Supporting Information

Σχετικά έγγραφα
Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. Experimental section

Supporting Information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

The Free Internet Journal for Organic Chemistry

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for

Supporting information

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

gem-dichloroalkenes for the Construction of 3-Arylchromones

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Electronic Supplementary Information

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information for

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information for

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supplementary material

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Aminofluorination of Fluorinated Alkenes

Supplementary Material

Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones. with Arylboronic Acids

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

phase: synthesis of biaryls, terphenyls and polyaryls

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Selective mono reduction of bisphosphine

Reusable Cu 2 O/PPh 3 /TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes. Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information. Contents

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information for

Supporting Information

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information. Experimental section

Supporting Information

SUPPORTING INFORMATION. Polystyrene-immobilized DABCO as a highly efficient and recyclable organocatalyst for Knoevenagel condensation

Supporting Materials

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supplementary information

Supplementary Information for

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Electronic Supplementary Information (ESI)

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

PS-BEMP as a Basic Catalyst for the Phospha-Michael Addition to Electron-poor alkenes

Transcript:

Supporting Information Copper-Catalyzed Decarboxylative Alkenylation of Sp 3 C-H Bonds with Cinnamic Acids via A Radical Process Zili Cui, Xiaojie Shang, Xiang-Feng Shao and Zhong-Quan Liu State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. China E-mail: liuzhq@lzu.edu.cn Context General information.... 1 Typical procedure.... 1 Regiospecificity studies........ 2-3 Competing Kinetic Isotope Effect (KIE) Experiment.... 4 Physical data and references for the following products..... 5-13 Copies of the 1 H NMR, 13 C NMR and GC-MS spectra. 14-61 General Information 1 H and 13 C NMR spectra were recorded on a Bruker advance Ⅲ 400 spectrometer in CDCl 3 with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 ev. Highresolution mass spectral analysis (HRMS) data were measured on a Bruker Apex II. Element analysis (EA) data were measured on a Vario EL. All products were identified by 1 H and 13 C NMR, MS, HRMS, and Element Analysis. The starting materials were purchased from Aldrich, Acros Organics, J&K Chemicals or TCI and used without further purification. Typical procedure A mixture of cinnamic acid (1 equiv., 0.5 mmol), Cu (0.02 equiv., 0.01 mmol), TBHP (1.2 equiv., 0.6 mmol) and alcohol or ether (3 ml) was heated under reflux at 110 o C for 12 h. After the reaction finished, the mixture was evaporated under vacuum and purified by column chromatography to afford the desired product. 1

Regiospecificity studies (0.5mmol) COOH + OH (1.5ml) + OH (1.5ml) 2mol%Cu 1.2eq TBHP 110 C 12h a OH OH b (a:b=1:5) 0.5mmol COOH + (4a 20eq) 2mol%Cu 1.2 eq TBHP 1ml phenylethanol 110 C, 12h O (Conversion Rate : 53 %) (Isolated yield : 59 %) 2

3

Competing Kinetic Isotope Effect (KIE) Experiment: Ph COOH + H D OH OD CD 3 CD3 (1:1) typical reaction conditions k H /k D =3.4 Ph Ph OH OD CD 3 CD 3 Figure 1 H NMR spectra of the mixture of compound a and b. Note: The value of k H /k D was calculated from the 1 H NMR spectra above which should be the mixture of compound a and b (the KIE scheme). The sum of the integral of a and b at chemical shift 6.55-6.60 was integrated as 1.00 (both a and b keep the same double bond hydrogen). Compound a has 6 hydrogen atoms at chemical shift 1.41, while b has no H atoms. The amount of a could be defined as 0.77(4.63/6=0.77), on the other hand, the sum of a and b is 1.00, so the amount of b is 0.23 (1.00-0.77=0.23). As a result, k H /k D =0.77/0.23=3.4. 4

