5, 25.4, 29.2, 31.7, 32.6, 35.8, 66.2, 73.8, 123.8, 125.4, 126.8, 132.9, 146.7, 146.9; IR (neat) 2936, 1596, 1522, 1346 cm -1. HRMS calcd. for C 17 H 23 NO 3 (M + ): 289.1678. Found: 289.1682. 2-Hexyltetrahydropyran-4-one (16) (Scheme 2). A mixture of 12a (50 mg, 0.17 mmol) and trimethylamine oxide dihydrate (21 mg, 0.19 mmol) in diglyme (0.7 ml) was stirred at 160 C for 1 h. 8

The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to silica gel column chromatography (hexane ~ hexane:etoac = 12/1) to give 16 (24 mg, 78%). 1 H NMR (CDCl 3 ) δ 0.87 (t, J = 6.6 H, 3H), 1.03-1.75 (m, 10H), 1.97-2.44 (m, 3H), 2.50-2.63 (m, 1H), 3.51-3.60 (m, 1H), 3.63 (dt, J = 3.0, 12.3 Hz, 1H), 4.27 (ddd, J = 1.2, 7.5, 11.4 Hz, 1H); 13 C NMR (CDCl 3 ) δ 13.9, 22.5, 25.0, 29.0, 31.6, 36.3, 42.2, 48.4, 66.5, 78.2, 207.4; IR (neat) 2940, 1726, 1254, 1088 cm -1. HRMS calcd. for C 11 H 20 O 2 (M + ): 184.1463. Found: 184.1465. 4-(2-Hexyl-3,6-dihydro-2H-pyran-4-yl)butan-2-one (17) (Scheme 2). A mixture of Rh(acac)(CO) 2 (1.3 mg, 5.1 10-3 mmol), 1,4-bis(diphenylphosphino)butane (2.2 mg, 5.1 10-3 mmol), 12a (50 mg, 0.17 mmol), and methyl vinyl ketone (14 mg, 0.20 mmol) in MeOH (0.6 ml) water (0.1 ml) was stirred at 50 C for 11h. The organic materials were extracted with EtOAc, and the extract was dried over Na 2 SO 4, filtered, and evaporated. The residue was subjected to silica gel column chromatography (hexane:etoac = 10/1) to give 17 (34 mg, 84%). 1 H NMR (CDCl 3 ) δ 0.87 (t, J = 6.9 Hz, 3H), 1.24-1.57 (m, 10H), 1.79-1.98 (m, 2H), 2.15 (s, 3H), 2.24 (t, J = 7.2 Hz, 2H), 2.53-2.58 (m, 2H), 3.37-3.46 (m, 1H), 4.07-4.19 (m, 2H), 5.39 (s, 1H); 13 C NMR (CDCl 3 ) δ 14.0, 22.5, 25.3, 29.3, 29.8, 30.6, 31.7, 34.3, 35.9, 41.3, 65.8, 73.7, 119.9, 134.4, 208.4; IR (neat) 2940, 1724, 1368, 1134 cm -1. HRMS calcd. for C 15 H 26 O 2 (M + ): 238.1933. Found: 238.1927. 9

X-Ray Crystal Structure of 7. O B O O Crystal data for 7: crystal size 0.70 0.30 0.30 mm (recrystallized from EtOH); monoclinic, space group P21/n (no. 14), Z = 4; a = 15.941(6), b = 10.975(4), c = 12.816(4) Å; β = 100.71(3) ; V = 2203.080078(1) Å 3, ρcalcd = 1.116 g/cm 3 ; µ = 5.221 cm -1 ; max. 2θ = 125 (CuKa, λ = 1.54178 Å, graphite monochrometor, ω/2θ-scan, T = 293 K); 4074 reflections measured, 2885 independent, 1723 included in the refinement, Lorentzian polarization; direct method, anisotropical refinement for nonhydrogen atoms by full-matrix least-squares against F 2 with program package CrystanG (Mac Science), 279 parameters; R = 0.105, Rw = 0.136. All hydrogen atoms were included in the refinement at the calculated positions (0.96 Å) with isotropic thermal parameters. The final structure contains some abnormal atom distances and angles on the tetramethyldioxaborolanyl group. This may be attributed to atomic disorder or considerable thermal vibration of those atoms in the crystal. 10

