Supporting Information

Σχετικά έγγραφα
Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Electronic Supplementary Information

Supporting Information

Supporting Information for

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Supporting information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Divergent synthesis of various iminocyclitols from D-ribose

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Electronic Supplementary Information (ESI)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information. Experimental section

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information for

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information. Experimental section

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

multicomponent synthesis of 5-amino-4-

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supporting Information

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supporting Information

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

gem-dichloroalkenes for the Construction of 3-Arylchromones

Jing-Yu Guo, Rui-Han Dai, Wen-Cong Xu, Ruo-Xin Wu and Shi-Kai Tian*

The Free Internet Journal for Organic Chemistry

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supplementary Material

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Materials

New excited state intramolecular proton transfer (ESIPT) dyes based on naphthalimide and observation of triplet excited states

Supporting Information for

Supporting Information

Supporting Information

Supporting Information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

One-pot β-substitution of enones with alkyl groups to β-alkyl enones

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Selective mono reduction of bisphosphine

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Electronic Supplementary Information

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Transcript:

Electronic upplementary Material (EI) for Green Chemistry. This journal is The Royal ociety of Chemistry 204 upporting Information ynthesis of sulfonamides via I 2 -mediated reaction of sodium sulfinates with amines in aqueous medium at room temperature Xiaojun Pan, Jian Gao, Juan Liu, Junyi Lai, Huanfeng Jiang and Gaoqing Yuan* chool of Chemistry and Chemical Engineering, outh China University of Technology, Guangzhou 50640, China E-mail: gqyuan@scut.edu.cn Table of Contents General Information...2 Typical procedure for the synthesis of sulfonamides...2 Analytical data of the prepared compounds...2 NMR spectra of the prepared compounds...9

General Information The H NMR and 3 C NMR spectra were recorded on a Bruker Advance 400 spectrometer in CDCl 3 at 400 MHz and 00 MHz, respectively. The chemical shifts were referenced to signals at 7.26 and 77.0 ppm, respectively. Proton coupling patterns were described as singlet (s), doublet (d), triplet (t), quartet (q) and multiplet (m). Mass spectra were recorded on a himadzu GCM- QP5050A spectrometer at an ionization voltage of 70 ev equipped with a DB-WAX capillary column (internal diameter: 0.25 mm, length: 30 m). GC-M was obtained using electron ionization. High resolution mass spectra (HRM) were recorded on a MAT95XP high resolution mass spectrometer. TLC was performed using commercially prepared 00-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm. All substrates were purchased commercially without further purification. Typical procedure for the synthesis of sulfonamides The mixture of iodine (0.25 mmol), sodium sulfinates (0.6 mmol), water (2 ml) and amines (0.5 mmol) were added to a 0 ml tube successively. Then, the reaction was performed at room temperature under magnetic stirring for 3 h. When it was finished, some ethyl acetate was added to the tube to extract the aqueous solution. After extracting, the obtained organic layer was dried with anhydrous Mg 4. The solvent was removed under vacuum, and the crude residue was purified by silica gel column chromatography to afford the desired pure product. Analytical Data of the prepared compounds N N-Benzyl-N,4-dimethylbenzenesulfonamide (3a) H NMR (400 MHz, CDCl 3 ): δ 7.73 (d, J =7.7Hz, 2H), 7.36-7.27 (m, 7H), 4.2 (s, 2H), 2.58 (s, 3H), 2.45 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.4, 35.7, 34.3, 29.7, 28.6, 28.3, 27.8, 27.5, 54., 34.3, 2.5; M (EI) m/z: 275, 98, 84, 55, 20, 9. 2

