w o = R 1 p. (1) R = p =. = 1

Σχετικά έγγραφα
2 Composition. Invertible Mappings

Lecture 2: Dirac notation and a review of linear algebra Read Sakurai chapter 1, Baym chatper 3

( ) 2 and compare to M.

Homework 3 Solutions

ST5224: Advanced Statistical Theory II

6.1. Dirac Equation. Hamiltonian. Dirac Eq.

CHAPTER 48 APPLICATIONS OF MATRICES AND DETERMINANTS

Second Order RLC Filters

Statistical Inference I Locally most powerful tests

EE512: Error Control Coding

Section 7.6 Double and Half Angle Formulas

MATH423 String Theory Solutions 4. = 0 τ = f(s). (1) dτ ds = dxµ dτ f (s) (2) dτ 2 [f (s)] 2 + dxµ. dτ f (s) (3)

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

Problem Set 9 Solutions. θ + 1. θ 2 + cotθ ( ) sinθ e iφ is an eigenfunction of the ˆ L 2 operator. / θ 2. φ 2. sin 2 θ φ 2. ( ) = e iφ. = e iφ cosθ.

Example Sheet 3 Solutions

SCHOOL OF MATHEMATICAL SCIENCES G11LMA Linear Mathematics Examination Solutions

Matrices and Determinants

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

4.6 Autoregressive Moving Average Model ARMA(1,1)

Section 8.3 Trigonometric Equations

Solutions to Exercise Sheet 5

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

Partial Differential Equations in Biology The boundary element method. March 26, 2013

= λ 1 1 e. = λ 1 =12. has the properties e 1. e 3,V(Y

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

Finite Field Problems: Solutions

Quadratic Expressions

Other Test Constructions: Likelihood Ratio & Bayes Tests

Tridiagonal matrices. Gérard MEURANT. October, 2008

Approximation of distance between locations on earth given by latitude and longitude

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

Math221: HW# 1 solutions

Areas and Lengths in Polar Coordinates

CRASH COURSE IN PRECALCULUS

Areas and Lengths in Polar Coordinates

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

Jesse Maassen and Mark Lundstrom Purdue University November 25, 2013

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

derivation of the Laplacian from rectangular to spherical coordinates

An Introduction to Signal Detection and Estimation - Second Edition Chapter II: Selected Solutions

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Inverse trigonometric functions & General Solution of Trigonometric Equations

Fractional Colorings and Zykov Products of graphs

Jordan Form of a Square Matrix

g-selberg integrals MV Conjecture An A 2 Selberg integral Summary Long Live the King Ole Warnaar Department of Mathematics Long Live the King

A Two-Sided Laplace Inversion Algorithm with Computable Error Bounds and Its Applications in Financial Engineering

Solution Series 9. i=1 x i and i=1 x i.

F19MC2 Solutions 9 Complex Analysis

New bounds for spherical two-distance sets and equiangular lines

Probability and Random Processes (Part II)

Lecture 10 - Representation Theory III: Theory of Weights

Srednicki Chapter 55

Strain gauge and rosettes

Uniform Convergence of Fourier Series Michael Taylor

Appendix to On the stability of a compressible axisymmetric rotating flow in a pipe. By Z. Rusak & J. H. Lee

Congruence Classes of Invertible Matrices of Order 3 over F 2

Math 6 SL Probability Distributions Practice Test Mark Scheme

CHAPTER 101 FOURIER SERIES FOR PERIODIC FUNCTIONS OF PERIOD

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

ANSWERSHEET (TOPIC = DIFFERENTIAL CALCULUS) COLLECTION #2. h 0 h h 0 h h 0 ( ) g k = g 0 + g 1 + g g 2009 =?

A Note on Intuitionistic Fuzzy. Equivalence Relation

Derivation of Optical-Bloch Equations

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

Lecture 15 - Root System Axiomatics

Parametrized Surfaces

Econ 2110: Fall 2008 Suggested Solutions to Problem Set 8 questions or comments to Dan Fetter 1

1 String with massive end-points

C.S. 430 Assignment 6, Sample Solutions

Differentiation exercise show differential equation

Space-Time Symmetries

SOLVING CUBICS AND QUARTICS BY RADICALS

6.3 Forecasting ARMA processes

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

The Jordan Form of Complex Tridiagonal Matrices

Bayesian statistics. DS GA 1002 Probability and Statistics for Data Science.

