ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ ΑΕΠΠ

Σχετικά έγγραφα
ΘΕΜΑ 1ο Α. 1-6 Σωστό Λάθος Μονάδες 12 Β. Στήλης Στήλης Β Στήλης Α Στήλης Β).

ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

Τρίτη, 3 Ιουνίου 2003 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ

περισσότερα από ένα παραδείγµατα εντολών της Στήλης Β).

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) Γ ΤΑΞΗΣ 2003

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ) Γ ΤΑΞΗΣ 2003

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2006

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΕΠΑΝΑΛΗΠΤΙΚΟ ΔΙΑΓΩΝΙΣΜΑ ΟΝΟΜΑΤΕΠΩΝΥΜΟ:

ΜΑΘΗΜΑ / ΤΑΞΗ : ΑΕΠΠ / ΘΕΡΙΝΑ ΣΕΙΡΑ: 1 η ΗΜΕΡΟΜΗΝΙΑ: ΘΕΜΑ Α

Γ. ίνεται το παρακάτω πρόγραµµα και υποπρογράµµατα: ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ)

Στο παραπάνω τμήμα υπάρχουν περιττοί έλεγχοι. Να γράψετε ξανά το παραπάνω τμήμα χωρίς τους περιττούς ελέγχους.

Γκύζη 14-Αθήνα Τηλ :

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 4 ΙΟΥΝΙΟΥ 2005

Να γράψετε τα αποτελέσματα αυτού του αλγόριθμου για Χ=13, Χ=9 και Χ=22. Και στις 3 περιπτώσεις το αποτέλεσμα του αλγορίθμου είναι 1

Γενικές εξετάσεις 2014 Ανάπτυξη εφαρμογών σε προγραμματιστικό περιβάλλον Τεχνολογική Κατεύθυνση

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ 2012

ΔΙΑΓΩΝΙΣΜΑ ΕΚΠ. ΕΤΟΥΣ ΑΠΑΝΤΗΣΕΙΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ


Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20

Β ΛΥΚΕΙΟΥ ΕΙΣΑΓΩΓΗ ΣΤΙΣ ΑΡΧΕΣ ΤΗΣ ΕΠΙΣΤΗΜΗΣ ΤΩΝ Η/Υ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

ΘΕΜΑΤΑ ΚΑΙ ΑΠΑΝΤΗΣΕΙΣ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ 2014

Διαγώνισμα. Ανάπτυξης Εφαρμογών. Προγραμματιστικό Περιβάλλον. 1. Να μετατραπεί σε ισοδύναμο με αποκλειστική χρήση της δομής ΟΣΟ... ΕΠΑΝΑΛΑΒΕ.

Παλλατίδειο ΓΕΛ Σιδηροκάστρου

ΕΠΑΝΑΛΗΠΤΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΕΜΠΤΗ 5 ΙΟΥΛΙΟΥ ΑΕΠΠ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. Για i από 1 μέχρι Μ Εμφάνισε A[4,i] Τέλος_επανάληψης. (μονάδες 6) ΤΕΛΟΣ 1ης ΑΠΟ 7 ΣΕΛΙΔΕΣ

Στήλη Β Προτάσεις. 1. Όσο συνθήκη επανάλαβε εντολές Τέλος_επανάληψης 2. Αρχή_επανάληψης εντολές Μέχρις_ότου συνθήκη

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 EKΠΑΙΔΕΥΣΗ: Με Οράματα και Πράξεις για την Παιδεία -1-

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. ii) Πόσες φορές θα εκτελεστεί η εντολή ΔΙΑΒΑΣΕ Α[μ,λ] στον αλγόριθμο της προηγούμενης ερώτησης; α) 35 β) 12 γ) 20

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ & ΥΠΗΡΕΣΙΩΝ 2005

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Θέμα 1 ο. Επαναληπτικό ΛΥΣΕΙΣ

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ 2016 Α.Ε.Π.Π. Γ ΛΥΚΕΙΟΥ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ. Θέματα και Απαντήσεις

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2007

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΥΚΛΟΣ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΥΠΗΡΕΣΙΩΝ)

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον 2o Επαναληπτικό Διαγώνισμα Κεφ: 2 ο 7 ο 8 ο ΗΜΕΡΟΜΗΝΙΑ 21/ 10/ 2017

Α. α) Πότε ένα πρόβλημα χαρακτηρίζεται 1) ημιδομημένο 2) ανοικτό 3) δομημένο Μονάδες 6

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. i. Η συνθήκη α > β ή α <= β α) είναι πάντα Αληθής β) είναι πάντα Ψευδής γ) δεν υπολογίζεται δ) τίποτα από τα προηγούμενα

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΕΠΠ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ / Γ3 Γ4 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

α. Να συμπληρώσετε τις επόμενες εντολές εκχώρησης, ώστε τα κενά κελιά του πίνακα να αποκτήσουν τις επιθυμητές τιμές.

