Technical Report: A Unified Framework for Analysis of Path Selection Based Decode-and-Forward (DF) Cooperation in Wireless Systems

Σχετικά έγγραφα
α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

EE512: Error Control Coding

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

5 Haar, R. Haar,. Antonads 994, Dogaru & Carn Kerkyacharan & Pcard 996. : Haar. Haar, y r x f rt xβ r + ε r x β r + mr k β r k ψ kx + ε r x, r,.. x [,

Multi-dimensional Central Limit Theorem

Multi-dimensional Central Limit Theorem

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Second Order RLC Filters

ΠΤΥΧΙΑΚΗ/ ΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Power allocation under per-antenna power constraints in multiuser MIMO systems

Other Test Constructions: Likelihood Ratio & Bayes Tests

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

2 Composition. Invertible Mappings

Math 6 SL Probability Distributions Practice Test Mark Scheme

Approximation of distance between locations on earth given by latitude and longitude

Concomitants of Dual Generalized Order Statistics from Bivariate Burr III Distribution

8.1 The Nature of Heteroskedasticity 8.2 Using the Least Squares Estimator 8.3 The Generalized Least Squares Estimator 8.

A Sequential Experimental Design based on Bayesian Statistics for Online Automatic Tuning. Reiji SUDA,

ST5224: Advanced Statistical Theory II

Figure A.2: MPC and MPCP Age Profiles (estimating ρ, ρ = 2, φ = 0.03)..

A Class of Orthohomological Triangles

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

SOLUTIONS TO MATH38181 EXTREME VALUES AND FINANCIAL RISK EXAM

ΜΕΡΟΣ ΙΙΙ ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Math221: HW# 1 solutions

Derivation for Input of Factor Graph Representation

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

ΜΕΡΟΣ ΙΙI ΜΟΡΙΑΚΟ ΒΑΡΟΣ ΠΟΛΥΜΕΡΩΝ

Proposal of Terminal Self Location Estimation Method to Consider Wireless Sensor Network Environment

ΕΙΣΑΓΩΓΗ ΣΤΗ ΣΤΑΤΙΣΤΙΚΗ ΑΝΑΛΥΣΗ

Vol. 34 ( 2014 ) No. 4. J. of Math. (PRC) : A : (2014) Frank-Wolfe [7],. Frank-Wolfe, ( ).

Duals of the QCQP and SDP Sparse SVM. Antoni B. Chan, Nuno Vasconcelos, and Gert R. G. Lanckriet

LECTURE 4 : ARMA PROCESSES

Homework 3 Solutions

Finite Field Problems: Solutions

5.4 The Poisson Distribution.

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

Constant Elasticity of Substitution in Applied General Equilibrium

Inverse trigonometric functions & General Solution of Trigonometric Equations

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

1 Complete Set of Grassmann States

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

8.324 Relativistic Quantum Field Theory II

MathCity.org Merging man and maths

Every set of first-order formulas is equivalent to an independent set

Supplementary Materials for Evolutionary Multiobjective Optimization Based Multimodal Optimization: Fitness Landscape Approximation and Peak Detection

The Simply Typed Lambda Calculus

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

6.3 Forecasting ARMA processes

Generalized Linear Model [GLM]

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

Problem Set 3: Solutions

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

1 String with massive end-points

Partial Trace and Partial Transpose

Example Sheet 3 Solutions

Noriyasu MASUMOTO, Waseda University, Okubo, Shinjuku, Tokyo , Japan Hiroshi YAMAKAWA, Waseda University

Potential Dividers. 46 minutes. 46 marks. Page 1 of 11

Solution Series 9. i=1 x i and i=1 x i.

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

[1], [2] - (Danfoss, Rexroth, Char-Lynn. [3, 4, 5]), .. [6]. [7]

derivation of the Laplacian from rectangular to spherical coordinates

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

Second Order Partial Differential Equations

Non polynomial spline solutions for special linear tenth-order boundary value problems

Written Examination. Antennas and Propagation (AA ) April 26, 2017.

