Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Σχετικά έγγραφα
Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information

Electronic Supplementary Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supplementary Information for

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information. Experimental section

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Experimental section

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information for

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information for

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Enantioselective Organocatalyzed Direct α-thiocyanation of. Cyclic β-ketoesters by N-Thiocyanatophthalimide

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information for

Xiangya International Academy of Translational Medicine, Central South University, 172 Tongzipo Rd., Changsha, Hunan province, China,

Supporting information

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

The Free Internet Journal for Organic Chemistry

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supporting Information

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

multicomponent synthesis of 5-amino-4-

Electronic Supplementary Information (ESI)

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Aminofluorination of Fluorinated Alkenes

Electronic Supplementary Information

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

A Cu/Pd Cooperative Catalysis for Enantioselective Allylboration of Alkenes

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information

Supplementary Material

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Chiral Aryliodine-Mediated Enantioselective Organocatalytic. Spirocyclization: Synthesis of Spirofurooxindoles via Cascade

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information

SUPPLEMENTARY INFORMATION

Trienamine-Mediated Asymmetric [4+2]-Cycloaddition of α,β-unsaturated Ester Surrogates Applying 4-Nitro-5-Styrylisoxazoles

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information for

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Transcript:

Supporting Information Asymmetric Binary-acid Catalysis with Chiral Phosphoric Acid and MgF 2 : Catalytic Enantioselective Friedel-Crafts Reactions of β,γ- Unsaturated-α-Ketoesters Jian Lv, Xin Li, Long Zhang, Sanzhong Luo,* Jin-Pei Cheng Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, the Chinese Academy of Sciences, Beijing 100080, China E-mail: luosz@iccas.ac.cn General Information: Commercial reagents were used as received, unless otherwise indicated. 1 H, 13 C, NMR spectra were measured on a NMR instrument (300 MHz for 1 H NMR, 75 MHz for 13 C NMR). Tetramethylsilane (TMS) served as the internal standard for 1 H NMR, and CD 3 served as the internal standard for 13 C NMR. The following abbreviations were used to express the multiplicities: s = singlet; d= doublet; t = triplet; q 1

= quartet; m = multiplet; br = broad. HPLC analysis was performed using Chiralcel columns purchased. General Procedure for Asymmetric Friedel-Crafts Alkylation of β,γ-unsaturated-α- Ketonesters: To a flame-dried Schlenk tube was added MgF 2 (0.005 mmol, 5 mol%), (S)-1a (0.020 mmol, 20 mol%) and 4 Ǻ M.S. (40 mg). The mixture was dried under vacuum for 0.5 h and distilled anhydrous CH 2 2 (1.5 ml) was added under Ar. After stirring for 0.5 h, 3a (0.10 mmol) in CH 2 2 (0.25 ml) was added and the mixture were cooled to -70 C. After addition of 2a (0.12 mmol) in CH 2 2 (0.25 ml), the mixture was stirred for 48 h at -70 C. Purification of the mixture by column chromatography on silica gel with DCM-ethyl acetate (25:1) as eluent gave 4a as a colorless oil (24.8 mg, 79%). The enantiomeric ratios of the product were determined by chiral HPLC analysis using a chiral column. Compound 4k, 1 4o, 2 4q 1 and 4r 1 are known compounds. The absolute configurations of other products including the phenol products are determined by analogy with these known compounds. Yield: 79%; [α] D 25 = +13.3 (c = 0.45, CH 2 2 ); 1 H NMR (300 MHz, H CD 3 ): δ 7.29-7.20 (m, 5 H), 6.88 (d, J = 8.2 Hz, 1 H), 6.35 (d, J = 2.4 4a Hz, 1 H), 6.29 (dd, J = 8.1, 2.4 Hz, 1 H), 5.52 (br, 1 H), 4.93 (dd, J = 7.6, 7.6 Hz, 1 H), 3.83 (s, 3 H), 3.70 (s, 3 H), 3.63 (dd, J = 16.8, 7.2 Hz, 1 H), 3.47 (dd, J = 16.8, 7.8 Hz, 1 H), 3.67-3.43 (m, 2 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.8, 161.3, 157.7, 155.7, 143.0, 128.8, 128.4, 127.9, 126.4, 123.5, 106.9, 99.1, 55.3, 53.0, 44.7, 38.7 ppm; IR (KBr, cm -1 ): 3445, 3084, 3060, 3029, 3004, 2954, 2839, 1731, 1615, 1597, 1507, 1496, 1469, 1455, 1433, 1397, 1280, 1239, 1157, 1112, 1069, 1034, 957, 834, 762, 734, 2