ΑΕΠΠ - ΗΜΕΡΗΣΙΑ ΛΥΚΕΙΑ ΘΕΜΑΤΑ ΚΑΙ ΛΥΣΕΙΣ

Σημείωση: Για τα θέματα που ακολουθούν ο παρακάτω πίνακας παρουσιάζει ισοδύναμα μεταξύ τους σύμβολα και εκφράσεις. := ή =

ΤΡΙΩΡΗ ΓΡΑΠΤΗ ΔΟΚΙΜΑΣΙΑ

Τρίτη, 1 Ιουνίου 2004 ΤΕΧΝΟΛΟΓΙΚΗ ΚΑΤΕΥΘΥΝΣΗ Γ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ

Α1. Στον προγραµµατισµό χρησιµοποιούνται δοµές δεδοµένων. 1. Τι είναι δυναµική δοµή δεδοµένων; Μονάδες 3 2. Τι είναι στατική δοµή δεδοµένων;

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΜΑΡΤΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : 6 (ΕΞΙ)

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Δ ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΠΑΡΑΣΚΕΥΗ 30 MAΪΟΥ ΑΕΠΠ

Α 5. β) Να αναφέρετε από ένα παράδειγµα προβλήµατος για κάθε µια από τις παραπάνω κατηγορίες.

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης

10 Α2. 5 Α3. (ΟΧΙ = 20-4*2^2)) H (X>Ψ ΚΑΙ X > Ψ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΕΡΩΤΗΣΕΙΣ ΑΞΙΟΛΟΓΗΣΗΣ ΓΙΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΕΙΣ. Επιµέλεια: Οµάδα Πληροφορικής της Ώθησης

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ' ΛΥΚΕΙΟΥ ΤΕΧΝ/ΚΗΣ ΚΑΤ/ΝΣΗΣ (Πλ. & Υπ.) 2006 ΕΚΦΩΝΗΣΕΙΣ ÈÅÌÅËÉÏ

ΔΟΜΗΜΕΝΟΣ ΠΡΟΓΡΑΜΜΑΤΙΣΜΟΣ

ΘΕΜΑ 1 ο. Στήλη Β Προτάσεις. β. Ο βρόχος επανάληψης τερµατίζεται, όταν η συνθήκη είναι αληθής. όταν η συνθήκη είναι ψευδής.

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

6. Σ 7. Λ 8. Λ 9. Λ 10. Λ

Θέματα ΑΕΠΠ Πανελλήνιες Εξετάσεις 2008

Σε καθεμιά από τις παρακάτω περιπτώσεις, να μετατρέψετε τη δομή επανάληψης ΟΣΟ στην δομή ΑΠΑΝΤΗΣΗ ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ ΜΕΧΡΙΣ_ΟΤΟΥ Α<-54

Γ ΛΥΚΕΙΟΥ ΘΕΤ. ΚΑΤΕΥΘ. ΑΕΠΠ

ΔΙΑΓΩΝΙΣΜΑ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ

Γ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ. Ημερομηνία: Πέμπτη 12 Απριλίου 2018 Διάρκεια Εξέτασης: 3 ώρες ΕΚΦΩΝΗΣΕΙΣ

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ 29 ΜΑΪΟΥ 2013 ΕΚΦΩΝΗΣΕΙΣ

ΔΙΑΓΩΝΙΣΜΑ 1ο Γ Τάξη Ενιαίου Λυκείου Σχολικό Έτος ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΣΑΒΒΑΤΟ 31 MAΪΟΥ ΑΕΠΠ

ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ Γ ΛΥΚΕΙΟΥ ΗΜΕΡΟΜΗΝΙΑ: 1/12/2013

Α1. Να γράψετε τα τμήματα αλγορίθμου, που αντιστοιχούν στα τμήματα των διαγραμμάτων ροής που ακολουθούν.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ÑÏÕËÁ ÌÁÊÑÇ. Β. Να αναφέρετε τις κυριότερες τυποποιηµένες τεχνικές σχεδίασης αλγορίθµων. ΜΟΝΑ ΕΣ 3

Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ Γ ΛΥΚΕΙΟΥ

ΑΠΑΝΤΗΣΗ 1. Λάθος, 2. Σωστό, 3. Σωστό, 4. Λάθος, 5. Λάθος, 6. Σωστό Β. Ποίοι είναι οι κανόνες που πρέπει να ακολουθούν οι λίστες παραµέτρων.