NH 4-Methyl-N-(thiophen-2-ylmethyl)benzenesulfonamide (3b) 2 H NMR (400 MHz, CDCl 3 ): δ 7.77 (d, J =7.5 Hz, 2H), 7.32 (d, J =7.7 Hz, 2H), 7.20 (d, J =4.6 Hz, H), 6.88 (d, J =5.5 Hz, 2H), 5.8 (t, J =5.4 Hz, H), 4.34 (d, J =6.0 Hz, 2H), 2.45 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.5, 39.0, 36.7, 29.6, 27., 26.8, 26.4, 25.6, 4.9, 2.4; M (EI) m/z: 267, 207, 39, 2, 9. NH N-(Furan-2-ylmethyl)-4-methylbenzenesulfonamide (3c) 3 H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =7.6 Hz, 2H), 7.25 (d, J =7.8 Hz, 2H), 7.2 (s, H), 6.9 (s, H), 6.08 (s, H), 5.8 (br, H), 4.4 (d, J =5.8 Hz, 2H), 2.40 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 49.6, 43.3, 42.3, 36.8, 29.5, 27.0, 0.3, 08., 40.0, 2.4; M (EI) m/z: 25, 86, 55, 39, 96. H N 4-Methyl-N-phenylbenzenesulfonamide (3d) H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =8.2 Hz, 2H), 7.59 (br, H), 7.2-7.03 (m, 7H), 2.32 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.8, 36.6, 35.9, 29.6, 29.2, 27.2, 25.0, 2.2, 2.4; M (EI) m/z: 247, 82, 68, 55, 9. NH N-Benzyl-4-methylbenzenesulfonamide (3e ) H NMR (400 MHz, CDCl 3 ): δ 7.75 (d, J =7.7 Hz, 2H), 7.3-7.8 (m, 7H), 4.79 (br, H), 4. (d, J =5.9 Hz, 2H), 2.43 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.4, 36.8, 36.3, 29.6, 28.6, 27.8, 27.7, 27., 47., 2.4; M (EI) m/z: 26, 96, 55, 06, 9. 3

F NH N-(4-Fluorobenzyl)-4-methylbenzenesulfonamide (3e 2 ) 4 H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =7.6 Hz, 2H), 7.27 (d, J =7.6 Hz, 2H), 7.6-7.3 (m, 2H), 6.93-6.89(m, 2H), 5.24 (t, J =5.6 Hz, H), 4.06 (d, J =6. Hz, 2H), 2.42 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 63.4, 6.0, 43.5, 36.8, 32.2, 29.7, 29.6, 29.5, 27.0, 5.5, 5.3, 46.4, 2.4; M (EI) m/z: 279, 24, 55, 24, 9. Cl NH N-(4-Chlorobenzyl)-4-methylbenzenesulfonamide (3e 3 ) 4 H NMR (400 MHz, CDCl 3 ): δ 7.69 (d, J =7.5 Hz, 2H), 7.25 (d, J =7.8 Hz, 2H), 7.8 (d, J =7.4 Hz, 2H), 7.0 (d, J =7.8 Hz, 2H), 5.42 (br, H), 4.04 (d, J =6.3 Hz, 2H), 2.4 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.5, 36.7, 34.9, 33.4, 29.6, 29.2, 28.6, 27.0, 46.4, 2.4; M (EI) m/z: 295, 230, 40, 25, 9. Br NH N-(4-Bromobenzyl)-4-methylbenzenesulfonamide (3e 4 ) 4 H NMR (400 MHz, CDCl 3 ): δ 7.69 (d, J =8.0 Hz, 2H), 7.33 (d, J =8. Hz, 2H), 7.25 (d, J = 7.7 Hz, 2H), 7.05 (d, J =8.0 Hz, 2H), 5.37 (br, H), 4.03 (d, J =4.2 Hz, 2H), 2.42 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.6, 36.7, 35.5, 3.6, 29.7, 29.5, 27.0, 2.6, 46.4, 2.4; M (EI) m/z: 339, 207, 84, 57, 9. NH 4-Methyl-N-(4-methylbenzyl)benzenesulfonamide (3e 5 ) 4 4