Physical data and references for the following products All known compounds are determined by 1 H NMR and 13 C NMR, MS analysis and compared with which were cited in the following references, and the new compounds were further confirmed by HRMS and/or element analysis. References: 1. Fan, S. L.; Chen, F.; Zhang, X. G. Angew. Chem., Int. Ed. 2011, 50, 5918-5923. 2. Liu, Z.-Q.; Sun, L.; Wang, J.-G.; Han, J. Zhao, Y.-K; Zhou, B. Org. Lett. 2009, 11(6), 1437-1439. 3. Huelgas, G.; LaRochelle L. K.; Rivasa, L.; Luchininac, Y.; Toscano, R. A.; Carroll, P. J.; Walsh, P. J.; de Parrodi, C. A. Tetrahedron. 2011, 67, 4467-4474. 4. Hou, J.; Feng, C.; Li, Z.; Fang, Q.; Wang, H.; Gu, G.; Shi, Y.; Liu, P.; Xu, F.; Yin, Z.; Shen, J.; Wang, P. Eur. J. Org. Chem. 2011, 46, 3190-3200. 5. Werner, E. W.; Sigman, M. S. J. Am. Chem. Soc. 2011, 133, 9692-9695. 6. Luo, F.; Pan, C.; Wang, W.; Ye, Z.; Cheng, J. Tetrahedron. 2010, 66, 1399-1403. 7. Pandey, G.; Krishna, A. J. Org. Chem. 1988, 53, 2364-2365. 8. Shi, D.; Huang, H.; Chen, R. Phosphorus, Sulfur Silicon Relat. Elem. 2002, 177, 665-670. 9. Hernan, A. G.; Horton, P. N.; Hursthouse, M. B.; Kilburn, J. D. J. Org. Chem. 2006, 691, 1466-1475. 10. Berthiol, F.; Doucet, H.; Santelli, M. Appl. Organomet. Chem. 2006, 20, 855-868. 11. Lopez, F.; Harutyunyan, S. R.; Minnaard, A. J.; Feringa, B. L. J. Am. Chem. Soc. 2004, 126, 12784-12785. 12. Tian, Q.; Larock, R. C. Org Lett. 2000, 2, 3329-3332. 13. Dong, D.-J.; Li, H.-H.; Tian, S.-K. J. Am. Chem. Soc. 2010, 132, 5018-5020. 14. Jang, Y.-J.; Shih, Y.-K.; Liu, J.-Y.; Kuo, W.-Y.; Yao, C.-Fa. Chem.-Eur. J. 2003, 9, 2123-2128. 15. Kim, H. J.; Su, L.; Jung, H.; Koo, S. Org Lett. 2011, 13, 2682-2685. 16. Li, J.; Peng, J.; Bai, Y.; Chen, L.; Lai, G. Phosphorus, Sulfur Silicon Relat. Elem. 2011, 186, 1621-1625. 17. Kabalka, G. W.; Dong, G.; Venkataiah, B. Org Lett. 2003, 5, 893-895. 18. Takashi, M.; K, Kajiwara.; Y, Shirae.; M, Sakamoto.; T, Fujita. Synlett. 2008, 2711-2715. 19. Jang, Y.-J.; Yan, M.-C.; Lin, Y.-F.; Yao, C.-F. J. Org. Chem. 2004, 69, 3961-3963. 5

Physical data for the following products: 1a: (E)-3-phenylprop-2-en-1-ol 1 H NMR (400MHz, CDCl 3 ): δ 7.40-7.38 (m, 2H), 7.34-7.30 (m, 2H), 7.26-7.22 (m, 1H), 6.64-6.60 (d, J = 16.0 Hz, 1H), 6.40-6.33 (m, 1H), 4.32-4.31 (m, 2H), 1.58 (s, 1H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.6, 131.1, 128.6, 128.5, 127.7, 126.4, 63.7. MS (EI): m/z (%): 134 (M+, 47), 117 (15), 105 (45), 91 (55), 77 (34), 57 (100). 1b: (E)-4-phenylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.30-7.28 (m, 2H), 7.24-7.21 (m, 2H), 7.17-7.13 (m, 1H), 6.49-6.45 (d, J = 16.0 Hz, 1H), 6.20-6.15 (dd, J = 16.0 Hz, J=4.0Hz, 1H), 4.49-4.46 (m, 1H), 1.84 (s, 1H), 1.29-1.28 (d, J = 4.0 Hz, 3H). 13 C NMR (100MHz, CDCl 3 ): δ 136.7, 133.5, 129.3, 128.5, 127.6, 126.4, 68.8, 23.3. MS (EI):m/z 148 (M+, 59), 131 (62), 105 (100), 91 (63), 77 (33), 43 (62). 1c: (E)-1-phenylpent-1-en-3-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.36 (m, 2H), 7.32-7.28 (m, 2H), 7.24-7.21 (m, 1H), 6.57-6.53 (d, J = 16.0 Hz, 1H), 6.23-6.17 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.25-4.20 (m, 1H), 1.92 (s, 1H), 1.69-1.60 (m, 2H), 0.98-0.94 (t, J = 8.0Hz, 3H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.7, 132.2, 130.3, 128.5, 127.5, 126.4, 74.31, 30.2, 9.7. MS (EI): m/z (%): 162 (M+, 29), 133 (100), 105 (61), 91 (37), 77 (30), 55 (33). 1d: (E)-1-phenylhex-1-en-3-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.36 (m, 2H), 7.32-7.29 (m, 2H), 7.24-7.23 (m, 1H), 6.57-6.53 (d, J = 16.0 Hz, 1H), 6.24-6.18 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.30-4.25 (m, 1H), 1.78 (s, 1H), 1.63-1.53 (m, 2H), 1.44-1.38 (m, 2H), 0.97-0.93 (t, J =8.0Hz, 3H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.7, 132.6, 130.1, 128.5, 127.6, 126.4, 72.8, 39.4, 18.6, 14.0. MS (EI): m/z (%): 176 (M+, 26), 133 (100), 105 (47), 91 (32), 77 (18), 55 (27), 43 (15). 1e: (E)-1-phenylhept-1-en-3-ol 6