Joint Spectrum Sensing and Resource Allocation for OFDM-based Transmission with a Cognitive Relay

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Durbin-Levinson recursive method

4.6 Autoregressive Moving Average Model ARMA(1,1)

2 Lagrangian and Green functions in d dimensions

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

ΤΕΧΝΟΛΟΓΙΚΟ ΕΚΠΑΙΔΕΥΤΙΚΟ ΙΔΡΥΜΑ ΚΡΗΤΗΣ ΣΧΟΛΗ ΔΙΟΙΚΗΣΗΣ ΚΑΙ ΟΙΚΟΝΟΜΙΑΣ ΤΜΗΜΑ ΛΟΓΙΣΤΙΚΗΣ ΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

ΓΕΩΠΟΝΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ ΤΜΗΜΑ ΑΓΡΟΤΙΚΗΣ ΟΙΚΟΝΟΜΙΑΣ & ΑΝΑΠΤΥΞΗΣ

CAPM. VaR Value at Risk. VaR. RAROC Risk-Adjusted Return on Capital

Statistical Inference I Locally most powerful tests

C.S. 430 Assignment 6, Sample Solutions

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Study on Re-adhesion control by monitoring excessive angular momentum in electric railway traction

Areas and Lengths in Polar Coordinates

An Inventory of Continuous Distributions

Elements of Information Theory

Aerodynamics & Aeroelasticity: Eigenvalue analysis

Matrices and Determinants

ES440/ES911: CFD. Chapter 5. Solution of Linear Equation Systems

Appendix S1 1. ( z) α βc. dβ β δ β

Queensland University of Technology Transport Data Analysis and Modeling Methodologies

Lecture 34 Bootstrap confidence intervals

Mean bond enthalpy Standard enthalpy of formation Bond N H N N N N H O O O

ΜΕΛΕΤΗ ΤΗΣ ΜΑΚΡΟΧΡΟΝΙΑΣ ΠΑΡΑΜΟΡΦΩΣΗΣ ΤΟΥ ΦΡΑΓΜΑΤΟΣ ΚΡΕΜΑΣΤΩΝ ΜΕ ΒΑΣΗ ΑΝΑΛΥΣΗ ΓΕΩΔΑΙΤΙΚΩΝ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΜΕΤΑΒΟΛΩΝ ΣΤΑΘΜΗΣ ΤΑΜΙΕΥΤΗΡΑ

Partial Differential Equations in Biology The boundary element method. March 26, 2013

Tridiagonal matrices. Gérard MEURANT. October, 2008

DuPont Suva 95 Refrigerant

On Integrability Conditions of Derivation Equations in a Subspace of Asymmetric Affine Connection Space

A summation formula ramified with hypergeometric function and involving recurrence relation

Transcript:

Techncal Report: A Unfed Framework for Analyss of ath Selecton Based Decode-and-Forward DF Cooperaton n Wreless Systems Neeraj Varshney Student ember, IEEE and Adtya K. Jagannatham, ember, IEEE I. VALUES OF ARAETERS t AND a, {SR, SD, RD} FOR DIFFERENT FADING CHANNELS The values of parameters t and a, {SR, SD, RD} for varous fadng channels ncludng η µ and κ µ are shown n Table I. II. SILIFICATION OF THE ROBABILITY OF ERROR FOR THE EVENT ϕ IN 6 Usng the result for F γmn x = F γsr x + F γrd x F γsr xf γrd x from Eq5,, the resson for re ϕ n 6 n the man paper can be rewrtten as, re ϕ= = γsd re ϕ, γ SD F γmn f γsd γ SD dγ SD, α γsd γsd re ϕ, γ SD F γsr f γsd γ SD dγ SD + re ϕ, γ SD F γrd f γsd γ SD dγ SD α α γsd γsd re ϕ, γ SD F γsr F γrd f γsd γ SD dγ SD, α α Substtutng the ressons for F γ x, {SD, SR, RD}, f γsd x gven n, 3 respectvely n the man paper and usng re ϕ, γ SD = π dθ 3, yelds π sn π/γ SD sn θ DRAFT