H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =7.7 Hz, 2H), 7.24 (d, J =7.7Hz, 2H), 7.06-7.0 (m, 4H), 5.8 (br, H), 4.0 (d, J =6.0 Hz, 2H), 2.39 (s, 3H), 2.26 (s, 3H); 3 C NMR (00MHz, CDCl 3 ): δ 43.2, 37.3, 36.8, 33.2, 29.5, 29., 27.7, 27.0, 46.8, 2.3, 20.9; M (EI) m/z: 275, 20, 39, 20, 9. NH N-(4-Methoxybenzyl)-4-methylbenzenesulfonamide (3e 6 ) 5 H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =7.4 Hz, 2H), 7.25 (d, J =7.3 Hz, 2H), 7.08 (d, J =7.4 Hz, 2H), 6.75 (d, J =7.4 Hz, 2H), 5.22 (br, H), 4.00 (d, J =3.8 Hz, 2H), 3.73 (s, 3H), 2.40 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 59.0, 43.2, 36.8, 29.5, 29., 28.3, 27.0, 3.8, 55., 46.5, 2.3; M (EI) m/z: 29, 55, 35, 2, 9. N N,4-Dimethyl-N-phenylbenzenesulfonamide (3f ) H NMR (400 MHz, CDCl 3 ): δ 7.43 (d, J =7.8 Hz, 2H), 7.3-7.22 (m, 5H), 7.0 (d, J =7.6 Hz, 2H), 3.6 (s, 3H), 2.4(s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.5, 4.6, 33.6, 29.3, 28.8, 27.9, 27.2, 26.6, 38., 2.5; M (EI) m/z: 26, 97, 55, 06, 9, 77. N Br N-(4-Bromophenyl)-N,4-dimethylbenzenesulfonamide (3f 2 ) H NMR (400 MHz, CDCl 3 ): δ 7.40 (d, J =8.5 Hz, 4H), 7.24 (d, J =7.7 Hz, 2H), 6.97 (d, J =7.3 Hz, 2H), 3.2 (s, 3H), 2.4 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.8, 40.6, 32.9, 3.8, 29.4, 28.0, 27.7, 20.8, 37.8, 2.4; M (EI) m/z: 340, 96, 55, 05, 9; HRM (EI) m/z: calcd for C 4 H 4 BrNNa 2 [M+Na]+, 36.9827; found 36.982. NH N,4-Dimethylbenzenesulfonamide (3g ) 5

H NMR (400 MHz, CDCl 3 ): δ 7.77 (d, J =8.Hz, 2H), 7.33 (d, J =8.0 Hz, 2H), 4.65 (br, H), 2.65 (d, J =5.0 Hz, 3H), 2.45 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.5, 35.8, 29.7, 27.2, 29.3, 2.5; M (EI) m/z: 85, 55, 2, 9. NH 4-Methyl-N-propylbenzenesulfonamide (3g 2 ) H NMR (400 MHz, CDCl 3 ): δ 7.78 (d, J =7.7 Hz, 2H), 7.33(d, J =7.7 Hz, 2H), 4.76 (br, H), 2.94-2.89 (m, 2H), 2.45 (s, 3H),.54-.45 (m, 2H), 0.88 (t, J =7.4 Hz, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.3, 37.0, 29.6, 27.0, 44.9, 22.9, 2.4,.0; M (EI) m/z: 23, 84, 55, 9. H N N-Tert-butyl-4-methylbenzenesulfonamide (3g 3 ) H NMR (400 MHz, CDCl 3 ): δ 7.77 (d, J =8.2 Hz, 2H), 7.27 (d, J =8.3 Hz, 2H), 4.63 (br, H), 2.42 (s, 3H),.22 (s, 9H); 3 C NMR (00 MHz, CDCl 3 ): δ 42.8, 40.5, 29.4, 27.0, 54.6, 30., 2.4; M (EI) m/z: 227, 22, 55, 9. NH N-Hexyl-4-methylbenzenesulfonamide (3g 4 ) H NMR (400 MHz, CDCl 3 ): δ 7.75 (d, J =8. Hz, 2H), 7.30 (d, J =8.0 Hz, 2H), 4.57 (br, H), 2.95-2.90 (m, 2H), 2.43 (s, 3H),.47-.40 (m, 2H),.26-.2 (m, 6H), 0.84 (t, J =6.7 Hz, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.3, 37.0, 29.6, 27., 43.2, 3.2, 29.5, 26., 22.4, 2.5, 3.9; M (EI) m/z: 255, 84, 55, 00, 9. NH N N-(2-(Dimethylamino)ethyl)-4-methylbenzenesulfonamide (3h) H NMR (400 MHz, CDCl 3 ): δ 7.76 (d, J =7.7 Hz, 2H), 7.3 (d, J =7.6 Hz, 2H), 2.98-2.96 (m, 2H), 2.43 (s, 3H), 2.35-2.32 (m, 2H), 2.09 (s, 6H),.26 (br, H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.3, 36.7, 29.6, 27., 57.0, 44.7, 40.0, 2.5; M (EI) m/z: 242, 23, 55, 48, 9; HRM (EI) m/z: calcd for C H 8 N 2 Na 2 [M+Na]+, 265.0980; found 265.098. 6