1 H NMR (400 MHz, CDCl 3 ): δ 7.41-7.39 (m, 2H), 7.34-7.31 (m, 2H), 7.26-7.25 (m, 1H), 6.60-6.56 (d, J = 16.0 Hz, 1H), 6.26-6.21 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.31-4.26 (m, 1H), 1.69-0.91 (m, 10H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.8, 132.6, 130.2, 128.5, 127.6, 126.4, 73.1, 37.1, 27.6, 22.6, 14.0 MS (EI): m/z (%): 190 (M+, 16), 133 (100), 105 (59), 91 (43), 77 (20), 57 (20). 1f: (E)-5-methyl-1-phenylhex-1-en-3-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.39-7.37 (m, 2H), 7.33-7.29 (m, 2H), 7.25-7.21 (m, 1H), 6.59-6.55 (d, J = 16.0 Hz, 1H), 6.24-6.18 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.36-4.34 (m, 1H), 1.79-0.88 (m, 10H). 13 C NMR (100 MHz, CDCl 3 ):δ 136.7, 132.8, 130.0, 128.5, 127.6, 126.4, 71.31, 46.4, 24.6, 23.0, 22.6, 22.5. MS (EI): m/z (%): 190 (M+, 12), 165 (100), 105 (31), 91 (25), 77 (16), 57 (19), 43 (40). 1g: (E)-1-phenyloct-1-en-3-ol. 1 H NMR (400 MHz, CDCl 3 ): δ 7.39-7.37 (m, 2H), 7.31-7.29 (m, 2H), 7.25-7.23 (m, 1H), 6.58-6.54 (d, J = 16.0 Hz, 1H), 6.25-6.19 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.31-4.26 (m, 1H), 1.71-0.87 (m, 12H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.8, 132.6, 130.2, 128.5, 127.6, 126.4, 73.1, 37.3, 31.8, 25.10, 22.6, 14.0 MS (EI): m/z (%): 204 (M+, 5), 133 (100), 105 (47), 91 (39), 77 (17), 55 (32). 1h: (E)-2-methyl-4-phenylbut-3-en-2-ol OH 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.20 (m, 5H), 6.60-6.56 (d, J = 16.0 Hz, 1H) 6.37-6.33 (d, J = 16.0 Hz, 1H), 1.73 (s, 1H), 1.42 (s, 6H) 13 C NMR (100 MHz, CDCl 3 ): δ 137.5, 136.9, 128.5, 127.4, 126.4, 126.3, 71.0, 29.8. MS (EI): m/z (%): 162 (M+, 34), 147 (100), 129 (76), 91 (59), 77 (16), 43 (52). 1i: (E)-3-methyl-1-phenylpent-1-en-3-ol. 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.36 (m, 2H), 7.29-7.27 (m, 2H), 7.23-7.21 (m, 1H), 6.60-6.55 (d, J = 16.0 Hz, 1H), 6.28-6.24 (d, J = 16.0 Hz, 1H), 1.74 (s, 1H), 1.68-1.62 (q, 2H), 1.36 (s, 3H), 0.94-0.90 (t, 3H) 13 C NMR (100 MHz, CDCl 3 ): δ 137.0, 136.5, 128.5, 127.2, 127.2, 126.3, 73.34, 35.3, 27.5, 8.3 MS (EI): m/z (%): 176 (M+, 6), 147 (100), 129 (39), 91 (16), 57 (8), 43 (19). 7

1j: (E)-1-styrylcyclopentanol 1 H NMR (400 MHz, CDCl 3 ):δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.23-7.19 (m, 1H), 6.67-6.63 (d, J = 16.0 Hz, 1H), 6.40-6.36 (d, J = 16.0 Hz, 1H), 1.94-1.90 (m, 2H), 1.80-1.73 (m, 7H). 13 C NMR (100 MHz, CDCl 3 ): δ 137.0, 136.0, 128.5, 127.2, 126.7, 126.3, 82.1, 40.7, 23.7. Anal. Calcd. for C13H6O: C, 82.98; H, 8.51. Found: C, 83.12; H: 8.77 1k: (E)-1-styrylcyclohexanol 1 H NMR (400 MHz, CDCl 3 ): δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.24-7.21 (m, 1H), 6.65-6.61 (d, J = 10.0 Hz, 1H), 6.36-6.31 (d, J = 10.0 Hz, 1H), 1.68-0.86 (m, 11H). 13 C NMR (100 MHz, CDCl 3 ): δ 137.5, 137.1, 128.5, 127.32, 127.0, 126.3, 71.7, 38.0, 25.5, 22.1. MS (EI): m/z (%): 202 (M+, 68), 159 (100), 145 (73), 91 (55), 77 (24), 55 (23). 1l: (E)-1,4-diphenylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.37-7.23 (m, 10H), 6.60-6.56 (d, J = 16.0 Hz, 1H), 6.30-6.24 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H),4.54-4.51 (m, 1H), 2.98-2.85 (m, 2H). 1.81 (s, 1H) 13 C NMR (100 MHz, CDCl 3 ): δ 137.6, 136.7, 131.5, 130.3, 129.6, 128.5, 128.5, 127.62, 126.6, 126.5, 73.4, 44.2 MS (EI): m/z (%): 224 (M+, 1), 133 (100), 115 (23), 91 (20), 77 (10), 55 (18). 2a: (E)-2-methyl-4-(m-tolyl)but-3-en-2-ol 1 H NM R(400 MHz,CDCl 3 ): δ 7.20-7.17 (m, 3H), 7.03-7.02 (m, 1H), 6.55-6.51 (d, J = 16.0 Hz,1H), 6.34-6.30 (d, J = 16.0 Hz, 1H), 2.32 (s, 3H), 1.96 (s, 1H), 1.40 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 138.0, 137.3, 136.8, 128.4, 128.1, 127.0, 126.3, 123.5, 70.9, 29.8, 21.3. Anal. Calcd. for C12H16O: C, 81.82; H,9.09. Found: C, 81.53; H: 9.32 2b: (E)-4-(4-methoxyphenyl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.32-7.30 (m, 2H), 6.86-6.84 (m, 2H),6.54-6.50 (d, J = 16.0 Hz, 1H), 6.24-6.20 (d, J = 16.0 Hz, 1H),3.80 (s, 3H), 1.62 (s, 1H), 1.41 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 159.0, 135.4, 129.6, 127.5, 125.8, 114.0, 71.0, 55.3, 29.9. MS (EI): m/z (%): 192 (M+, 34), 177 (100), 121 (95), 91 (13), 43 (33). 8