ΠΡΟΤΕΙΝΟΜΕΝΑ ΘΕΜΑΤΑ ΑΝΑΠΤΥΞΗΣ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ

Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

α. Προσπέλαση β. Αντιγραφή γ. ιαγραφή δ. Αναζήτηση ε. Εισαγωγή στ. Ταξινόµηση

Transcript:

ΑΠΟΛΥΤΗΡΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 - ΑΕΠΠ ΘΕΜΑ 1ο Α. Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις 1-6 και δίπλα τη λέξη Σωστό, αν είναι σωστή, ή τη λέξη Λάθος, αν είναι λανθασμένη. Μονάδες 12 1. Ένας αλγόριθμος είναι μία πεπερασμένη σειρά ενεργειών. 2. Οι ενέργειες που ορίζει ένας αλγόριθμος είναι αυστηρά καθορισμένες. 3. Η έννοια του αλγόριθμου συνδέεται αποκλειστικά με την Πληροφορική. 4. Ο αλγόριθμος τελειώνει μετά από πεπερασμένα βήματα εκτέλεσης εντολών. 5. Ο πιο δομημένος τρόπος παρουσίασης αλγορίθμων είναι με ελεύθερο κείμενο. 6. Ένας αλγόριθμος στοχεύει στην επίλυση ενός προβλήματος. 1. Σ 2. Σ 3. Λ 4. Σ 5. Λ 6. Σ Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α και δίπλα τα γράμματα της Στήλης Β που αντιστοιχούν σωστά. (Να σημειωθεί ότι σε κάποια στοιχεία της ψευδογλώσσας της Στήλης Α αντιστοιχούν περισσότερα από ένα παραδείγματα εντολών της Στήλης Β). Μονάδες 10 Στήλη Α Στοιχεία ψευδογλώσσας Στήλη Β Παραδείγματα εντολών α. Επίλεξε Χ 1. εντολή εκχώρησης 2. δομή επιλογής Περίπτωση 1 X Χ + 1 Περίπτωση 2 X α * β Τέλος_επιλογών β. Όσο Χ < 0 επανάλαβε X Χ 1 Τέλος_επανάληψης 3. δομή επανάληψης γ. α β + 1 δ. Αρχή_επανάληψης Ι Ι 1 Μέχρις_ότου Ι < 0 ε. Αν Χ = 2 τότε

Χ Χ / 2 Τέλος_αν 1 - γ, 2 - α και ε, 3 - β και δ Γ. Να αναφέρετε τέσσερις τυπικές επεξεργασίες που γίνονται στα στοιχεία των πινάκων. Μονάδες 4 Δ. Τι είναι συνάρτηση (σε προγραμματιστικό περιβάλλον); Μονάδες 4 Ε. Τι είναι διαδικασία (σε προγραμματιστικό περιβάλλον); Μονάδες 4 ΣΤ. Να αναφέρετε τρία πλεονεκτήματα των γλωσσών υψηλού επιπέδου σε σχέση με τις συμβολικές γλώσσες. Μονάδες 6 Σελίδα 198, παράγραφος 9.4 Δ. Σελίδα 211, παράγραφος 10.5 Ε. Σελίδα 211, παράγραφος 10.5 ΣΤ. Σελίδα 127, πλαίσιο παράγραφος 6.2.3 ΘΕΜΑ 2ο Να γράψετε στο τετράδιό σας τις τιμές των μεταβλητών Ν, Μ και Β, όπως αυτές τυπώνονται σε κάθε επανάληψη, και την τιμή της μεταβλητής Χ που τυπώνεται μετά το τέλος της επανάληψης, κατά την εκτέλεση του παρακάτω αλγόριθμου. Μονάδες 20 Αλγόριθμος Αριθμοί Α 1 Β 1 Ν 0 Μ 2 Όσο Β < 6 επανάλαβε Χ Α + Β Αν Χ mod 2 = 0 τότε Ν Ν + 1 Αλλιώς Μ Μ + 1 Α Β Β Χ Εμφάνισε Ν, Μ, Β Τέλος_επανάληψης Εμφάνισε Χ Τέλος Αριθμοί