H N N-Allyl-4-methylbenzenesulfonamide (3i) H NMR (400 MHz, CDCl 3 ): δ 7.78 (d, J =8.3 Hz, 2H), 7.33 (d, J =8.0 Hz, 2H), 5.79-5.70 (m, H), 5.2-5.0 (m, 2H), 4.55 (br, H), 3.6 (t, J = 6.0 Hz, 2H), 2.45 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.5, 37.0, 33.0, 29.7, 27., 7.7, 45.8, 2.5; M (EI) m/z: 2, 84, 55, 9. N N,N-Diethyl-4-methylbenzenesulfonamide (3j) H NMR (400 MHz, CDCl 3 ): δ 7.7 (d, J =7.6 Hz, 2H), 7.30 (d, J =8.0 Hz, 2H), 3.24 (q, J =7. Hz, 4H), 2.43 (s, 3H),.4 (t, J =7. Hz, 6H); 3 C NMR (00 MHz, CDCl 3 ): δ 42.9, 37.4, 29.5, 27.0, 42.0, 2.4, 4.; M (EI) m/z: 227, 84, 55, 9. N N N-(2-cyanoethyl)-N,4-dimethylbenzenesulfonamide (3k) H NMR (400 MHz, CDCl 3 ): δ 7.69 (d, J =7.7 Hz, 2H), 7.35 (d, J =7.8 Hz, 2H), 3.33 (t, J =6.8 Hz, 2H), 2.86 (s, 3H), 2.67 (t, J =6.8 Hz, 2H), 2.45 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 44.0, 34.0, 29.9, 27.2, 7.4, 46.3, 36.0, 2.4, 8.; M (EI) m/z: 238, 98, 55, 9; HRM (EI) m/z: calcd for C H 4 N 2 Na 2 [M+Na]+, 26.0674; found 26.0668. N -Tosylpyrrolidine (3l) H NMR (400 MHz, CDCl 3 ): δ 7.72 (d, J =8.0 Hz, 2H), 7.32 (d, J =8.0 Hz, 2H), 3.23 (t, J =6.6 Hz, 4H), 2.43 (s, 3H),.78-.72(m, 4H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.2, 33.9, 29.5, 27.5, 47.8, 25., 2.4; M (EI) m/z: 225, 55, 9. N 4-Tosylmorpholine (3m) 7

