Αν ( Α < Β και C <> D ) και ( B > D ή Β =D ) τότε K 1 Τέλος_αν. χωρίς τη χρήση λογικών τελεστών. Μονάδες 10

Σχετικά έγγραφα
ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΟ ΜΑΘΗΜΑ Α.Ε.Π.Π. ΟΝΟΜΑ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Διαγώνισμα Δομή Επιλογής και Λογικές εκφράσεις

ΔΟΜΕΣ ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΑΛΓΟΡΙΘΜΟΙ ΚΕΦΑΛΑΙΟ 3 ο (ΜΟΝΟΔΙΑΣΤΑΣΤΟΙ ΠΙΝΑΚΕΣ)

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

β. Ποιοι λόγοι θα μας οδηγούσαν στο να αναθέσουμε την επίλυση προβλημάτων στον υπολογιστή; (μονάδες 4) (Μονάδες 6)

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2o Επαναληπτικό Διαγώνισμα Κεφ: 2 ο 7 ο 8 ο ΗΜΕΡΟΜΗΝΙΑ 21/ 10/ 2017

Διαγώνισμα Ανάπτυξης Εφαρμογών Σε Προγραμματιστικό Περιβάλλον

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΕΠΠ 1o Επαναληπτικό Διαγώνισµα

ΑΕΠΠ 2o Επαναληπτικό Διαγώνισμα

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών ΙΙ

ΑΕΠΠ 1o Επαναληπτικό Διαγώνισµα

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 A ΦΑΣΗ

ΘΕΜΑ Α. Α2. Να αναφέρετε από τι εξαρτάται η επιλογή του καλύτερου αλγορίθμου ταξινόμησης. Μονάδες 4. Σελίδα 1 από 8

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΪΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 7 (ΕΠΤΑ)

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ Λυκείου Φεβρουάριος Ανάπτυξη Εφαρμογών ΘΕΜΑ Α

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

στο μάθημα κατεύθυνσης Γ τάξης ενιαίου Λυκείου: Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον (χρονική διάρκεια: sec)

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. Για i από 1 μέχρι Μ Εμφάνισε A[4,i] Τέλος_επανάληψης. (μονάδες 6) ΤΕΛΟΣ 1ης ΑΠΟ 7 ΣΕΛΙΔΕΣ

Θέματα Πανελληνίων Εξετάσεων που προέρχονται από την ενότητα «Δομή επιλογής» ( )

ΑΡΧΗ 1Η ΕΛΙΔΑ Γ ΣΑΞΗ ΓΕΝΙΚΟΤ ΛΤΚΕΙΟΤ ΕΞΕΣΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΣΕΦΝΟΛΟΓΙΚΗ ΚΑΣΕΤΘΤΝΗ ΑΝΑΠΣΤΞΗ ΕΥΑΡΜΟΓΩΝ Ε ΠΡΟΓΡΑΜΜΑΣΙΣΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Εισαγωγικά στοιχεία αλγορίθμων -Δομή Ακολουθίας Δομή Επιλογής ΗΜΕΡΟΜΗΝΙΑ 10/ 07/ 2017 ΟΝΟΜΑΤ/ΜΟ ΒΑΘΜΟΣ

ΚΕΦΑΛΑΙΑ & 8.2 (ΔΟΜΕΣ ΕΠΑΝΑΛΗΨΗΣ) ΘΕΩΡΙΑ

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / Γ ΓΕ.Λ. ΟΙΚ & ΠΛΗΡ (ΘΕΡΙΝΑ) ΗΜΕΡΟΜΗΝΙΑ: ΕΠΙΜΕΛΕΙΑ ΔΙΑΓΩΝΙΣΜΑΤΟΣ: ΓΙΑΝΝΗΣ ΜΙΧΑΛΕΑΚΟΣ ΘΕΜΑ Α