701, 635, 558; HRMS (EI-TF) calcd for C 18 H 18 5 : 314.1154, found 314.1158; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 25.9 min (minor) and 29.4 min (major). Et Yield: 80%; [α] D 25 = +5.9 (c = 0.91, CH 2 2 ); 1 H NMR (300 MHz, H Me CD 3 ): δ 7.18-7.07 (m, 5 H), 6.86 (d, J = 8.0 Hz, 1 H), 6.24-6.20 (m, 2 4b H), 4.82 (dd, J = 7.6, 7.6 Hz, 1 H), 3.87-3.79 (m, 2 H), 3.73 (s, 3 H), 3.57-3.41 (m, 2 H), 1.27 (t, J = 7.0 Hz, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 191.7, 160.4, 156.3, 154.5, 142.2, 127.6, 127.3, 127.0, 125.3, 122.9, 105.7, 98.9, 62.7, 52.0, 43.3, 38.0, 13.7 ppm; IR (KBr, cm -1 ): 3451, 3029, 2978, 1729, 1612, 1596, 1507, 1478, 1452, 1394, 1277, 1235, 1173, 1117, 1068, 1039, 991, 897, 822, 732, 700, 634, 547; HRMS (EI-TF) calcd C 19 H 20 5 : 328.1311, found 328.1315; HPLC analysis: Daicel Chiralpak AS-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 25.2 min (major) and 27.8 min (minor). Yield: 70%; [α] D 25 = +14.3 (c = 1.27, CH 2 2 ); 1 H NMR (300 MHz, H CD 3 ): δ 7.26-7.15 (m, 4 H), 6.88 (d, J = 8.2 Hz, 1 H), 6.36 (d, J = 4c 2.4 Hz, 1 H), 6.32 (dd, J = 2.4, 8.4 Hz, 1 H), 4.89-4.84 (m, 2 H), 3.82 (s, 3 H), 3.72 (s, 3 H), 3.57 (dd, J = 7.8, 17.1 Hz, 1 H), 3.44 (dd, J = 7.2, 17.1 Hz, 1 H), ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.3, 161.3, 157.8, 155.7, 141.6, 132.0, 129.3, 128.6, 128.4, 123.4, 106.9, 99.2, 55.3, 53.0, 44.3, 38.2 ppm; IR (KBr, cm -1 ): 3449, 3030, 3005, 2954, 2838, 1729, 1614, 1596, 1507, 1490, 1468, 1456, 1433, 1408, 1281, 1237, 1197, 1157, 1114, 1089, 1033, 1014, 9956, 834, 737; HRMS (EI-TF) calcd for C 18 H 17 5 : 348.0765, found 348.0767; HPLC analysis: Daicel Chiralpak AD-H, 3

hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 254 nm, retention time: 32.0 min (minor) and 41.0 min (major). Et Yield: 65%; [α] D 25 = +12.1 (c = 0.95, CH 2 2 ); 1 H NMR (300 MHz, H CD 3 ): δ 7.25-7.17 (m, 4 H), 6.95 (d, J = 7.9 Hz, 1 H), 6.35-6.32 (m, 4d 2 H), 4.89-4.84 (m, 2 H), 4.00-3.89 (m, 2 H), 3.83 (s, 3 H), 3.60 (dd, J = 8.1, 17.4 Hz, 1 H), 3.52 (dd, J = 7.5, 16.5 Hz, 1 H), 1.36 (t, J = 7.0 Hz, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.4, 161.3, 157.2, 155.6, 141.8, 131.9, 129.3, 128.4, 128.3, 123.3, 106.6, 99.9, 63.7, 53.0, 44.1, 38.4, 14.7 ppm; IR (KBr, cm -1 ): 3451, 3031, 2978, 2953, 2926, 2853, 1730, 1613, 1594, 1507, 1490, 1453, 1395, 1279, 1236, 1175, 1117, 1089, 1072, 1039, 1014, 992, 973, 897, 835, 822, 740, 633, 593, 552; HRMS (EI-TF) calcd for C 19 H 19 5 : 362.0921, found 362.0924; HPLC analysis: Daicel Chiralpak AD- H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 219 nm, retention time: 22.0 min (minor) and 27.6 min (major). Yield: 81%; [α] D 25 = +25.1 (c = 0.59, CH 2 2 ); 1 H NMR (300 MHz, H 4e CD 3 ): δ 7.33-7.30 (m, 2 H), 7.07 (dd, J = 2.1, 8.3 Hz, 1 H), 6.90 (d, J = 8.1 Hz, 1 H), 6.36 (d, J = 2.4 Hz, 1 H), 6.33 (dd, J = 2.4, 8.1 Hz, 1 H), 5.00 (br, 1H), 4.83 (dd, J = 7.6, 7.6 Hz, 1 H), 3.83 (s, 3 H), 3.72 (s, 3 H), 3.56 (dd, J = 7.8, 17.4 Hz, 1 H), 3.46 (dd, J = 6.3, 17.4 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.0, 161.2, 157.8, 155.9, 143.7, 132.3, 130.2, 129.9, 128.5, 127.4, 122.6, 107.0, 99.4, 55.4, 53.0, 44.1, 38.1 ppm; IR (KBr, cm -1 ): 3452, 3006, 2954, 2839, 1730, 1615, 1597, 1508, 1469, 1433, 1401, 1286, 1237, 1198, 1159, 1114, 1073, 1030, 1014, 997, 821, 737, 701, 650, 636, 573, 547; HRMS (EI-TF) calcd for C 18 H 16 2 5 : 382.0375, found 4

382.0378; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 26.2 min (minor) and 29.1 min (major). Yield: 76%; [α] D 25 = +2.2 (c = 0.55, CH 2 2 ); 1 H NMR (300 MHz, H Et CD 3 ): δ 7.24-7.19 (m, 2 H), 7.00 (dd, J = 1.9, 8.3 Hz, 1 H), 6.83 (d, J 4f = 8.1 Hz, 1 H), 6.29 (d, J = 2.1 Hz, 1 H), 6.26 (dd, J = 2.4, 8.4 Hz), 4.91 (br, 1 H), 4.76 (dd, J = 7.6, 7.6 Hz, 1 H), 4.21 (q, J = 7.15 Hz, 2 H), 3.65 (s, 3 H), 3.48 (dd, J = 7.8, 17.4 Hz, 1 H), 3.38 (dd, J =7.2, 17.4 Hz, 1 H), 1.26 (t, J = 7.14 Hz, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.4, 160.8, 157.8, 155.9, 143.6, 132.2, 130.2, 130.1, 129.9, 128.5, 127.4, 122.6, 107.0, 99.3, 62.6, 55.4, 44.0, 38.1, 14.0 ppm; IR (KBr, cm -1 ): 3436, 3034, 2961, 2932, 2867, 2843, 1726, 1614, 1596, 1562, 1508, 1467, 1432, 1400, 1369, 1261, 1233, 1195, 1157, 1072, 1030, 957, 803, 737, 703, 677, 606, 506; HRMS (EI-TF) calcd for C 19 H 18 2 5 396.0531, found 396.0536; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 17.8 min (minor) and 19.8 min (major). H F 4g Yield: 82%; [α] D 25 = +14.9 (c = 1.37, CH 2 2 ); 1 H NMR (300 MHz, CD 3 ): δ 7.26-7.14 (m, 2 H), 7.07-6.95 (m, 2 H), 6.91 (d, J = 8.2 Hz, 1 H), 6.36 (d, J = 2.1 Hz, 1 H), 6.31 (dd, J = 2.4, 8.1 Hz, 1 H), 5.1 (dd, J = 7.6, 7.6 Hz, 1 H), 4.95 (br, 1H), 3.83 (s, 3 H), 3.73 (s, 3 H), 3.58 (dd, J = 6.5, 16.0 Hz, 1 H), 3.51 (dd, J = 6.7, 16.0 Hz, 1 H), ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.2, 161.3, 157.9, 155.7, 129.3, 129.2, 128.8, 128.1, 128.0, 123.9, 123.8, 122.2, 115.7, 115.4, 106.8, 99.2, 55.4, 52.9, 43.6, 33.1 ppm; IR (KBr, cm -1 ): 3450, 3040, 3008, 2955, 2840, 1730, 1615, 1598, 1508, 1490, 1468, 1455, 1433, 1408, 1277, 1230, 1199, 1158, 1112, 1071, 5

