Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information. Experimental section

Supporting Information

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Electronic Supplementary Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supplementary information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information. Experimental section

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

The Free Internet Journal for Organic Chemistry

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Electronic Supplementary Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

Supporting Information for

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Electronic Supplementary Information (ESI)

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

multicomponent synthesis of 5-amino-4-

Supporting Information

Supporting information

Supporting Information

Supporting Information

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information

Supporting information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

Supporting Information

Supporting Information. Chemoselective Acylation of 2-Amino-8-quinolinol in the Generation of C2-Amides or C8-Esters

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Supporting Information for. Palladium-catalyzed Addition Reaction of Aroyl/Heteroaroyl Acid Anhydrides to Norbornenes

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information for

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information for

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information

Supporting Information

Fischer Indole Synthesis in Low Melting Mixtures

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information for

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Transcript:

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone. Won-Suk Kim, Hyung-Jin Kim and Cheon-Gyu Cho Department of Chemistry, Hanyang University, Seoul 133-791, Korea Experimental Section General methods. NMR spectra were recorded at 400 MHz and 13 C NMR spectra at 100 MHz, with either TMS( =0) or residual CHCl 3 in the CDCl 3 solvent (7.24) as internal standards. J values are reported in Hz. High resolution mass spectra were measured by using FAB method. Flash column chromatography was performed with Kieselgel 60 Art 9385 (230-400 mesh). All sovents used were purified according to standard procedures. Typical procedure : A mixture of 30 mg (0.12 mmol) of 3,5-dibromo-2-pyrone, 52 mg (0.14 mmol) of tributylphenyltin, 7 mg (5 mol%) of Pd( ) 4, 2 mg (10 mol%) of CuI and 1 ml of toluene was heated at 100 for 0.5 h. Upon cooling to rt, the reaction mixture was treated with saturated KF (aq.), diluted with Et 2, and filtered through a plug of Celite. The filtrate was dried over MgS 4, concentrated and purified by column chromatography (hexanes : EtAc = 20 : 1) provided 28 mg of 2a in 94% yield. 5-omo-3-phenyl-pyran-2-one (2a): NMR (400MHz, CDCl 3 ) δ 7.63-7.60 (m, 2H), 7.57 (d, J = 2.4 Hz, 1H), 7.45 (d, J = 2.0 Hz, 1H), 7.43-7.39 (m, 3H); 13 CDCl 3 ) δ 159.2, 148.1, 141.7, 133.2, 129.2, 129.1, 128.4, 128.1, 101.2; FT- 2a IR (CHCl 3 ) 3083, 1727,1609 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 1 8 2 250.9708, found 250.9704. 3-omo-5-phenyl-pyran-2-one (3a): NMR (400MHz, CDCl 3 ) δ 7.99 (d, J = 2.4 Hz, 1H), 7.67 (d, J = 2.4 Hz, 1H), 7.46-7.34 (m, 5H); 13 CDCl 3 ) δ 157.5, 146.8, 144.9, 132.0, 129.1, 128.5, 125.9, 121.3, 112.4 ; FT-IR (CHCl 3 ) 3082, 1728, 1644 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 1 8 2 250.9708, found 250.9690. 3a