Homework 8 Model Solution Section

DESIGN OF MACHINERY SOLUTION MANUAL h in h 4 0.

Notes on the Open Economy

DERIVATION OF MILES EQUATION FOR AN APPLIED FORCE Revision C

Trigonometry 1.TRIGONOMETRIC RATIOS

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Optimal Parameter in Hermitian and Skew-Hermitian Splitting Method for Certain Two-by-Two Block Matrices

Trigonometric Formula Sheet

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

Reminders: linear functions

ENGR 691/692 Section 66 (Fall 06): Machine Learning Assigned: August 30 Homework 1: Bayesian Decision Theory (solutions) Due: September 13

Overview. Transition Semantics. Configurations and the transition relation. Executions and computation

( )( ) ( ) ( )( ) ( )( ) β = Chapter 5 Exercise Problems EX α So 49 β 199 EX EX EX5.4 EX5.5. (a)

Lecture 13 - Root Space Decomposition II

Section 9.2 Polar Equations and Graphs

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

MATRIX INVERSE EIGENVALUE PROBLEM

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

Concrete Mathematics Exercises from 30 September 2016

ΚΥΠΡΙΑΚΗ ΕΤΑΙΡΕΙΑ ΠΛΗΡΟΦΟΡΙΚΗΣ CYPRUS COMPUTER SOCIETY ΠΑΓΚΥΠΡΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ 19/5/2007

Lanczos and biorthogonalization methods for eigenvalues and eigenvectors of matrices

Fundamentals of Wireless Communication

Transcript:

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών ΗΥ-570: Στατιστική Επεξεργασία Σήµατος 205 ιδάσκων : Α. Μουχτάρης Τριτη Σειρά Ασκήσεων Λύσεις Ασκηση 3. 5.2 (a) From the Wiener-Hopf equation we have: w o = R p. () We are give and 0.5 R = 0.5 0.5 p =. 0.25 Hence, the inverse matrix R is 0.5 R = 0.5 = 0.75 0.5 0.5 Using Eq. (), we therefore get. w o = 0.75 0.5 0.5 = 0.5 2 =.5 0.5 = 0.5 3 0.25 0.5 3 0 0

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 2 (b) The minimum mean-square error is : ] J min = σd 2 ph w o = σd [0.5, 2 0.5 0.25 = σd 2 0.25. 0 (c) The eigenvalues of matrix R are roots of the characteristic equation: ( λ) 2 0.5 2 = 0. That is, the two roots are: λ = 0.5 and λ 2 =.5. The associated eigenvectors are defined by: Rq = λq. For λ = 0.5 we have: 0.5 0.5 q q 2 = 0.5 q q 2. Expanding: q + 0.5q 2 = 0.5q 0.5q + q 2 = 0.5q 2 Therefore, q = q2. ormalizing the eigenvector q to unit length, we therefore have q = 2. Similarly, for the eigenvalue λ 2 =.5, we may show that q 2 = 2. Accordingly, we may express the Wiener fitler in terms of its eigenvalues and eigenvectors as follows:

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 3 w o = ( 2 i= λ i q i q H i ) p = [ ], + [ ], 0.5 = + 0.5 3 0.25 3 0.25 }{{}}{{} }{{} q λ q H q λ 2 q H p 2 2 5.4 The optimum filtering solution is defined by the Wiener-Hopf equation as: Rw o = p, (2) for which the minimum mean-square error equals: J min = σ 2 d ph w o. (3) Combine Eqs. (2) and (3) into a single relation and we get: σ2 d p p H = J min R w o 0 Define A = σ2 d p p H (4) R Since σ 2 d = E[d(n)d (n)], p = E[u(n)d (n)] and R = E[u(n)u (n)], we may rewrite Eq. (4) as A = E[d(n)d (n)] E[u(n)d (n)] E[d(n)]u H (n) = E d(n) [ d E[u(n)u (n)] (n), u(n) u H (n) ] The minimum mean-square error equals: J min = σ 2 d ph w o (5)