GEOMETRY TABLES for COMPOUND 7 FRACTIONAL ATOMIC COORDINATES & U(iso) ------------------------------------------------------------------- Atom x/a y/b z/c U(iso) ------------------------------------------------------------------- O(1) 0.8469(3) 0.0495(5) 0.4943(3) 0.107(3) O(2) 0.7702(3) 0.1893(5) 0.5530(4) 0.116(4) C(3) 0.9729(5) 0.2253(8) 0.6503(5) 0.089(5) C(4) 0.8784(5) 0.1668(10) 0.7808(5) 0.107(6) O(5) 0.8645(5) -0.0465(6) 0.8265(4) 0.139(5) C(6) 0.9119(4) 0.1303(7) 0.6782(5) 0.082(4) C(7) 0.9551(5) 0.0044(9) 0.7017(6) 0.102(6) C(8) 0.7236(7) 0.1540(10) 0.4480(7) 0.154(9) C(9) 1.0298(6) 0.1987(9) 0.5863(6) 0.099(6) C(10) 0.9690(6) 0.3474(9) 0.6838(7) 0.102(6) C(11) 0.8194(6) 0.0675(12) 0.8109(6) 0.126(8) C(12) 0.8434(6) 0.2957(11) 0.7710(7) 0.122(7) C(13) 1.0231(9) 0.4346(11) 0.6517(10) 0.128(8) C(14) 0.8949(7) -0.0857(9) 0.7360(7) 0.121(7) C(15) 1.0834(6) 0.2845(14) 0.5563(7) 0.125(8) B(16) 0.8399(5) 0.1224(7) 0.5740(5) 0.074(5) C(17) 0.7773(6) 0.0792(10) 0.4062(6) 0.131(7) C(18) 0.9349(15) -0.2121(15) 0.7627(11) 0.22(2) C(19) 0.7778(11) 0.0831(20) 0.9106(8) 0.19(2) C(20) 0.6664(9) 0.2453(15) 0.3995(8) 0.157(9) C(21) 0.8359(15) 0.1025(21) 1.0027(9) 0.22(2) C(22) 0.8220(11) 0.2148(22) 0.3478(13) 0.23(1) C(23) 0.9117(7) 0.3848(12) 0.7588(9) 0.140(8) C(24) 0.7700(11) -0.0044(19) 0.3239(11) 0.22(1) C(25) 0.6681(15) 0.0183(27) 0.4677(14) 0.34(3) C(26) 1.0807(8) 0.4037(13) 0.5889(9) 0.132(9) C(27) 0.9868(18) -0.2368(18) 0.8429(15) 0.26(2) Temperature factor of the form: exp[-2pi^2u], U=U(iso) or 1/3 SUM(i)SUM(j){U(ij)*astar(i).astar(j).a(i).a(j).cos(ij)} ------------------------------------------------------------------- ANISOTROPIC THERMAL PARAMETERS ----------------------------------------------------------------------- Atom U11 U22 U33 U12 U13 U23 ----------------------------------------------------------------------- O(1) 0.112(4) 0.125(4) 0.072(3) 0.051(3) -0.029(3) -0.037(3) O(2) 0.113(4) 0.147(5) 0.075(3) 0.059(4) -0.030(3) -0.038(3) C(3) 0.092(5) 0.110(7) 0.057(4) 0.022(5) -0.014(4) -0.015(4) C(4) 0.099(5) 0.158(8) 0.056(4) 0.054(6) -0.010(4) -0.028(5) O(5) 0.171(6) 0.160(6) 0.080(4) 0.067(5) 0.016(4) 0.035(3) C(6) 0.079(4) 0.095(5) 0.065(4) 0.020(4) -0.005(3) -0.014(3) C(7) 0.105(6) 0.132(7) 0.062(4) 0.055(5) -0.004(4) -0.007(4) C(8) 0.176(9) 0.187(11) 0.079(5) 0.086(9) -0.050(6) -0.041(6) C(9) 0.099(6) 0.120(8) 0.072(4) 0.004(5) 0.003(4) -0.006(5) 11