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α

ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ ΣΕ ΓΛΩΣΣΟΜΑΘΕΙΑ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ. 1ο ΓΕΛ ΠΕΥΚΗΣ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ B' ΤΕΤΡΑΜΗΝΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΔΙΑΦΟΡΑ ΘΕΜΑΤΑ. Ως «γειτονικά» ορίζονται τα κελιά που συγγενεύουν οριζόντια, κάθετα και διαγώνια. Για παράδειγμα γειτονικά του Α[3,3] είναι τα:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

3. Να γραφεί πρόγραμμα που θα διαβάζει 100 ακεραίους αριθμούς από το πληκτρολόγιο και θα υπολογίζει το άθροισμά τους.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

Προτεινόμενα Θέματα ΑΕΠΠ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ

ΕΚΦΩΝΗΣΕΙΣ. β. Να γράψετε αναλυτικά τα μειονεκτήματα της χρήσης των πινάκων. γ. Να γράψετε ονομαστικά τις τυπικές επεξεργασίες των πινάκων.

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Εξετάσεις Προσομοίωσης 10/04/2018

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΕΠΠ 7o Επαναληπτικό Διαγώνισμα

Γ.Κονδύλη 1 & Όθωνος-Μαρούσι Τηλ. Κέντρο: ,

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ (ΚΕΦΑΛΑΙΟ 1-2β)

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα;

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΕΠΠ

Α2. Δίνεται το επόμενο τμήμα προγράμματος σε ΓΛΩΣΣΑ:

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΟΜΟΣΠΟΝ ΙΑ ΕΚΠΑΙ ΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑ ΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2013 ÅÐÉËÏÃÇ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20

ΕΚΦΩΝΗΣΕΙΣ. ii) Ποιούς τρόπους αναπαράστασης ενός αλγόριθµου γνωρίζετε;

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

2ο ΓΕΛ ΑΓ.ΔΗΜΗΤΡΙΟΥ ΑΕΠΠ ΘΕΟΔΟΣΙΟΥ ΔΙΟΝ ΠΡΟΣΟΧΗ ΣΤΑ ΠΑΡΑΚΑΤΩ

Φάσμα. προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

18/ 07/ Σελίδα 1 6

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

Ακρότατα πίνακα, χωρίς min, max, μόνο με pos

Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1

ΑΕΠΠ 4o Επαναληπτικό Διαγώνισμα

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ 2019 ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΠΡΟΣΟΜΟΙΩΣΗΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΣΧΟΛΙΚΟΥ ΕΤΟΥΣ

Διαγώνισμα Γ Λυκείου. Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

Επαναληπτική δοκιμασία στην Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον Τεχνολογικής Κατεύθυνσης Μάιος 2013

ΟΜΟΣΠΟΝΔΙΑ ΕΚΠΑΙΔΕΥΤΙΚΩΝ ΦΡΟΝΤΙΣΤΩΝ ΕΛΛΑΔΟΣ (Ο.Ε.Φ.Ε.) ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ ΕΠΑΝΑΛΗΠΤΙΚΑ ΘΕΜΑΤΑ 2019 Β ΦΑΣΗ Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΣΠΟΥΔΩΝ ΟΙΚΟΝΟΜΙΑΣ ΚΑΙ ΠΛΗΡΟΦΟΡΙΚΗΣ

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Α.Ε.Π.Π. Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέματα και Απαντήσεις

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ


1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση.

Να το ξαναγράψετε χρησιμοποιώντας αντί για την εντολή Για Τέλος_επανάληψης: α. την εντολή Όσο Τέλος_επανάληψης

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1 ο. Στήλη Β Προτάσεις. β. Ο βρόχος επανάληψης τερµατίζεται, όταν η συνθήκη είναι αληθής. όταν η συνθήκη είναι ψευδής.