Fadng Channel DF fβ t a Raylegh β δ δ δ Nakagam-m, m Generalzed Nakagam Nakagam-q, q Nakagam-n Webull, c Log-Normal, σ Shadowed-Rcan, b, m, Ω κ-µ dstrbuton η-µ dstrbuton Gamma-Gamma, µ, ν, η s β m s p m +n δ Γm c s β +q qδ n Γ+ c.5 b µ +κ µ κ m m β m mβ δ m Γm p, where p = +q β +n β δ 4q δ δ c/ β c bm bm+ω µ + β δ δ Γm Γm +s I q 4 β I n β m s, s >, m m s 4q δ +n β δ δ Γ + c 4.34 πσβ log βµ σ µ µ κ δ µ + πµ µ + h µ βµ Γµ H µ δ µ +, n c/ m β.5ω b F m, ; β b m+bω I µ µ +κ β δ µ h β δ I µ +η µ κ +κ β δ µ H β For format : < η <, h = +η, H 4 = η For format : < η <, h =, H η = η k= ζ k ν, µβ ν+k + k= ζ k µ, νβ µ+k where ζ k a, b = δ +n δ c c µ σ µ, µ η 4 η πab a+k η a+k snbaπk!γaγbγab+k+ f ν < µ then t gg = ν/ and t gg = ζ ν, µ f ν > µ then t gg = µ/ and t gg = ζ µ, ν TABLE I m m δ m Γm s p m Γm +q qδ n Γ+ c c δ 4.34 πσ µ σ m.5 b bm bm+ω µ +κ µ µ κ δ µ Γµ πµ µ h µ Γµ Γµ +.5δ µ, t gg a gg VALUES OF ARAETERS t AND a, {SR, SD, RD} FOR DIFFERENT FADING CHANNELS. the bound for re ϕ as, re ϕ π + π a RD a SD t RD + α t RD+ a SR a SD t SR +α t SR+ η tsd + η a SR a RD a η SD t SR +t RD +α t SR+t RD + tsr + η trd + η tsd + tsd + γ t RD+t SD + SD tsr + trd + η η γ t SR+t SD + SD sn π/γ SD sn θ sn π/γ SD sn θ γ τ SD sn π/γ SD sn θ dγ SD dγ SD dγ SD where τ = t SD + t SR + t RD +. The resson above can be smplfed usng the dentty x n µx = n!µ n 3.36-, 4 followed by gnorng the negatve term n the resultng resson to yeld the bound n 8 n the man paper as, re ϕ a SRa SD Γt SR + t SD + ζt SR + t SD + t SR + α t SR+ sn π/ t SR +t SD + η tsr + η tsd + dθ,

+ a trd + RDa SD Γt RD + t SD + ζt RD + t SD + t RD + α t RD+ sn π/ η η tsd + t RD +t SD +. III. SILIFICATION OF THE ROBABILITY OF ERROR FOR THE EVENT ϕ IN Usng the result for f γmn x = f γsr x + f γrd x F γsr xf γrd x f γsr xf γrd x from Eq5,, the resson for re ϕ n n the man paper can be rewrtten as, re ϕ = π = π + π π sn π/γ mn γ mn = sn F γsd αγ mn f γmn γ mn dγ mn dθ, θ sn π/γ mn sn F γsd αγ mn f γsr γ mn dγ mn θ sn π/γ mn sn θ sn π/γ mn sn θ sn π/γ mn sn θ F γsd αγ mn f γrd γ mn dγ mn F γsd αγ mn F γsr γ mn f γrd γ mn dγ mn F γsd αγ mn f γsr γ mn F γrd γ mn dγ mn dθ. 3 Usng the ressons for F γ x, f γ x, {SD, SR, RD} gven n, 3 respectvely n the man paper, the above resson can be smplfed as, re ϕ π π + a SDa RD α t SD+ t SD + a SD a SR α t SD+ t SD + a SDa SR a RD α t SD+ η t SD + t SR + a SDa SR a RD α t SD+ t SD + t RD + η tsd + η η η tsd + η tsd + η tsd + η trd + tsr + tsr + trd + η γ t SD+t SR + mn γ t SD+t RD + mn tsr + trd + η sn π/γ mn sn θ sn π/γ mn sn θ dγ mn γmn τ sn π/γ mn sn dγ mn θ dγ mn γ τ mn sn π/γ mn sn θ The resson above can be further smplfed usng the dentty x n µx = n!µ n 3.36-, 4 followed by gnorng the negatve term n the resultng resson to yeld the dγ mn dθ.