1035, 957, 834, 759, 635, 571; HRMS (EI-TF) calcd for C 18 H 17 F 5 : 332.1060, found 332.1064; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 27.0 min (major) and 29.0 min (minor). Me Yield: 57%; [α] D 25 = +4.5 (c = 0.85, CH 2 2 ); 1 H NMR (300 MHz, H Me CD 3 ): δ 7.1 (m, 4 H), 6.88 (d, J = 8.2 Hz, 1 H), 6.35 (d, J = 2.4, 1 Me 4h H), 6.29 (dd, J = 2.4, 8.2 Hz, 1H), 4.88 (dd, J = 7.6, 7.6 Hz, 1 H), 4.85 (br, 1H), 3.81 (s, 3 H), 3.73 (s, 3 H), 3.57 (dd, J = 7.6, 16.6, 1 H), 3.42 (dd, J= 7.7, 16.6, 1 H), 2.29 (s, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.4, 157.7, 155.4, 140.0, 135.8, 129.1, 128.8, 127.8, 124.1, 106.8, 99.1, 55.3, 52.9, 44.7, 38.3, 21.0 ppm; IR (KBr, cm -1 ): 3450, 3024, 3006, 2953, 2925, 2838, 1730, 1614, 1597, 1507, 1468, 1433, 1278, 1238, 1197, 1157, 1119, 1072, 1034, 997, 832, 738, 635, 560; HRMS (EI-TF) calcd for C 19 H 20 5 : 328.1311, found 328.1313; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 24.3 min (major) and 29.9 min (minor). Me Yield: 75%; [α] D 25 = -5.8 (c = 0.50, CH 2 2 ); 1 H NMR (300 MHz, Me H Me CD 3 ): δ 7.21-7.00 (m, 4 H), 6.90 (d, J = 8.2 Hz, 1 H), 6.37 (d, J = 4i 2.4 1 H), 6.32 (dd, J = 2.4, 8.2 Hz, 1 H), 4.93-4.82 (m, 2 H), 3.84 (s, 3 H), 3.75 (s, 3 H), 3.60 (dd, J = 7.4, 16.6 Hz, 1 H), 3.44 (dd, J = 7.8, 16.6 Hz, 1 H), 2.32 (s, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.4, 157.7, 155.4, 142.9, 137.9, 128.9, 128.7, 128.2, 127.1, 124.9, 123.8, 106.9, 99.1, 55.3, 52.9, 44.7, 38.6, 21.5 ppm; IR (KBr, cm -1 ): 3449, 3008, 2953, 2922, 2839, 1729, 1613, 1599, 1507, 1467, 1433, 1408, 1279, 1243, 1197, 1157, 1110, 1072, 1034, 956, 834, 737, 702, 636; HRMS (EI-TF) 6