H NMR (400 MHz, CDCl 3 ): δ 7.64 (d, J =8. Hz, 2H), 7.35 (d, J =8.0 Hz, 2H), 3.74(t, J =4.8 Hz, 4H), 2.98 (t, J =4.8 Hz, 4H), 2.44 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.9, 32.0, 29.7, 27.8, 66.0, 45.9, 2.5; M (EI) m/z: 24, 98, 55, 06, 9, 86. N 4-Tosylthiomorpholine (3n) 6 H NMR (400 MHz, CDCl 3 ): δ 7.64 (d, J =7.7 Hz, 2H), 7.35 (d, J =7.8 Hz, 2H), 3.34 (s, 4H), 2.72 (s, 4H), 2.46 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 43.7, 33.7, 29.8, 27.4, 47.8, 27.3, 2.5; M (EI) m/z: 257, 242, 93, 55, 02, 9. N N-Benzyl-N-methylbenzenesulfonamide (3o ) 7 H NMR (400 MHz, CDCl 3 ): δ 7.85 (d, J =7.6 Hz, 2H), 7.64-7.54 (m, 3H), 7.35-7.27 (m, 5H), 4.5 (s, 2H), 2.6 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 37.4, 35.5, 32.6, 29., 28.6, 28.3, 27.9, 27.4, 54., 34.3; M (EI) m/z: 26, 84, 4, 8, 9. F N N-Benzyl-4-fluoro-N-methylbenzenesulfonamide (3o 2 ) 7 H NMR (400 MHz, CDCl 3 ): δ 7.87-7.84 (m, 2H), 7.33-7.2 (m, 7H), 4.5 (s, 2H), 2.6 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 66.3, 63.8, 35.3, 33.6, 30., 30.0, 28.6, 28.3, 27.9, 6.4, 6.2, 54.0, 34.2; M (EI) m/z: 279, 202, 20, 9. Cl N N-Benzyl-4-chloro-N-methylbenzenesulfonamide (3o 3 ) 7 8

H NMR (400 MHz, CDCl 3 ): δ 7.77 (d, J =7.9 Hz, 2H), 7.53 (d, J =8.0 Hz, 2H), 7.35-7.26 (m, 5H), 4.5 (s, 2H), 2.6 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 39.2, 36.0, 35.2, 29.4, 28.8, 28.6, 28.3, 28.0, 54.0, 34.2; M (EI) m/z: 295, 28, 75, 20, 9. Br N N-Benzyl-4-bromo-N-methylbenzenesulfonamide (3o 4 ) 7 H NMR (400 MHz, CDCl 3 ): δ 7.70 (s, 4H), 7.35-7.26 (m, 5H), 4.5 (s, 2H), 2.6 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 36.5, 35.2, 32.4, 28.9, 28.7, 28.3, 28.0, 27.6, 54.0, 34.3; M (EI) m/z: 339, 262, 55, 20, 9. 2-Tosylethene-,-diyldibenzene (4a) 8 H NMR (400 MHz, CDCl 3 ): δ 7.47 (d, J =8.2 Hz, 2H), 7.38-7.33 (m, 2H), 7.29 (td, J =7.4,.6 Hz, 4H), 7.20-7.8 (m, 2H), 7.4 (d, J =8. Hz, 2H), 7.0-7.08 (m, 2H), 6.99 (s, H), 2.37 (s, 3H); 3 C NMR (00 MHz, CDCl 3 ): δ 54.6, 43.7, 39.2, 38.6, 35.5, 30.2, 29.7, 29.3, 28.9, 28.8, 28.5, 28., 27.7, 27.6, 2.5; M (EI) m/z: 334, 269, 78, 67, 39, 9. References. X. D. Tang, L. B. Huang, C. R. Qi, X. Wu, W. Q. Wu and H. F. Jiang, Chem. Commun. 203, 49, 602. 2. F. hi, M. K. Tse, X. J. Cui, D. Gördes, D. Michalik, K. Thurow, Y. Q. Deng and M. Beller, Angew. Chem., Int. Ed. 2009, 48, 592. 3. A. Kamal, J.. Reddy, E. V. Bharathi and D. Dastagiri, Tetrahedron Letters. 2008, 49, 348. 4. X. J. Cui, F. hi, Y. Zhang and Y. Q. Deng, Tetrahedron Letters. 200, 5, 2048. 5. C. Z. Liu,. H. Liao, Q. Li,. L. Feng, Q. un, X. C. Yu and Q. Xu, J. rg. Chem. 20, 76, 5759. 6. K. aruta, T. giku and K. Fukase, Tetrahedron Letters. 2009, 50, 4364. 7. D. A. Powell and H. Fan, J. rg. Chem. 200, 75, 2726. 8. D. C. Reeves,. Rodriguez, H. Lee, N. Haddad, D. Krishnamurthy and C. H. enanayake, Tetrahedron Letters. 2009, 50, 2870. 9