2c: (E)-4-(3,4-dimethoxyphenyl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 6.95-6.91 (m, 2H), 6.83-6.81 (d,j = 8.0 Hz, 1H), 6.54-6.50 (d, J = 16.0 Hz, 1H), 6.25-6.21 (d, J = 16.0 Hz, 1H), 3.91-3.88 (d, 6H), 1.57(s, 1H), 1.43 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 149.0, 148.6, 135.5, 129.9, 126.1, 119.5, 111.1, 108.6, 71.0, 55.9, 55.8, 29.9. MS (EI): m/z (%): 222 (M+, 52), 207 (92), 189 (24), 151 (100), 91 (10), 43 (24). 2d: (E)-4-(2,5-dimethoxyphenyl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.0 (d, 1H), 6.91-6.98 (d, J = 16.0 Hz, 1H), 6.81-6.77 (m, 2H), 6.38-6.33 (d, J = 16.0 Hz, 1H), 3.80-3.78 (d, J = 8.0 Hz, 6H), 1.43 (s, 6H), 1.25 (s, 1H). 13 C NMR (100 MHz, CDCl 3 ): δ 153.7, 151.2, 138.3, 126.7, 120.9, 113.5, 112.2, 112.0, 71.3, 56.1, 55.8, 29.8. MS (EI): m/z (%): 222 (M+, 77), 207 (42), 151 (100), 91 (32), 77 (11), 43 (49). 2e: (E)-4-(benzo[d][1,3]dioxol-5-yl)but-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 6.91 (d, 2H), 6.81-6.74 (m, 2H), 6.48-6.45 (d, J = 12.0 Hz, 1H), 6.11-6.06 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 5.94 (s, 2H), 4.46-4.43 (m, 1H),1.36-1.34 (d, J=8.0Hz, 3H) 13 C NMR (100 MHz, CDCl 3 ): δ 148.0, 147.2, 131.8, 131.1, 129.1, 121.1, 108.3, 105.7, 101.02, 68. 9, 23.4 Anal. Calcd. for C11H12O3: C, 68.75; H, 6.25. Found: C, 68.46; H: 6.44 2f: (E)-4-(4-chlorophenyl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.29-7.24 (m, 4H), 6.54-6.50 (d, J = 16.0 Hz, 1H), 6.33-6.29 (d, J = 16.0 Hz, 1H), 1.95 (s, 1H), 1.41 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 138.1, 135.4, 132.9, 128.6, 127.5, 125.1, 70.9, 29.8. MS (EI): m/z (%): 196 (M+, 34), 183 (32), 181 (100), 128 (46), 91 (5), 43 (67). 2g: (E)-4-(4-bromophenyl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.41-7.39 (m, 2H), 7.22-7.20 (m, 2H), 6.53-6.49 (d, J = 16.0 Hz, 1H), 6.34-6.30 (d, J = 16.0 Hz, 1H), 2.02 (s, 1H), 1.40 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 138.2, 135.8, 131.5, 127.9, 125.2, 121.0, 70.9, 29.8. Anal. Calcd. for C11H13BrO: C, 54.77; H, 5.39. Found: C, 55.02; H: 5.36 9

2h: (E)-4-(furan-2-yl)-2-methylbut-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.34 (d, 1H), 6.45-6.41 (d, J = 16.0 Hz, 1H), 6.37-6.36 (m, 1H), 6.33-6.29 (d, J = 16.0 Hz, 1H), 6.23-6.22 (d, J = 4.0 Hz, 1H), 1.68(s, 1H), 1.40(s, 6H) 13 C NMR (100 MHz, CDCl 3 ): δ 152.6, 141.7, 136.2, 115.2, 111.2, 107.7, 70.83, 29.9. MS (EI): m/z (%): 152(M+, 45), 137 (42), 133 (81), 91 (46), 57 (85), 43 (100). 2i: (E)-2-methyl-4-(thiophen-2-yl)but-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): 7.16-7.14 (m, 1H), 6.97-6.95 (m, 2H), 6.76-6.72 (d, J = 16.0 Hz, 1H), 6.23-6.19 (d, J = 16.0 Hz, 1H), 1.70 (s, 1H), 1.42 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 142.1, 137.2, 127.3, 125.5, 123.9, 119.9, 70.9, 29.8 MS (EI): m/z (%): 168 (M+, 41), 153 (59), 125 (68), 97 (100), 57 (69), 43 (90). 2j: (E)-2-methyl-4-(pyridin-3-yl)but-3-en-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 8.56 (s, 1H), 8.42-8.41 (d, J = 4.0 Hz, 1H), 7.71-7.69 (m, 1H), 7.26-7.23 (m, 1H), 6.61-6.57 (d, 1H), 6.46-6.42 (d, 1H), 3.62 (s, 1H), 1.44 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ) :δ 147.7, 147.6, 140.5, 133.2, 132.9, 123.5, 122.4, 70.6, 29.7. MS (EI): m/z (%): 163 (M+, 19), 148 (100), 130 (22), 106 (40), 105 (35), 43 (20). 2k: 1-(9H-fluoren-9-ylidene)-2-methylpropan-2-ol OH 1 H NMR (400 MHz, CDCl 3 ): δ 8.62-8.60 (d, J = 8.0 Hz, 1H), 7.65-7.61 (m, 2H), 7.56-7.54 (d, 1H), 7.31-7.22 (m, 4H), 6.73 (s, 1H), 2.01 (s, 1H), 1.60 (s, 6H) 13 C NMR (100 MHz, CDCl 3 ): 141.5, 139.8, 138.9, 136.3, 135.4, 135.2, 128.9, 128.2, 128.0, 126.8, 126.75, 119.8, 119.28, 119.27, 70.8, 30.5. MS (EI): m/z (%):236 (M+, 39), 193 (38), 178 (40), 165 (100), 110 (47), 43 (26). 2l: (3E,5E)-2-methyl-6-phenylhexa-3,5-dien-2-ol 1 H NMR (400 MHz, CDCl 3 ): δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), δ=7.23-7.21 (m, 1H), 6.79-6.72 (m, 1H), 6.57-6.53 (d, J=16.0 Hz, 1H), 6.42-6.36 (m, 1H), 5.97-5.93 (d, J=16.0 Hz, 1H), 1.64(s, 1H), 1.38 (s, 6H). 13 C NMR (100 MHz, CDCl 3 ): δ 141.7, 137.3, 132.3, 128.6, 128.5, 127.4, 127.0, 126.3, 70.9, 29.8. MS (EI): m/z (%): 188 (M+, 38), 173 (19), 117 (72), 104 (29), 91 (100), 43 (34). 10