5-omo-3-(1-ethoxy-vinyl)-pyran-2-one (2b): NMR (400MHz, CDCl 3 ) δ 7.78 (d, J = 2.8 Hz, 1H), 7.52 (d, J = 2.8 Hz, 1H), 5.73 (d, J = 2.4 Hz, 1H), 4.59 (d, J = 2.4 Hz, 1H), 3.87 (q, J = 6.8 Hz, 2H), 1.39 (t, J = 6.8 Hz, 3H); 13 CDCl 3 ) δ 157.5, 151.1, 147.8, 140.2, 122.6, 101.1, 91.0, 63.1, 5-omo-3-trimethylsilanylethynyl-pyran-2-one (2c): NMR (400MHz, CDCl 3 ) δ 7.67 (d, J = 2.4 Hz, 1H), 7.53 (d, J = 2.4 Hz, 1H), 0.25 (s, 9H); 13 CDCl 3 ) δ 158.1, 148.9, 147.6, 114.2, 104.6, 100.2, 96.5, -0.2; FT-IR (CHCl 3 ) Et 2b 14.5; FT-IR (CHCl 3 ) 3060, 2863, 1721, 1647 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 10 3 244.9813, found 244.9809. 3-omo-5-(1-ethoxy-vinyl)-pyran-2-one (3b): NMR (400MHz, CDCl 3 ) δ 7.89 (d, J = 2.4 Hz, 1H), 7.77 (d, J = 2.4 Hz, Et 1H), 4.39 (d, J = 4.0 Hz, 1H), 4.23 (d, J = 4.0 Hz, 1H), 3.87 (q, J = 7.2 Hz, 2H), 1.38 (t, J = 7.2 Hz, 3H); 13 3b CDCl 3 ) δ 157.7, 152.8, 147.6, 142.5, 117.2, 111.6, 83.4, 63.7, 14.5; FT-IR (CHCl 3 ) 3035, 2943, 1724, 1647 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 10 3 244.9813, found 244.9794. 2c TMS 2927, 2150, 1741, 1600 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 10 H 12 2 Si 270.9790, found 270.9789. 5-omo-3-furan-2-yl-pyran-2-one (2d): NMR (400MHz, CDCl 3 ) δ 7.70 (d, J = 2.4 Hz, 1H), 7.50 (d, J = 2.4 Hz, 1H), 7.49 (d, J = 1.2 Hz, 1H), 7.30 (d, J = 3.2 Hz, 1H), 6.50 (dd, J = 3.2, 1.2 Hz, 1H); 13 2d CDCl 3 ) δ 156.8, 146.3, 146.0, 143.8, 135.6, 118.9, 113.6, 112.4, 101.4; FT-IR (CHCl 3 ) 3084, 1739, 1611 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 5 3 240.9500, found 240.9485. 3-omo-5-furan-2-yl-pyran-2-one (3d): NMR (400MHz, CDCl 3 ) δ 7.98 (d, J = 2.4 Hz, 1H), 7.85 (d, J = 2.4 Hz, 1H), 7.43 (dd, J = 2.0, 0.8 Hz, 1H), 6.48 6.45 (m, 2H); 13 3d CDCl 3 ) δ 157.2, 145.7, 145.1, 142.8, 141.8, 112.8, 112.7, 111.6, 106.4; FT-IR (CHCl 3 ) 3084, 1734, 1611 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 6 3 240.9500, found 240.9525. 5-omo-3-thiophen-2-yl-pyran-2-one (2e): NMR (400MHz, CDCl 3 ) δ 7.71 (dd, J = 3.6, 1.0 Hz, 1H), 7.62 (d, J = 2.4 Hz, 1H), S 7.52 (d, J = 2.4 Hz, 1H), 7.43 (dd, J = 5.2, 1.0 Hz, 1H), 7.09 (dd, J = 5.2, 3.6 Hz, 1H); 13 2e CDCl 3 ) δ 158.2, 146.6,