NMR spectra of the prepared compounds Fig. -. H-NMR spectrum of 3a. Fig. -2. 3 C-NMR spectrum of 3a. 0

Fig. -3. H-NMR spectrum of 3b. Fig. -4. 3 C-NMR spectrum of 3b.

Fig. -5. H-NMR spectrum of 3c. Fig. -6. 3 C-NMR spectrum of 3c. 2

Fig. -7. H-NMR spectrum of 3d. Fig. -8. 3 C-NMR spectrum of 3d. 3

Fig. -9. H-NMR spectrum of 3e. Fig. -0. 3 C-NMR spectrum of 3e. 4

Fig. -. H-NMR spectrum of 3e 2. Fig. -2. 3 C-NMR spectrum of 3e 2. 5

Fig. -3. H-NMR spectrum of 3e 3. Fig. -4. 3 C-NMR spectrum of 3e 3. 6

Fig. -5. H-NMR spectrum of 3e 4. Fig. -6. 3 C-NMR spectrum of 3e 4. 7

Fig. -7. H-NMR spectrum of 3e 5. Fig. -8. 3 C-NMR spectrum of 3e 5. 8

Fig. -9. H-NMR spectrum of 3e 6. Fig. -20. 3 C-NMR spectrum of 3e 6. 9

Fig. -2. H-NMR spectrum of 3f. Fig. -22. 3 C-NMR spectrum of 3f. 20

Fig. -23. H-NMR spectrum of 3f 2. Fig. -24. 3 C-NMR spectrum of 3f 2. 2

Fig. -25. H-NMR spectrum of 3g. Fig. -26. 3 C-NMR spectrum of 3g. 22

Fig. -27. H-NMR spectrum of 3g 2. Fig. -28. 3 C-NMR spectrum of 3g 2. 23

Fig. -29. H-NMR spectrum of 3g 3. Fig. -30. 3 C-NMR spectrum of 3g 3. 24

Fig. -3. H-NMR spectrum of 3g 4. Fig. -32. 3 C-NMR spectrum of 3g 4. 25

Fig. -33. H-NMR spectrum of 3h. Fig. -34. 3 C-NMR spectrum of 3h. 26

Fig. -35. H-NMR spectrum of 3i. Fig. -36. 3 C-NMR spectrum of 3i. 27

Fig. -37. H-NMR spectrum of 3j. Fig. -38. 3 C-NMR spectrum of 3j. 28

Fig. -39. H-NMR spectrum of 3k. Fig. -40. 3 C-NMR spectrum of 3k. 29

Fig. -4. H-NMR spectrum of 3l. Fig. -42. 3 C-NMR spectrum of 3l. 30

Fig. -43. H-NMR spectrum of 3m. Fig. -44. 3 C-NMR spectrum of 3m. 3

Fig. -45. H-NMR spectrum of 3n. Fig. -46. 3 C-NMR spectrum of 3n. 32

Fig. -47. H-NMR spectrum of 3o. Fig. -48. 3 C-NMR spectrum of 3o. 33

Fig. -49. H-NMR spectrum of 3o 2. Fig. -50. 3 C-NMR spectrum of 3o 2. 34

Fig. -5. H-NMR spectrum of 3o 3. Fig. -52. 3 C-NMR spectrum of 3o 3. 35

Fig. -53. H-NMR spectrum of 3o 4. Fig. -54. 3 C-NMR spectrum of 3o 4. 36

Fig. -55. H-NMR spectrum of 4a. Fig. -56. 3 C-NMR spectrum of 4a. 37