Φάσμα προπαρασκευή για Α.Ε.Ι. & Τ.Ε.Ι.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡ/ΚΟ ΠΕΡΙΒΑΛΛΟΝ ΘΕΜΑ Α A1.Να ξαναγράψετε την παρακάτω εντολή Αν ( Α < Β και C <> D ) και ( B > D ή Β =D ) τότε K 1 χωρίς τη χρήση λογικών τελεστών. A2.Ο παρακάτω αλγόριθμος προτάθηκε για να ελέγχει και να εκτυπώνει, αν ένας μη αρνητικός ακέραιος αριθμός είναι μονοψήφιος, διψήφιος ή τριψήφιος. Στην περίπτωση που δοθεί αριθμός αρνητικός ή με περισσότερα από 3 ψηφία ο αλγόριθμος πρέπει να εμφανίζει το μήνυμα «Λάθος Δεδομένα». Αλγόριθμος Ψηφία Διάβασε x Αν x >= 0 και x < 10 τότε εμφάνισε Μονοψήφιος Αλλιώς_αν x < 100 τότε εμφάνισε Διψήφιος Αλλιώς_αν x < 1000 τότε εμφάνισε Τριψήφιος Αλλιώς εμφάνισε Λάθος Δεδομένα Τέλος Ψηφία Ο παραπάνω αλγόριθμος έχει λάθος. Δώστε ένα παράδειγμα εισόδου που θα καταδείξει το λάθος που υπάρχει στον αλγόριθμο (Μονάδες 3). Στη συνέχεια να γράψετε τον αλγόριθμο στο τετράδιο σας κάνοντας τις απαραίτητες διορθώσεις, έτσι ώστε να λειτουργεί σωστά (Μονάδες 7).

Α3. Δίνεται το παρακάτω τμήμα αλγορίθμου, το οποίο με δεδομένο έναν μονοδιάστατο πίνακα Α[20]. Ο πίνακας περιέχει άρτιους και περιττούς θετικούς ακεραίους, σε τυχαίες θέσεις. Το τμήμα αλγορίθμου δημιουργεί ένα νέο πίνακα Β[20], στον οποίο υπάρχουν πρώτα οι άρτιοι και μετά ακολουθούν οι περιττοί. Κ 0 Για i από... μέχρι... Αν Α[i] mod 2 = 0 τότε Κ... Β[...] A[i] Για i από... μέχρι...φ Αν Α[i] mod 2 =... τότε Κ... Β[...] A[...] Α4. ίνεται ο παρακάτω ημιτελής αλγόριθμος αναζήτησης ενός αριθμού key σε έναν αριθμητικό πίνακα table N στοιχείων, στον οποίο ο key μπορεί να εμφανίζεται περισσότερες από μία φορές. Αλγόριθμος Αναζήτηση εδομένα // table, N, key // Βρέθηκε Ψευδής ενβρέθηκε... i 1 Όσο ενβρέθηκε = Αληθής και i<=n επανάλαβε Αν... τότε Εμφάνισε Βρέθηκε στη θέση, i Βρέθηκε... Αλλιώς_αν... τότε ενβρέθηκε... i i + 1 Αποτελέσματα // Βρέθηκε // Τέλος Αναζήτηση

Να ξαναγράψετε στο τετράδιό σας τον παραπάνω αλγόριθμο με τα κενά συμπληρωμένα, έτσι ώστε να εμφανίζονται όλες οι θέσεις στις οποίες βρίσκεται ο αριθμός key στον πίνακα table. Ο αλγόριθμος να σταματάει αμέσως μόλις διαπιστωθεί ότι ο αριθμός key δεν υπάρχει στον πίνακα. Εκμεταλλευτείτε το γεγονός ότι τα στοιχεία του πίνακα είναι ταξινομημένα σε αύξουσα σειρά. ΘΕΜΑ Β Β1. Δίνονται οι πίνακες DATA[7], L[7], R[7], οι οποίοι περιέχουν δεδομένα, όπως φαίνονται στα παρακάτω σχήματα: DATA 1 2 3 4 5 6 7 Ψ Β Ο Κ Η Φ Σ L 1 2 3 4 5 6 7 5 4 2 6 7 3 1 R 1 2 3 4 5 6 7 6 4 7 5 6 1 2 Χρησιμοποιώντας τους ανωτέρω πίνακες, να εκτελέσετε το παρακάτω τμήμα αλγορίθμου και να συμπληρώσετε τον πίνακα τιμών, αφού τον μεταφέρετε στο τετράδιό σας. ΓΡΑΜΜΑ Σ Κ 1 Όσο DATA[K] <> ΓΡΑΜΜΑ επανάλαβε Εκτύπωσε DATA[K] Αν DATA[K] > ΓΡΑΜΜΑ τότε Κ L[K] αλλιώς Κ R[K] Εκτύπωσε DATA[K]