3a: (E)-2-styryl-tetrahydrofuran. 1 H NMR (400 MHz, CDCl 3 ): δ 7.39-7.37 (m, 2H), 7.32-7.28 (m, 2H), 7.24-7.20 (m, 1H), 6.60-6.56 (d, J = 16.0 Hz, 1H), 6.24-6.18 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.50-4.45 (m, 1H),4.0-3.95 (m, 1H),3.87-3.81 (m, 1H), 2.15-2.09 (m, 1H), 1.98-1.92 (m, 2H), 1.76-1.69 (m, 1H) 13 C NMR (100 MHz, CDCl 3 ): δ 136.8, 130.5, 130.4, 128.5, 127.5, 126.4, 79.7, 68.2, 32.4, 25.9 MS (EI): m/z (%): 174 (M+, 69), 146 (42), 131 (100), 105 (15), 91 (23), 77 (34), 57 (29). 3b: (E)-2-styryl-1,4-dioxane 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.36 (m, 2H), 7.32-7.28 (m, 2H), 7.25-7.23 (m, 1H), 6.70-6.66 (d, J = 16.0Hz, 1H), 6.10-6.05 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.26-4.22 (m, 1H), 3.88-3.78 (m, 3H), 3.75-3.72 (m, 1H), 3.68-3.62 (m, 1H), 3.44-3.38 (m, 1H). 13 C NMR (100 MHz, CDCl 3 ): δ 136.3, 132.6, 128.5, 127.9, 126.4, 125.1, 76.0, 70.9, 66.5, 66.2. MS (EI): m/z (%): 190 (M+, 30), 131 (78), 99 (24), 86 (100), 77 (12), 57 (9), 43 (6). 3c: (E)-(2-cyclohexylvinyl)benzene 1 H NMR (400 MHz, CDCl 3 ): δ 7.35-7.33 (m, 2H), 7.29-7.24 (m, 2H), 7.19-7.17 (m, 1H), 6.36-6.32(d, J = 16.0 Hz, 1H), 6.20-6.14 (dd, J = 16.0 Hz, J = 8.0Hz, 1H), 2.14-1.14 (m, 11H). 13 C NMR (100 MHz, CDCl 3 ): δ 138.1, 136.8, 128.4, 127.2, 126.7, 125.9, 41.2, 33.0, 26.2, 26.1 MS (EI): m/z (%):186 (M+, 27), 129 (30), 115 (22), 104 (100), 91 (41), 55 (22). 3d: (E)-styrylcyclooctane 1 H NMR (400 MHz, CDCl 3 ): δ 7.34-7.32 (m, 2H), 7.29-7.23 (m, 2H), 7.18-7.16 (m, 1H), 6.33-6.29 (d, J = 16.0 Hz, 1H), 6.23-6.18 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 2.38-0.85 (m, 15H). 13 C NMR (100 MHz, CDCl 3 ): δ 138.1, 137.8, 128.4, 126.8, 126.6, 125.9, 41.3, 31.8, 27.4, 26.0, 25.1. MS (EI): m/z (%): 214 (M+, 29), 129 (58), 104 (100), 91 (36), 55(9). 3e: (E)-prop-1-ene-1,3-diyldibenzene 1 H NMR (400 MHz, CDCl 3 ):δ 7.36-7.19 (m, 10H), 6.47-6.43 (d, 1H), 6.39-6.33 (m, 1H), 3.55-3.53 (d, J = 8.0 Hz, 2H). 13 C NMR (100 MHz, CDCl 3 ): δ 140.2, 137.5, 131.1, 129.2, 128.7, 128.5, 127.1, 126.2, 126.1, 39.3. MS (EI): m/z (%):194 (M+, 100), 193 (62), 179 (42), 178 (39), 116 (37), 115 (66). 11