bound n n the man paper as, re ϕ a SRa SD Γt SR + t SD + ζt SR + t SD + α t SD+ t SD + sn π/ t SR +t SD + η + a RDa SD Γt RD + t SD + ζt RD + t SD + α t SD+ t SD + sn π/ t RD +t SD + tsr + η η tsd + trd + η tsd +. 4 IV. IO-OSTBC BASED COOERATION WITH ATH SELECTION The ressons for the SER and dversty order n the IO-OSTBC based cooperatve system can be readly obtaned by substtutng Ns N Ns R c m d m SD SD a SD =, t N s N d m SD! δsd SD = N s N d m SD, Ns N Ns R c m r m SR SR a SR =, t SR = N s N r m SR, N s N r m SR! and δ SR Nr R c m Nr N RD d m RD, a RD = trd = N r N d m RD, N r N d m RD! δ RD n equatons 4, 5 gven n the man paper respectvely as, e Θ Ns N ζn s N d m SD +N s N r m SR r m SR η η NsNd m SD sn π/ NsN dm SD +N sn rm SR ΓN s N r m SR +N s N d m SD N s N r m SR α N sn r + αnsndmsd m SR N s N d m SD + Θ Nr N ζn s N d m SD +N r N d m RD d m RD η η Ns N d m SD sn π/ N sn d m SD +N r N d m RD ΓN r N d m RD +N s N d m SD + αnsndmsd, 5 N r N d m RD α N rn d m RD N s N d m SD d ath,ostbc =N s N d m SD + mn{n s N r m SR, N r N d m RD }, 6 where Θ = a SD a SR = N sn d m SD!N sn rm SR! Θ = a SD a RD = N s N d m SD!N r N d m RD! N s R c m SD δ SD N s R c m SD δsd Ns N d m SD Ns N d m SD N s R c m SR δsr Nr N d m N r R c m RD RD. δrd Ns N r m SR and Further, the optmal power for ths system can be obtaned by usng the polynomal equaton gven below C t SR+ C t RD+ =, 7

where C and C are gven as, C = ζn sn d m SD +N r N d m RD ΓN s N d m SD +N r N d m RD N r N d m RD η N rn d m RD sn π/ NrN dm RD Nr R c m Nr N RD d m RD, N r N d m RD! δ RD C = ζn sn d m SD + N s N r m SR ΓN s N d m SD + N s N r m SR N s N r m SR η N sn r m SR sn π/ N sn r m SR Ns N Ns R c m r m SR SR. N s N r m SR! δ SR V. GENERALIZED ANALYSIS FOR JOINT TRANSIT-RECEIVE ANTENNA AND ATH SELECTION JTRAS and Smlar to the IO-OSTBC based cooperaton, usng the values a SD = N sn d m SD /δsd m SDN s N d Γm SD + N sn d m SD!, t SD = m SD N d N s, a SR = N sn r m SR /δsr m SRN s N r Γm SR + NsNr m SR!, t SR = m SR N s N r, a RD = N rn d m RD /δrd m RDN r N d Γm RD + N rn d m RD!, t RD = m RD N d N r, derved n the man paper for the JTRAS based system, the closed form ressons for the asymptotc SER and dversty order n JTRAS based cooperaton are gven by, e Θ ζn s N d m SD +N s N r m SR sn π/ NsN dm SD +N sn rm SR ΓN s N r m SR +N s N d m SD η + Θ ζn s N d m SD +N r N d m RD sn π/ NsN dm SD +N rn d m RD ΓN r N d m RD +N s N d m SD NsNrm SR η Ns N d m SD N s N r m SR α NsNrm SR η + αn sn d m SD N s N d m SD Nr N d m RD η NsNd m SD N r N d m RD α N rn d m RD + αnsndmsd N s N d m SD, 8 d ath,jtras =N s N d m SD + mn{n s N r m SR, N r N d m RD }, 9