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 4 Eliminate σd 2 between Eqs. (2) and (5): J(w) = J min + p H w o p H w w H p + w H Rw (6) Eliminate p between Eqs. (3) and (??): J(w) = J min + w H o Rw o w H o Rw w H Rw o + w H Rw, (7) where we have used the property R H = R. We may rewrite Eq. (7) simply as J(w) = J min + (w w o ) H R(w w o ), (8) which clearly shows that J(w o ) = J min. 5.5 The minimum mean-square error equals J min σ 2 d ph R p. (9) Using the spectral theorem, we may express the correlation matrix R as M R = QΛQ H = λ k q k q H k. k= Hence, the inverse of R equals: R = M k= λ k q k q H k. (0) Substituting Eq. (0) into (9): J min = σ 2 d M k= q k q H k λ p = σ2 d M p H q k 2. k λ k k= 5.7 (a) The correlation matrix R is

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 5 R = E[u(n)u H (n)] = E[ A 2 ] e jω n e jω (n ). e jω (n M+) [ ] e +jωn, e +jω(n ),..., e +jω (n M+) = E[ A 2 ]s H (ω ) where I is the identity matrix. (b) The tap-weight vector of the Wiener filter is w o = R p. From part a, R = σ 2 vi + σ 2 s(ω )s H (ω ). We are given p = σ 2 0s(ω o ). To invert the matrix R. we use the matrix inversion lemma, as described here: If A = B + CD C H then A = B BC(D + C H BC) C H B. In our case, A = σ 2 vi, B = σ 2 vi, D = σ 2, C = s(ω ). Hence, R = σ 2 v I s(ω σv 2 )s H (ω ) σv 2 + s σ H (ω 2 )s(ω ) The corresponding value of the wiener tap-weight vector is w o = R p = σ2 0 σv 2 s(ω 0 ) We note that s H (ω )s(ω ) = M and s H (ω )s(ω 0 ) = scalar. Hence, σ 2 0 σ 2 v s(ω )s H (ω ) σv 2 + s σ H (ω 2 )s(ω )

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 6 5.2 w o = σ2 0 σ 2 v s(ω 0 ) σ2 0 σv 2 s H (ω )s(ω ) + M s(ω ) σ 2 v σ 2 ) (a) Under the hypothesis H, we have u = s + v. The correlation matrix of u equals R = E[uu T ] = ss T + R, where R = E[VV T ]. The tap-weight vector w k is chosen so that wk T u yields an optimum estimate of the kth element of s. Thus, with s(k) treated as the desired response, the cross-correlation vector between u and s(k) equals: p k = E[us(k)] = ss(k), k =, 2,..., M. Hence, the Wiener-Hopf equation yields the optimum value of w k as w ko = R p k = ( ss T + R ) ss(k), k =, 2,..., M () To apply the matrix inversion lemma, we let A = R, B = R, C = s, D =. Hence, R = R R sst R + s T R s (2) Substitute Eq. (2) into Eq. (): w ko = ( R ) R sst R + s T R s ss(k) = R s( + st R s) R sst R s + s T R s s(k) = s(k) + s T R sr s (b) The output signal-to-noise ratio equals

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 7 SR = E[(wT s) 2 ] E[(w T v) 2 ] = wt ss T w w T E[vv T ]w = wt ss T w w T R w (3) Since R is positive definite, we may write R = R /2 R/2. Define the vector: a = R /2 w, or equivalently w = R /2 a. (4) Accordingly, we may rewrite Eq. 3 as follows SR = at R /2 sst R /2 a a T, (5) a where we have used the symmetric property of R V. Define the normalized vector ā = a a, where a is the norm of a. Then we may rewrite Eq. 5 as SR = ā T R /2 sst R /2 ā ā = T R /2 s 2 Thus the output signal-to-noise ratio SR equals the squared magnitude of the inner product of two vectors ā and R /2 s. This inner product is maximized when a equals R /2s. That is a S = R /2 s (6) Let w S denote the value of the tap-weight vector that corresponds to Eq. 6. Hence, the use of Eq. 4 in Eq. 6 yields: ( ) w S = R /2 R /2 s = R s.

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 8 (c)

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 9 Ασκηση 4. 6.

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 0 6.4

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 2

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 3 6.5

ΗΥ-570: Στατιστική Επεξεργασία Σήµατος Τριτη Σειρά Ασκήσεων Λύσεις 205 4 6.9