137.1, 134.2, 128.6, 127.5, 127.4, 122.9, 101.2 ; FT-IR (CHCl 3 ) 3094, 1714, 1598, 1422 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 6 2 S 256.9272, found 256.9260. 3-omo-5-thiophen-2-yl-pyran-2-one (3e): NMR (400MHz, CDCl 3 ) δ 7.97 (d, J = 2.0 Hz, 1H), 7.73 (d, J = 2.4 Hz, 1H), 7.31 (dd, J = 5.2, 1.2 Hz, 1H), 7.11 (dd, J = 3.6, 1.2 Hz, 1H), 7.07 (dd, J S = 5.2, 3.6 Hz, 1H); 13 3e CDCl 3 ) δ 156.9, 145.4, 143.8, 133.6, 127.8, 125.5, 124.3, 115.6, 112.4 ; FT-IR (CHCl 3 ) 3164, 1720, 1515 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 9 H 6 2 S 256.9272, found 256.9090. 5-omo-3-pyridin-2-yl-pyran-2-one (2f): NMR (400MHz, CDCl 3 ) δ 8.64-8.62 (m, 1H), 8.47 (d, J = 3.2 Hz, 1H), 8.37 (d, J = N 8.0 Hz, 1H), 7.76 (td, J = 8.0, 2.0 Hz, 1H), 7.66 (d, J = 2.8, 1H), 7.28 (ddd, J = 7.2, 4.8, 1.2 Hz, 1H); 13 2f CDCl 3 ) δ 159.1, 149.6, 149.3, 149.2, 144.4, 136.6, 125.8, 123.7, 123.6, 101.9; FT-IR (CHCl 3 ) 3067, 1726, 1653 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 10 H 7 N 2 251.9660, found 251.9659. 3-omo-5-pyridin-2-yl-pyran-2-one (3f): NMR (400MHz, CDCl 3 ) δ 8.63-8.61 (m, 1H), 8.49 (d, J = 2.4 Hz, 1H), 8.13 (d, J = N 2.4 Hz, 1H), 7.75 (td, J = 8.0, 2.0 Hz, 1H), 7.48 (d, J = 8.0 Hz, 1H), 7.27 (ddd, J = 7.9, 4.8, 1.2 Hz,, 1H); 13 3f CDCl 3 ) δ 157.6, 149.8, 149.7, 148.9, 143.6, 137.1, 123.1, 120.4, 118.9, 112.3 ; FT-IR (CHCl 3 ) 3067, 1724, 1654 cm -1 ; HRMS (FAB) m/z (M+1) ) calcd for C 10 H 7 N 2 251.9660, found 251.9674. 4-(5-omo-2-oxo-2H-pyran-3-yl)-benzonitrile (2g): NMR (400MHz, CDCl 3 ) δ 7.78 7.76 (m, 2H), 7.72 7.70 (m, 2H), 7.65 (d, J = 2.4 Hz, 1H), 7.54 (d, J = 2.4 Hz, 1H); 13 C NMR (100MHz, CDCl 3 ) δ 158.6, 149.4, 143.3, 137.5, 132.1, 128.7, 127.1, 118.2, 112.9, 101.0 ; FT-IR (CHCl 3 ) 3049, 2226, 1714, 1601 cm -1 ; HRMS (FAB) m/z (M+1) ) calcd for C 12 H 7 N 2 275.9660, found 275.9672. 4-(5-omo-6-oxo-6H-pyran-3-yl)-benzonitrile (3g): 2g CN NMR (400MHz, CDCl 3 ) δ 7.98 (d, J = 2.0 Hz, 1H), 7.76 (d, J = 2.0 Hz, 1H), 7.75 7.73 (m, 2H), 7.51 7.48 (m, 2H); 13 C NMR (100MHz, CDCl 3 ) δ 156.9, 147.9, 143.6, 136.7, 133.0, 126.5, 119.8, 117.9, 113.3, 112.5 ; FT-IR (CHCl 3 ) 3008, 2232, NC 3g 1737, 1629 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 12 H 7 N 2 275.9660, found 275.9661.