Ns where Θ = a SD a SR = N rn d m SD /δsd m SD NsN dm SR /δsr m SR N snr Γm SD + N sn d and Θ m SD!Γm SR + NsNr m SR! = a SD a RD = N s N r Nd m SD/δSD m SD N sn dmrd /δrd m RD N rn d Γm SD + N sn d m SD!Γm RD + N rn d. oreover, the optmal power for the JTRAS m RD! system can be obtaned by usng the equaton 7, where C and C are defned as, C = ζn sn d m SD +N r N d m RD ΓN s N d m SD +N r N d m RD N r N d m RD η NrN dm RD sn π/ N rn d m RD N r N d m RD /δrd m RDN r N d Γm RD + NrN d m RD!, C = ζn sn d m SD + N s N r m SR ΓN s N d m SD + N s N r m SR N s N r m SR η NsNrm SR sn π/ N sn r m SR N s N r m SR /δsr m SRN s N r Γm SR + NsNr m SR!. VI. ADDITIONAL SIULATION RESULTS In order to demonstrate the system performance for hgher order SK modulaton schemes, we consder a path selecton based SISO system n whch each lnk erence Nakagam-m fadng wth severty parameters m SR = m RD =, m SD = and average channel gans δsr =, δ SD = δ RD =.. From Fg., t can be observed that the monte-carlo results obtaned for the hgher order SK modulaton closely match wth the asymptotc SER approxmaton n 4 gven n man paper, whch clearly valdates that the analytcal framework developed n ths work s applcable for a general -SK modulaton. It can also be noted that the system performance sgnfcantly degrades as the order or the number of constellaton ponts ncreases. However, the system acheves the dentcal dversty order of t SD +mn{t SR +t RD }+ = m SD +mn{m SR, m RD } = 3 for each modulaton scheme. 6SK SER 3 4SK or QSK 8SK 4 5 SISO, =.773, =.87 Optmal SISO, =.5, =.5 Equal Asymptotc Bound Optmal, Analytcal Asymptotc Bound Equal, Analytcal 5 5 5 3 35 4 45 5 SNRdB Fg.. SER erformance of path selecton based SISO system correspondng to the transmsson of QSK or 4-SK, 8-SK, and 6-SK modulated symbols.

On the other hand, Fg shows that the value of cooperaton threshold α also affects the system performance. It can be clearly seen n Fg. that the end-to-end system performance sgnfcantly mproves as the cooperaton threshold α ncreases. Therefore, one can note that n addton to power allocaton, the value of cooperaton threshold α also plays a key role, whch can also be optmzed to enhance the end-to-end performance of the path selecton scheme. SER 3 4 α=.,.5, 5 SISO, =.5, =.5 Equal Asymptotc Bound Equal, Analytcal 5 5 5 3 35 4 45 5 SNRdB Fg.. SER erformance of path selecton based SISO system for dfferent values of cooperaton threshold α. REFERENCES. D. Yacoub, The κ-µ dstrbuton and the η-µ dstrbuton, IEEE Antennas and ropagaton agazne, vol. 49, no., pp. 68 8, 7. N. Varshney, V. Krshna, and A. Jagannatham, Capacty analyss for path selecton based DF IO-STBC cooperatve wreless systems, IEEE Communcatons Letters, vol. 8, no., pp. 97 974, 4. 3 K. R. Lu, Cooperatve communcatons and networkng. Cambrdge Unversty ress, 9. 4 A. Jeffrey and D. Zwllnger, Table of ntegrals, seres, and products. Access Onlne va Elsever, 7.