3f: 1-cinnamyl-4-methylbenzene 1 H NMR (400 MHz, CDCl 3 ): δ 7.35-7.12 (m, 9H), 6.46-6.42 (d, 1H), 6.37-6.30 (m, 1H), 3.51-3.49 (d, J = 8.0 Hz, 2H), 2.32 (s, 1H). 13 C NMR (100 MHz, CDCl 3 ): δ 137.6, 137.1, 135.7, 130.8, 129.5, 129.2, 128.5, 127.0, 126.1, 38.9, 21.0. MS (EI): m/z (%): 208 (M+, 100), 193 (96), 179 (12), 129 (16), 115 (83). 3g: 1-cinnamyl-3-methylbenzene 1 H NMR (400 MHz, CDCl 3 ):δ 7.36-7.02 (m, 9H), 6.47-6.43 (d, 1H), 6.38-6.32 (m, 1H), 3.52-3.50 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 140.1, 138.1, 137.5, 130.9, 129.4, 129.4, 128.5, 128.4, 127.1, 126.90, 126.1, 125.7, 39.3, 21.4. MS (EI): m/z (%):208 (M+, 100), 194(23), 193 (91), 115 (81), 105 (40), 91 (29). 3h: 1-cinnamyl-3,5-dimethylbenzene. 1 H NMR (400 MHz, CDCl 3 ):δ 7.36-6.85 (m, 8H), 6.47-6.43 (d, 1H),6.37-6.31 (m, 1H), 3.47-3.46 (d, J = 4.0 Hz, 2H), 2.29 (s, 1H). 13 C NMR (100 MHz, CDCl 3 ): δ 140.0, 138.0, 137.5, 130.8, 129.5, 128.5, 127.8, 127.0, 126.4, 126.1, 39.3, 21.3. MS (EI): m/z (%): 222 (M+, 96), 207 (100), 192 (28), 179 (14), 91 (28), 44 (11). 4a: (1s,3s)-1-((E)-4-methoxystyryl)adamantane 1 H NM R(400 MHz,CDCl 3 ): δ 7.30-7.28 (m, 2H), 6.84-6.82 (m, 2H), 6.20-6.16 (d, J = 16.0 Hz,1H), 5.99-5.95 (d, J = 16.0 Hz, 1H), 3.79 (s, 3H), 2.02 (s, 3H), 1.76-1.67 (m, 12H). 13 C NMR (100 MHz, CDCl 3 ): δ 158.5, 140.1, 131.0, 127.0, 123.7, 113.9, 55.3, 42.3, 36.9, 35.0, 28.5. MS (EI): m/z (%):268 (M+, 100), 211(35), 134 (12), 121 (16), 91 (11), 77 (5). 4ca: (E)-1-(3,4-dimethoxybut-1-enyl)benzene 1 H NMR (400 MHz, CDCl 3 ): δ 7.42-7.39 (m, 2H), 7.34-7.30 (m, 2H), 7.27-7.23 (m, 1H), 6.66-6.62 (d, J = 16.0 Hz, 1H), 6.13-6.07 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 3.98-3.94 (m, 1H), 3.55-3.46 (m, 2H), 3.41 (s, 3H), 3.38 (s, 3H) 13 C NMR (101 MHz, CDCl 3 ): δ 136.3, 133.6, 128.5, 127.9, 126.5, 126.5, 81.3, 75.6, 59.3, 56.6. HRMS (ESI, m/z): Calculated for C 12 H 16 O 2 (M+Na) + 215.1048, found 215.1048. 12

4ea: (E)-4-methyl-3-styrylmorpholine 1 H NMR (400 MHz, CDCl 3 ): δ 7.38-7.36 (m, 2H), 7.33-7.30 (m, 2H), 7.26-7.22 (m, 1H), 6.64-6.60 (d, J = 16.0 Hz, 1H), 6.03-5.96 (dd, J = 16.0 Hz, J = 12.0 Hz, 1H), 3.88-3.84 (m, 1H), 3.75-3.67 (m, 2H), 3.42-3.37 (m, 1H), 3.78-3.76 (m, 2H), 2.37-2.31 (m, 1H), 2.29 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ): δ 136.5, 134.0, 128.6, 127.8, 127.4, 126.3, 71.1, 67.1, 66.6, 54.8, 43.8. HRMS (ESI, m/z): Calculated for C 13 H 18 NO (M+H) + 204.1388, found 204.1377. 4fa: (E)-1-methyl-5-styrylpyrrolidin-2-one 1 H NMR (400 MHz, CDCl 3 ): δ 7.41-7.40 (m, 2H), 7.36-7.34 (m, 2H), 7.32-7.27 (m, 1H), 6.59-6.55 (d, J = 16.0 Hz, 1H), 6.05-5.99 (dd, J = 16.0 Hz, J = 8.0 Hz, 1H), 4.13-4.09 (m, 1H), 2.79 (s, 3H), 2.51-2.27 (m, 3H), 1.87-1.82 (m, 1H). 13 C NMR (100 MHz, CDCl 3 ): δ 175.0, 135.8, 132.9, 128.8, 128.7, 128.1, 126.5, 62.9, 30.0, 27.9, 25.7. HRMS (ESI, m/z): Calculated for C 13 H 16 NO (M+H) + 202.1232, found 202.1222. 13