calcd C 19 H 20 5 : 328.1311, found 328.1314; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 18.0 min (minor) and 19.8 min (major). Me Yield: 59%; [α] D 25 = +6.6 (c = 0.70, CH 2 2 ); 1 H NMR (300 MHz, H Me CD 3 ): δ 7.58 (d, J = 7.3 Hz, 2 H), 7.52 (d, J = 8.2 Hz, 2 H), 7.46 - Ph 4j 7.32 (m, 5 H), 6.96 (d, J = 8.2 Hz, 1 H), 6.39 (d, J = 2.3, 1 H), 6.34 (dd, J = 2.4, 8.2 Hz, 1 H), 5.10-4.96 (m, 2 H), 3.85 (s, 3 H), 3.75 (s, 3 H), 3.67 (dd, J= 7.6, 16.8 Hz, 1 H), 3.51 (dd, J = 7.7, 16.8 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.3, 157.8, 155.6, 142.2, 140.9, 139.2, 128.8, 128.7, 128.3, 127.1, 127.0, 123.7, 123.6, 107.0, 99.2, 55.4, 53.0, 44.6, 38.4 ppm; IR (KBr, cm -1 ): 3452, 3028, 2955, 2851, 1730, 1614, 1597, 1506, 1486, 1467, 1454, 1433, 1408, 1280, 1236, 1197, 1157, 1109, 1173, 1033, 1009, 857, 836, 803, 766, 738, 698, 634, 569, 553, 509; HRMS (EI-TF) calcd C 24 H 22 5 : 390.1467, found 390.1473; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 9:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 51.4 min (minor) and 57.8 min (major). 4k Me Yield: 82%; [α] D 25 = -22.2 (c = 0.50, CH 3 ) ([α] D 25 = -23.9 (c = 1.00, CH 3 for 99.5% ee (R) in ref. 1); 1 H NMR (300 MHz, CD 3 ): δ 8.01 (br, 1 H), 7.42 (d, J = 7.9 Hz, 1 H), 7.34-7.00 (m, 9 H), 4.92 (dd, J = 7.5, 7.5 Hz, 1 H), 3.76 (s, 3 H), 3.69 (dd, J = 7.3, 17.0 Hz, 1 H), 3.60 (dd, J = 7.8, 17.0 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.3, 143.2, 136.6, 128.5, 127.8, 126.6, 122.3, 121.5, 119.6, 119.4, 118.4, 111.1, 52.9, 45.7, 37.7 ppm; HPLC analysis: Daicel 7

Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 12.7 min (major) and 14.9 min (minor). Yield: 87%; [α] D 25 = -8.8 (c = 0.40, CH 2 2 ); 1 H NMR (300 MHz, F 4l Me CD 3 ): δ 8.03 (br, 1 H), 7.49 (d, J = 8.0 Hz, 1 H), 7.33 (d, J = 8.1, 1 H), 7.32-6.99 (m, 7 H), 5.22 (dd, J = 7.6, 7.6 Hz, 1 H), 3.80 (s, 3 H), 3.77 (dd, 10.5, 20.1 Hz, 1 H), 3.60 (dd, J = 7.5, 17.2, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.2, 161.2, 158.9, 136.4, 129.9, 129.4, 129.3, 128.3, 128.2, 126.4, 124.2, 124.1, 122.4, 121.7, 119.7, 119.2, 117.0, 115.8, 115.5, 111.2, 53.0, 44.4, 31.0 ppm; IR (KBr, cm -1 ): 3411, 3057, 2953, 2919, 1731, 1646, 1618, 1584, 1488, 1457, 1420, 1401, 1339, 1272, 1255, 1230, 1099, 1011, 968, 943, 825, 746, 701, 621, 611,586 cm -1 ; HRMS (EI-TF) calcd for C 19 H 16 FN 3 : 325.1114, found 325.1117; HPLC analysis: Daicel Chiralpak AS- H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 9.5 min (major) and 10.2 min (minor). Yield: 82%; [α] D 25 = -18.8 (c = 0.65, CH 2 2 ); 1 H NMR (300 MHz, 4m Me CD 3 ): δ 8.00 (br, 1 H), 7.38-7.01 (m, 9 H), 4.89 (dd, J = 7.6, 7.6 Hz, 1 H), 3.78 (s, 3 H), 3.67 (dd, J = 7.1, 17.2 Hz, 1 H), 3.57 (dd, J = 8.0, 17.2, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.3, 161.2, 141.7, 136.6, 132.3, 129.2, 128.6, 122.5, 121.4, 119.7, 119.3, 117.9, 111.2, 53.0, 45.5, 37.1 ppm; IR (KBr, cm -1 ): 3410, 3056, 2953, 2922, 2851, 1731, 1671, 1619, 1576, 1558, 1541, 1521, 1490, 1457, 1434, 1420, 1338, 1253, 1253, 1120, 1127, 1091, 1064, 1013, 967, 930, 876, 832, 764, 743, 657, 582; HRMS (EI-TF) calcd for C 19 H 16 N 3 : 341.0819, found 341.0822; 8

HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 13.2 min (major) and 20.4 min (minor). Yield: 80%; [α] D 25 = -12.2 (c = 1.09, CH 2 2 ); 1 H NMR (300 MHz, 4n Me CD 3 ): δ 7.99 (br, 1 H), 7.33-6.95 (m, 8 H), 4.80 (dd, J = 7.4, 7.4 Hz, 1 H), 3.73 (s, 3 H), 3.60 (dd, J = 7.0, 17.5 Hz, 1 H), 3.49 (dd, J = 8.0, 17.5 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 190.8, 160.1, 142.6, 135.5, 131.5, 129.6, 129.4, 128.7, 126.3, 125.0, 121.6, 120.4, 118.8, 118.1, 116.2, 110.3, 52.1, 44.2, 35.8 ppm; IR (KBr, cm -1 ): 3416, 3062, 2963, 2893, 2830, 1729, 1621, 1593, 1561, 1469, 1397, 1338, 1260, 1094, 1063, 1030, 801, 742, 709, 676, 588, 504; HRMS (EI-TF) calcd for C 19 H 15 2 N 3 : 375.0429, found 375.0433; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 10.6 min (major) and 13.2 min (minor). Yield: 78%; [α] D 25 = -13.0 (c = 0.59, CH 3 ) ([α] D 25 = -11.3 (c = Me 1.00, CH 3 for 90% ee in ref. [2]]; 1 H NMR (300 MHz, CD 3 ): δ Me 4o 7.99 (br, 1 H), 7.43 (d, J = 7.92 Hz, 1 H), 7.31 (d, J = 8.12 Hz, 1 H), 7.22-7.00 (m, 7 H), 4.88 (dd, J = 7.6, 7.6 Hz, 1 H), 3.76 (s, 3 H), 3.67 (dd, J =7.3, 16.9 Hz, 1 H), 3.57 (dd, J = 7.9, 16.9 Hz, 1 H), 2.28 (s, 3 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 193.0, 161.7, 140.5, 136.9, 136.4, 129.5, 127.9, 126.7, 122.6, 121.8, 119.8, 119.7, 118.9, 111.4, 53.2, 46.1, 37.7, 21.3 ppm; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 14.4 min (major) and 18.3 min (minor). 9

Yield: 81%; [α] D 25 = -3.8 (c = 0.80, CH 2 2 ); 1 H NMR (300 MHz, CD 3 ): δ 7.99 (br, 1 H), 7.55-7.31 (m, 11 H), 7.19-7.02 (m, 3 H), Ph 4p 4.97 (dd, J = 7.5, 7.5 Hz, 1 H), 3.78 (s, 3 H), 3.75-3.60 (m, 2 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.3, 148.0, 142.3, 140.8, 139.5, 136.6, 128.7, 128.2, 127.3, 127.1, 127.0, 122.4, 121.5, 119.6, 119.5, 118.3, 111.2, 53.0, 45.6, 37.4 ppm; IR (KBr, cm -1 ): 3419, 3054, 3029, 2951, 2924, 2851, 1729, 1618, 1600, 1548, 1518, 1486, 1457, 1434, 1418, 1338, 1278, 1265, 1253, 1238, 1199, 1127, 1065, 1007, 967, 875, 839, 762, 742, 698, 585, 554, 510; HRMS (EI-TF) calcd for C 25 H 21 N 3 : 383.1521, found 383.1526; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 18.5 min (major) and 22.9 min (minor). 4q Yield: 90%; [α] 25 D = +4.7 (c = 0.82, CH 3 ) ([α] 25 D = +5.2 (c = 1.00, CH 3 for 99.5% ee (R) in ref. 1); 1 H NMR (300 MHz, CD 3 ): δ 7.92 (br, 1 H), 7.34-7.15 (m, 6 H), 7.00 (d, J = 2.2 Hz, 1 H), 6.82-6.79 (m, 2 H), 4.86 (dd, J = 7.5, 7.5 Hz, 1 H), 3.77 (s, 3 H), 3.74 (s, 3 H), 3.68 (dd, J = 7.3, 17.0 Hz, 1 H), 3.59 (dd, J = 7.8, 17.0 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.6, 161.3, 153.9, 143.1, 131.7, 128.6, 127.8, 126.8, 126.6, 122.2, 118.1, 112.4, 111.8, 101.3, 55.8, 53.0, 45.6, 37.7 ppm; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 13.3 min (major) and 19.5 min (minor). Yield: 83%; [α] D 25 = -16.4 (c = 0.84, CH 3 ) ([α] D 25 = -18.5 (c = 1.00, CH 3 for 97% ee (R) in ref. 1); 1 H NMR (300 MHz, CD 3 ): δ 8.03 4r 10