C(10) 0.088(6) 0.110(7) 0.095(6) 0.019(5) -0.026(4) -0.013(5) C(11) 0.122(7) 0.192(10) 0.061(4) 0.040(8) 0.018(5) 0.004(5) C(12) 0.102(6) 0.167(9) 0.088(6) 0.051(7) -0.018(5) -0.045(6) C(13) 0.123(9) 0.130(10) 0.116(8) 0.021(8) -0.030(7) -0.012(7) C(14) 0.149(8) 0.134(8) 0.075(5) 0.049(7) 0.022(6) 0.017(5) C(15) 0.106(7) 0.182(12) 0.083(5) 0.011(8) 0.010(5) -0.002(7) B(16) 0.077(5) 0.085(5) 0.056(4) 0.025(4) 0.003(3) 0.000(4) C(17) 0.130(7) 0.168(9) 0.079(5) 0.066(7) -0.038(5) -0.049(6) C(18) 0.33(2) 0.21(1) 0.11(1) 0.16(2) 0.06(1) 0.07(1) C(19) 0.21(1) 0.28(2) 0.07(1) 0.12(2) 0.02(1) -0.01(1) C(20) 0.159(9) 0.189(13) 0.105(7) 0.085(9) -0.047(7) -0.024(6) C(21) 0.31(2) 0.25(2) 0.09(1) 0.11(2) 0.04(1) 0.01(1) C(22) 0.19(1) 0.35(2) 0.14(1) -0.08(1) 0.00(1) 0.13(1) C(23) 0.113(7) 0.150(9) 0.143(9) 0.035(8) -0.030(7) -0.064(7) C(24) 0.22(2) 0.26(2) 0.14(1) 0.13(1) -0.09(1) -0.11(1) C(25) 0.30(2) 0.51(3) 0.18(1) -0.30(2) -0.08(2) 0.16(2) C(26) 0.135(9) 0.142(10) 0.107(7) -0.022(9) -0.019(6) 0.020(7) C(27) 0.40(3) 0.22(2) 0.15(1) 0.16(2) 0.03(2) 0.06(1) T=exp[-2pi**2(U11.h**2.astar**2+U22.k**2.bstar**2+ U33.l**2.cstar**2 +2U12.h.k.astar.bstar +2U13.h.l.astar.cstar+2U23.k.l.bstar.cstar)] ----------------------------------------------------------------------- INTRAMOLECULAR BOND LENGTHS (H omitted) -------------------------------------------------------------- Bond length limits based on covalent radii -------------------------------------------------------------- O(1) - B(16) 1.318(9) O(1) - C(17) 1.466(10) O(2) - C(8) 1.464(11) O(2) - B(16) 1.318(10) C(3) - C(6) 1.514(11) C(3) - C(9) 1.362(12) C(3) - C(10) 1.412(14) C(4) - C(6) 1.561(10) C(4) - C(11) 1.536(15) C(4) - C(12) 1.517(16) O(5) - C(11) 1.438(14) O(5) - C(14) 1.406(11) C(6) - C(7) 1.548(12) C(6) - B(16) 1.594(10) C(7) - C(14) 1.499(14) C(8) - C(17) 1.366(15) C(8) - C(20) 1.418(19) C(9) - C(15) 1.374(16) C(10) - C(13) 1.400(16) C(10) - C(23) 1.502(15) C(11) - C(19) 1.554(16) C(12) - C(23) 1.492(17) C(13) - C(26) 1.371(19) C(14) - C(18) 1.54(3) C(15) - C(26) 1.38(3) C(17) - C(24) 1.39(2) C(18) - C(27) 1.22(3) C(19) - C(21) 1.38(3) -------------------------------------------------------------- INTRAMOLECULAR BOND ANGLES (H omitted) ------------------------------------------------------------------------------ Bond length limits based on covalent radii ------------------------------------------------------------------------------ B(16) - O(1) - C(17) 107.5(6) C(8) - O(2) - B(16) 107.7(7) C(6) - C(3) - C(9) 121.5(8) C(6) - C(3) - C(10) 121.0(7) C(9) - C(3) - C(10) 117.3(9) C(6) - C(4) - C(11) 110.6(8) C(6) - C(4) - C(12) 110.4(7) C(11) - C(4) - C(12) 116.7(8) 12

C(11) - O(5) - C(14) 113.1(7) C(3) - C(6) - C(4) 111.0(7) C(3) - C(6) - C(7) 112.3(7) C(3) - C(6) - B(16) 103.5(6) C(4) - C(6) - C(7) 106.0(6) C(4) - C(6) - B(16) 114.4(6) C(7) - C(6) - B(16) 109.8(6) C(6) - C(7) - C(14) 111.1(8) O(2) - C(8) - C(17) 105.8(9) O(2) - C(8) - C(20) 113.0(10) C(17) - C(8) - C(20) 130.6(9) C(3) - C(9) - C(15) 122.6(10) C(3) - C(10) - C(13) 119.6(9) C(3) - C(10) - C(23) 121.4(9) C(13) - C(10) - C(23) 118.9(10) C(4) - C(11) - O(5) 109.8(8) C(4) - C(11) - C(19) 120.2(12) O(5) - C(11) - C(19) 105.1(10) C(4) - C(12) - C(23) 110.8(9) C(10) - C(13) - C(26) 121.3(12) O(5) - C(14) - C(7) 112.2(8) O(5) - C(14) - C(18) 106.5(9) C(7) - C(14) - C(18) 113.5(12) C(9) - C(15) - C(26) 120.7(10) O(1) - B(16) - O(2) 111.7(6) O(1) - B(16) - C(6) 122.1(7) O(2) - B(16) - C(6) 126.1(7) O(1) - C(17) - C(8) 105.8(7) O(1) - C(17) - C(24) 112.5(10) C(8) - C(17) - C(24) 136.6(11) C(14) - C(18) - C(27) 125.0(16) C(11) - C(19) - C(21) 113.6(15) C(10) - C(23) - C(12) 115.5(10) C(13) - C(26) - C(15) 118.4(12) ------------------------------------------------------------------------------ 13