Copies of the 1 H NMR and 13 C NMR 1a- 1 H NMR 1a- 13 C NMR 14

1b- 1 H NMR 1b- 13 C NMR 15

1c- 1 H NMR 1c- 13 C NMR 16

1d- 1 H NMR 1d- 13 C NMR 17

1e- 1 H NMR 1e- 13 C NMR 18

1f- 1 H NMR 1f- 13 C NMR 19

1g- 1 H NMR 1g- 13 C NMR 20

1h- 1 H NMR 1h- 13 C NMR 21

1i- 1 H NMR 1i- 13 C NMR 22

1j- 1 H NMR 1j- 13 C NMR 23

1k- 1 H NMR 1k- 13 C NMR 24

1l- 1 H NMR 1l- 13 C NMR 25

2a- 1 H NMR 2a- 13 C NMR 26

2b- 1 H NMR 2b- 13 C NMR 27

2c- 1 H NMR 2c- 13 C NMR 28

2d- 1 H NMR 2d- 13 C NMR 29

2e- 1 H NMR 2e- 13 C NMR 30

2f- 1 H NMR 2f- 13 C NMR 31

2g- 1 H NMR 2g- 13 C NMR 32

2h- 1 H NMR 2h- 13 C NMR 33

2i- 1 H NMR 2i- 13 C NMR 34

2j- 1 H NMR 2j- 13 C NMR 35

2k- 1 H NMR 2k- 13 C NMR 36

2l- 1 H NMR 2l- 13 C NMR 37

3a- 1 H NMR 3a- 13 C NMR 38

3b- 1 H NMR 3b- 13 C NMR 39

3c- 1 H NMR 3c- 13 C NMR 40

3d- 1 H NMR 3d- 13 C NMR 41

3e- 1 H NMR 3e- 13 C NMR 42

3f- 1 H NMR 3f- 13 C NMR 43

3g- 1 H NMR 3g- 13 C NMR 44

3h- 1 H NMR 3h- 13 C NMR 45

4a- 1 H NMR 4a- 13 C NMR 46

47

4b- 1 H NMR 4b- GC MS RT: 7.98-13.72 100 95 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 35 30 25 20 15 10 11.55 11.72 NL: 3.54E7 TIC F: MS cuizili12032 9-02 5 0 8.00 12.41 12.44 8.19 8.80 8.94 9.22 9.50 10.19 10.51 10.64 11.32 12.48 12.81 13.54 8.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 Time (min) 48

cuizili120329-02 #1544-1546 RT: 11.55-11.56 AV: 3 SB: 15 11.46-11.49, 12.01-12.05 NL: 4.60E6 T: + c Full ms [ 35.00-650.00] 100 145 95 90 117 Relative Abundance 85 80 75 70 65 60 55 50 45 40 35 159 188 30 25 20 15 10 5 0 91 115 104 128 129 146 105 118 130 41 160 189 77 103 127 143 55 65 81 51 67 89 141 56 97 106 119 147 161 173 187 190 199 40 60 80 100 120 140 160 180 200 m/z cuizili120329-02 #1574-1576 RT: 11.72-11.73 AV: 3 SB: 15 11.46-11.49, 12.01-12.05 NL: 1.25E7 T: + c Full ms [ 35.00-650.00] 100 131 95 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 b 35 30 25 20 91 188 15 10 5 0 104 132 115 117 129 128 41 51 55 77 103 105 118 146 189 65 78 145 76 159 173 187 190 203 40 60 80 100 120 140 160 180 200 m/z 49

cuizili120329-02 #1704-1716 RT: 12.44-12.50 AV: 13 SB: 34 12.21-12.29, 13.08-13.18 NL: 1.12E5 T: + c Full ms [ 35.00-650.00] 100 104 117 95 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 35 30 115 188 25 91 20 15 10 5 0 118 105 92 131 129 78 189 55 65 77 102 127 132 41 51 89 114 145 159 170 178 187 190 197 4c- 1 H NMR 40 60 80 100 120 140 160 180 200 m/z 50

4ca- 1 H NMR 4ca- 13 C NMR 51

4c- GC - MS RT: 5.45-20.50 100 95 90 85 11.93 NL: 1.64E8 TIC F: MS cuizili12040 5-01 80 75 O 70 O Relative Abundance 65 60 55 50 45 40 a b O O 35 30 25 20 15 10 5 0 12.62 5.49 7.02 7.63 8.17 9.45 9.87 11.33 12.87 13.39 14.97 15.91 16.35 17.38 19.03 20.22 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Time (min) cuizili120405-01 #1610-1613 RT: 11.92-11.93 AV: 4 SB: 23 11.70-11.79, 12.36-12.39 NL: 5.22E7 T: + c Full ms [ 35.00-650.00] 100 147 95 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 115 35 30 25 20 15 10 5 0 91 148 117 103 129 77 128 131 45 78 104 102 132 39 51 55 59 65 76 89 92 113 118 145 149 160 161 192 177 191 40 60 80 100 120 140 160 180 m/z 52

cuizili120405-01 #1736-1739 RT: 12.61-12.63 AV: 4 SB: 23 11.70-11.79, 12.36-12.39 NL: 1.65E6 T: + c Full ms [ 35.00-650.00] 100 116 95 90 85 80 117 Relative Abundance 75 70 65 60 55 50 45 40 115 b O O 35 30 25 20 59 91 133 15 10 5 0 39 45 4d- 1 H NMR 51 58 105 40 60 80 100 120 140 160 180 m/z 118 131 77 74 104 192 78 89 92 119 134 65 102 147 106 66 88 101 129 135 148 159 163 177 191 193 53