(br, 1 H), 7.31-7.18 (m, 7 H), 7.03 (d, J = 2.3 Hz, 1 H), 6.97 (dd, J = 1.67, 8.5 Hz, 1 H), 4.87 (dd, J = 7.5, 7.5 Hz, 1 H), 3.78 (s, 3 H), 3.67 (dd, J = 7.5, 17.1 Hz, 1 H), 3.57 (dd, J = 7.6, 17.0 Hz, 1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 192.4, 161.3, 142.9, 136.9, 128.6, 128.3, 127.7, 126.8, 125.0, 122.1, 120.3, 118.5, 111.1, 53.0, 45.6, 37.6 ppm; HPLC analysis: Daicel Chiralpak AD-H, hexane/iso-propanol = 4:1, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 15.1 min (minor) and 16.9 min (major). Yield: 64%; [α] D 25 = -22.0 (c = 0.50, CH 2 2 ); 1 H NMR (300 MHz, CD 3 ): δ 8.08 (br, 1 H), 7.37-7.00 (m, 7 H), 4.83 (dd, J = 7.4, 7.4 Hz, 4s 1 H), 3.82 (s, 3 H), 3.68 (dd, J = 7.0, 17.6 Hz,1 H), 3.56 (dd, J=7.8, 17.6 Hz,1 H) ppm; 13 C NMR (75 MHz, CD 3 ): δ 191.7, 161.1, 143.3, 136.9, 132.6, 130.8, 130.5, 129.7, 128.7, 127.2, 124.7, 122.1, 120.6, 120.0, 117.4, 111.3, 53.1, 45.2, 36.6 ppm; IR (KBr, cm -1 ): 3393, 3068, 2987, 2920, 2849, 1729, 1646, 1467, 1396, 1335, 1249, 1131, 1062, 1029, 907, 802, 703, 651, 613; HRMS (EI-TF) calcd for C 19 H 14 3 N 3 : 409.0039, found 409.0043; HPLC analysis: Daicel Chiralpak J-H, hexane/iso-propanol = 70:30, flow rate = 1.0 ml/min, λ = 210 nm, retention time: 26.2 min (minor) and 38.0 min (major). Reference [1] Jensen, K. B.; Thorhauge, J.; Hazell, R. G.; Jørgensen, K. A. Angew Chem. Int. Chem. 2001, 40, 160. [2] Desimoni, G.; Faita, G.; Toscanini, M.; Boiocchi, M. Chem. Eur. J. 2008, 14, 3630. 11

H 4a H 4a 12

H 4a H 4a 13

Et H Me 4b Et H Me 4b 14

Et H Me 4b Et H Me 4b 15

H 4c H 4c 16

H 4c H 4c 17

Et H 4d Et H 4d 18

Et H 4d Et H 4d 19

H 4e H 4e 20

H 4e H 4e 21

H Et 4f H Et 4f 22

H Et 4f H Et 4f 23

H F 4g H F 4g 24

H F 4g H F 4g 25

Me H Me Me 4h Me H Me Me 4h 26

Me H Me Me 4h Me H Me Me 4h 27

Me Me H Me 4i Me Me H Me 4i 28

Me Me H Me 4i Me Me H Me 4i 29

Me H Me Ph 4j Me H Me Ph 4j 30

Me H Me Ph 4j Me H Me Ph 4j 31

Me 4k Me 4k 32

Me 4k Me 4k 33

F Me 4l F Me 4l 34

F Me 4l F Me 4l 35

Me 4m Me 4m 36

Me 4m Me 4m 37

Me 4n Me 4n 38

Me 4n Me 4n 39

Me Me 4o Me Me 4o 40

Me Me 4o Me Me 4o 41

Ph 4p Ph 4p 42

Ph 4p Ph 4p 43

4q 4q 44

4q 4q 45

4r 4r 46

4r 4r 47

4s 4s 48

4s 4s 49