Πίνακας τιμών ΓΡΑΜΜΑ Κ ΟΘΟΝΗ (ΕΚΤΥΠΩΣΗ) Σ ΘΕΜΑ Γ Σε κάποια χώρα της Ευρωπαϊκής Ένωσης διεξάγονται εκλογές για την ανάδειξη των μελών του Ευρωπαϊκού Κοινοβουλίου. Θεωρήστε ότι μετέχουν 15 συνδυασμοί κομμάτων, οι οποίοι θα μοιραστούν 24 έδρες σύμφωνα με το ποσοστό των έγκυρων ψηφοδελτίων που έλαβαν. Κόμματα που δεν συγκεντρώνουν ποσοστό έγκυρων ψηφοδελτίων τουλάχιστον ίσο με το 3% του συνόλου των έγκυρων ψηφοδελτίων δεν δικαιούνται έδρα. Για κάθε κόμμα, εκτός του πρώτου κόμματος, ο αριθμός των εδρών που θα λάβει υπολογίζεται ως εξής: Το ποσοστό των έγκυρων ψηφοδελτίων πολλαπλασιάζεται επί 24 και στη συνέχεια το γινόμενο διαιρείται με το άθροισμα των ποσοστών όλων των κομμάτων που δικαιούνται έδρα. Το ακέραιο μέρος του αριθμού που προκύπτει είναι ο αριθμός των εδρών που θα λάβει το κόμμα. Το πρώτο κόμμα λαμβάνει τις υπόλοιπες έδρες. Να γράψετε αλγόριθμο ο οποίος: α. να διαβάζει και να αποθηκεύει σε μονοδιάστατους πίνακες τα ονόματα των κομμάτων και τα αντίστοιχα ποσοστά των έγκυρων ψηφοδελτίων τους. β. να εκτυπώνει τα ονόματα και το αντίστοιχο ποσοστό έγκυρων ψηφοδελτίων των κομμάτων που δεν έλαβαν έδρα. γ. να εκτυπώνει το όνομα του κόμματος με το μεγαλύτερο ποσοστό έγκυρων ψηφοδελτίων. δ. να υπολογίζει και να εκτυπώνει το άθροισμα των ποσοστών όλων των κομμάτων που δικαιούνται έδρα. ε. να εκτυπώνει τα ονόματα των κομμάτων που έλαβαν έδρα και τον αντίστοιχο αριθμό των εδρών τους.

Παρατηρήσεις: α) Υποθέτουμε ότι δεν υπάρχουν δύο κόμματα που να έχουν το ίδιο ποσοστό έγκυρων ψηφοδελτίων. β) Μπορείτε να χρησιμοποιήσετε τη συνάρτηση Α_Μ(x) που επιστρέφει το ακέραιο μέρος του πραγματικού αριθμού x. γ) Τα ποσοστά να θεωρηθούν επί τοις εκατό (%). ΘΕΜΑ Δ Σε μια επιχείρηση λειτουργούν 5 διαφορετικά τμήματα με 350 υπαλλήλους συνολικά. Να γράψετε αλγόριθμο ο οποίος : α) εκχωρεί σε πίνακες το ονοματεπώνυμο, το τμήμα (1 ως 5) και το μισθό κάθε υπαλλήλου, β) βρίσκει και εμφανίζει το ονοματεπώνυμο του υπαλλήλου με το μεγαλύτερο μισθό σε κάθε τμήμα ξεχωριστά και γ) βρίσκει το ποσοστό των «χαμηλόμισθων» υπαλλήλων (μισθός < 900 ) σε κάθε τμήμα και εμφανίζει τον αριθμό του τμήματος και το ποσοστό.