4d- GC - MS RT: 12.14-15.90 12.28 100 95 90 NL: 2.83E8 TIC F: MS cuizili12032 0-01 Relative Abundance 85 80 75 70 65 60 55 50 45 40 a b O O 35 30 25 20 12.55 12.62 15 10 5 0 12.80 13.12 13.27 13.53 13.68 13.94 14.11 14.43 14.56 14.93 15.40 15.51 15.74 12.5 13.0 13.5 14.0 14.5 15.0 15.5 Time (min) cuizili120320-01 #1674-1676 RT: 12.27-12.28 AV: 3 SB: 19 11.67-11.73, 12.17-12.21 NL: 6.89E7 T: + c Full ms [ 35.00-650.00] 100 173 95 90 85 80 75 70 65 a O Relative Abundance 60 55 50 45 40 131 35 30 25 20 15 10 5 0 103 174 128 145 77 115 91 143 43 117 132 97 155 189 51 104 118 141 42 50 63 65 76 78 87 92 146 133 159 171 175 187 190 200 203 40 60 80 100 120 140 160 180 200 m/z 188 54

cuizili120320-01 #1724-1725 RT: 12.55-12.55 AV: 2 SB: 19 11.67-11.73, 12.17-12.21 NL: 7.43E6 T: + c Full ms [ 35.00-650.00] 100 104 95 188 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 35 30 25 20 15 10 5 0 56 129 105 146 115 103 91 128 132 77 133 189 78 187 145 55 117 143 41 84 102 51 65 111 141 147 63 76 83 97 118 155 173 50 66 134 161 174 186 190 201 40 60 80 100 120 140 160 180 200 m/z 131 cuizili120320-01 #1736-1737 RT: 12.61-12.62 AV: 2 SB: 19 11.67-11.73, 12.17-12.21 NL: 1.09E7 T: + c Full ms [ 35.00-650.00] 100 104 188 95 90 85 80 75 70 65 b O Relative Abundance 60 55 50 45 40 35 30 25 20 15 10 5 0 56 129 105 115 103 91 128 132 77 133 189 145 187 78 55 117 102 143 41 51 84 111 147 65 63 97 141 76 79 67 118 155 161 173 50 139 186 190 201 40 60 80 100 120 140 160 180 200 m/z 131 146 55

4e- 1 H NMR 4ea- 1 H NMR 56

4ea- 13 C NMR 4e- GC MS RT: 0.00-26.35 100 95 90 13.47 O NL: 5.98E7 TIC F: MS cuizili12031 9-01 85 80 a N 75 70 65 b N O Relative Abundance 60 55 50 45 40 35 30 25 20 15 10 5 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (min) 13.95 3.11 5.53 6.26 7.52 8.88 11.51 13.19 14.50 16.36 17.85 20.31 22.61 26.23 57

cuizili120319-01 #1890-1893 RT: 13.47-13.48 AV: 4 SB: 32 13.31-13.38, 13.71-13.80 NL: 1.21E7 T: + c Full ms [ 35.00-650.00] 100 144 95 90 85 Relative Abundance 80 75 70 65 60 55 50 45 40 35 30 a O N 25 20 15 10 5 0 145 115 158 172 203 96 129 112 128 130 159 174 91 42 77 103 117 82 146 202 204 39 51 56 65 72 131 160 175 126 147 188 205 215 40 60 80 100 120 140 160 180 200 m/z 173 cuizili120319-01 #1977-1982 RT: 13.95-13.98 AV: 6 SB: 32 13.31-13.38, 13.71-13.80 NL: 6.69E5 T: + c Full ms [ 35.00-650.00] 100 112 95 90 85 80 117 75 70 65 Relative Abundance 60 55 50 45 40 203 35 30 25 20 15 10 5 0 56 86 91 202 118 40 60 80 100 120 140 160 180 200 220 240 m/z 144 104 100 145 130 172 204 65 158 42 43 77 143 96 156 174 142 159 188 201 205 221 233 58

4f- 1 H NMR 4fa- 1 H NMR 59

4fa- 13 C NMR 4f- GC MS RT: 0.00-26.34 Relative Abundance 100 95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 15.34 NL: 1.56E7 TIC F: MS cuizili12031 9-02 5 0 13.58 15.23 16.10 3.11 3.67 5.01 7.04 9.88 10.75 17.03 20.30 21.07 22.86 25.39 0 2 4 6 8 10 12 14 16 18 20 22 24 26 Time (min) 60

cuizili120319-02 #2232-2254 RT: 15.36-15.48 AV: 23 SB: 107 14.52-14.84, 16.69-16.95 NL: 1.01E6 T: + c Full ms [ 35.00-650.00] 100 201 95 90 85 80 75 70 65 Relative Abundance 60 55 50 45 40 200 35 124 30 25 20 15 10 5 0 91 144 98 110 172 115 128 129 158 96 145 173 68 69 82 104 42 117 143 146 41 141 186 51 55 65 70 86 139 156 159 174 199 203 40 60 80 100 120 140 160 180 200 m/z 202 cuizili120319-02 #2351-2362 RT: 16.02-16.08 AV: 12 SB: 80 14.59-14.73, 17.50-17.79 NL: 5.68E4 T: + c Full ms [ 35.00-650.00] 100 201 Relative Abundance 95 90 85 80 75 70 65 60 55 50 45 40 35 110 115 116 200 30 25 20 15 86 91 98 117 124 144 172 129 202 130 10 5 0 145 158 173 68 69 77 82 96 104 146 41 143 44 51 63 65 70 132 157 186 159 185 199 203 40 60 80 100 120 140 160 180 200 m/z 61