4-(5-omo-2-oxo-2H-pyran-3-yl)-benzoic acid methyl ester (2h): NMR (400MHz, CDCl 3 ) δ 8.01 8.06 (m, 2H), 7.73 7.70 (m, 2H), 7.61 (d, J = 2.4 Hz, 1H), 7.52 (d, J = 2.4 Hz, 1H), 3.93 (s, 3H); 13 CDCl 3 ) δ 166.2, 158.9, 148.9, 142.8, 137.4, 130.6, 129.6, 2h C 2 Me 128.1, 128.0, 101.1, 52.4 ; FT-IR (CHCl 3 ) 3150, 1728, 1613 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 13 H 10 4 308.9762, found 308.9761. 4-(5-omo-6-oxo-6H-pyran-3-yl)-benzoic acid methyl ester (3h): NMR (400MHz, CDCl 3 ) δ 8.11 8.09 (m, 2H), 8.02 (d, J = 2.4 Hz, 1H), 7.76 (d, J = 2.4 Hz, 1H), 7.46 7.43 (m, 2H), 3.94 (s, 3H); 13 CDCl 3 ) δ 166.0, 157.2, 147.6, 144.2, 136.5, 130.5, 130.2, 125.8, Me 2 C 3h 120.4, 112.9, 52.4 ; FT-IR (CHCl 3 ) 3073, 1739, 1715, 1616 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 13 H 10 4 308.9762, found 308.9751. 5-omo-3-(4-methoxy-phenyl)-pyran-2-one (2i): NMR (400MHz, CDCl 3 ) δ 7.61 7.59 (m, 2H), 7.54 (d, J = 2.4 Hz, 1H), 7.40 (d, J = 2.4 Hz, 1H), 6.94 6.92 (m, 2H), 3.84 (s, 3H); 13 CDCl 3 ) δ 160.3, 159.6, 147.3, 140.3, 129.5, 128.7, 125.5, 113.9, 101.4, 55.4; FT- IR (CHCl 3 ) 3084, 2943, 1725, 1610 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 12 H 10 3 280.9813, found 280.9812. 3-omo-5-(4-methoxy-phenyl)-pyran-2-one (3i): NMR (400MHz, CDCl 3 ) δ 7.96 (d, J = 2.4 Hz, 1H), 7.61 (d, J = 2.4 Hz, 1H), 7.28 7.26 (m, 2H), 6.96 6.93 (m, 2H), 3.84 (s, 3H); 13 Me CDCl 3 ) δ 159.7, 157.6, 146.0, 145.1, 127.1, 124.3, 121.0, 114.5, 112.2, 55.3 ; FT- 2i Me 3i IR (CHCl 3 ) 3078, 2943, 1725, 1618 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 12 H 10 3 280.9813, found 280.9810. 3-omo-5-vinyl-pyran-2-one (3j): NMR (400MHz, CDCl 3 ) δ 7.95 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 2.4 Hz, 1H), 6.33 (dd, J = 17.6, 11.2 Hz, 1H), 5.52 (d, J = 17.6 Hz, 1H), 5.31 (d, J = 11.2 Hz, 1H) ; 13 3j CDCl 3 ) δ 157.5, 147.9, 141.4, 127.0, 118.3, 115.2, 112.9 ; FT-IR (CHCl 3 ) 3191, 1718, 1651 cm -1 ; HRMS (FAB) m/z (M+1) calcd for C 7 H 6 2 200.9551, found 200.9566. 3-Pallado-5-bromo-2-pyrone (5a; Pd-): NMR (400MHz, CDCl 3 ) δ 7.71 7.66 (m, 12H), 7.37 7.30 (m, 18H), 6.53 6.51 (m, 1H), 6.37 (d, J = 2.4 Hz, 1H); 13 C

NMR (100MHz, CDCl 3 ) δ 160.8 (t, J = 3.0 Hz), 153.6 (t, J = 6.0 Hz), 147.1 (t, J = 5.3 Hz), 143.0, 134.6 (t, J = 6.z), 130.35 (t, J = 23.5 Hz), 130.2, 127.9 (t, J = 5.3 Hz), 101.1.; FT-IR (CHCl 3 ) 3061.0, 3011.1, 1716.5, 1688.3, 1598.0, 1481.6, 1435.1 cm -1 RTEP representation of the X-ray crystal structure of 5a Pd 5a

3-Pallado-5-bromo-2-pyrone (5b; Pd-I): NMR (400MHz, CDCl 3 ) δ 7.71 7.66 (m, 12H), 7.37 7.30 (m, 18H), 6.53 6.51 (m, 1H), 6.37 (d, J = 2.4 Hz, 1H); 13 CDCl 3 ) δ 160.8 (t, J = 3.0 Hz), 153.6 (t, J = 6.0 Hz), 147.1 (t, J = 5.3 Hz), 143.0, 134.6 (t, J = 6.z), 130.35 (t, J = 23.5 Hz), 130.2, 127 Pd I 5b RTEP representation of the X-ray crystal structure of 5b

5-Pallado-3-bromo-2-pyrone (6): NMR (400MHz, CDCl 3 ) δ 7.68 7.63 (m, 12H), 7.42 7.33 (m, 18H), 6.48 (dd, J = 1.2, 0.8 Hz, 1H), 6.26 (dd, J = 1.2, 0.8 Hz, 1H); 13 CDCl 3 ) δ 158.3, 150.4, 143.9, 134.5 (t, J = 6.4 Hz), 130.7, 129.8 (t, J = 23.9 Hz), 128.3 (t, J = 5.3 Hz), 125.2, 110.5; FT-IR (CHCl 3 ) 3057.0, 1732.8, 1717.2, 1704.6, 1482.4, 1435.4 cm -1. RTEP representation of the X-ray crystal structure of 6 Pd Ph 3 P 6