A Β Ν Μ Χ Αρχικοποίηση 1 1 0 2 1 < 6 Ισχύει - 1η επανάληψη 2 2 mod 2 = 0 Αληθής 1 Πράξεις 1 2 2 < 6 Ισχύει - 2η επανάληψη 3 3 mod 2 = 0 Ψευδής 3 Πράξεις 2 3 3 < 6 Ισχύει - 3η επανάληψη 5 5 mod 2 = 0 Ψευδής 4 Πράξεις 3 5 5 < 6 Ισχύει - 4η επανάληψη 8 8 mod 2 = 0 Αληθής 2 Πράξεις 5 8 6 < 6 Ισχύει - Τέλος επανάληψης Θα εμφανιστούν οι τιμές: 1 2 2, 1 3 3, 1 4 5, 2 4 8 και 8 ΘΕΜΑ 3ο Ο Δείκτης Μάζας του ανθρώπινου Σώματος (ΔΜΣ) υπολογίζεται από το βάρος (Β) σε χλγ. και το ύψος (Υ) σε μέτρα με τον τύπο ΔΜΣ=Β/Υ 2. Ο ανωτέρω τύπος ισχύει για άτομα άνω των 18 ετών. Το άτομο ανάλογα με την τιμή του ΔΜΣ χαρακτηρίζεται σύμφωνα με τον παρακάτω πίνακα: ΔΜΣ < 18.5 "αδύνατο άτομο" 18,5 ΔΜΣ < 25 "κανονικό άτομο" 25 ΔΜΣ < 30 "βαρύ άτομο" 30 ΔΜΣ "υπέρβαρο άτομο" Να γράψετε αλγόριθμο ο οποίος: α. να διαβάζει την ηλικία, το βάρος και το ύψος του ατόμου Μονάδες 3 β. εάν η ηλικία είναι μεγαλύτερη των 18 ετών, τότε 1. να υπολογίζει το ΔΜΣ Μονάδες 5 2. να ελέγχει την τιμή του ΔΜΣ από τον ανωτέρω πίνακα και να εμφανίζει τον αντίστοιχο χαρακτηρισμό Μονάδες 10 γ. εάν η ηλικία είναι μικρότερη ή ίση των 18 ετών, τότε να εμφανίζει το μήνυμα "δεν ισχύει

ο δείκτης ΔΜΣ". Μονάδες 2 Παρατήρηση: Θεωρήστε ότι το βάρος, το ύψος και η ηλικία είναι θετικοί αριθμοί. Αλγόριθμος Θέμα_3 Διάβασε Ηλικία, Βάρος, Ύψος! ερώτημα α Αν Ηλικία > 18 τότε ΔΜΣ Βάρος / Ύψος ^ 2! ερώτημα β1 Αν ΔΜΣ < 18.5 τότε! ερώτημα β2 Εκτύπωσε "Αδύνατο άτομο" Αλλιώς_Αν ΔΜΣ < 25 τότε Εκτύπωσε "Κανονικό άτομο" Αλλιώς_Αν ΔΜΣ < 30 τότε Εκτύπωσε "Βαρύ άτομο" Αλλιώς Εκτύπωσε "Υπέρβαρο άτομο" Αλλιώς! ερώτημα γ Εκτύπωσε "Δεν ισχύει ο δείκτης ΔΜΣ" Τέλος Θέμα_3 ΘΕΜΑ 4ο Μια αλυσίδα κινηματογράφων έχει δέκα αίθουσες. Τα ονόματα των αιθουσών καταχωρούνται σε ένα μονοδιάστατο πίνακα και οι μηνιαίες εισπράξεις κάθε αίθουσας για ένα έτος καταχωρούνται σε πίνακα δύο διαστάσεων. Να γράψετε αλγόριθμο ο οποίος: α. να διαβάζει τα ονόματα των αιθουσών Μονάδες 2 β. να διαβάζει τις μηνιαίες εισπράξεις των αιθουσών αυτού του έτους Μονάδες 3 γ. να υπολογίζει τη μέση μηνιαία τιμή των εισπράξεων για κάθε αίθουσα Μονάδες 7 δ. να βρίσκει και να εμφανίζει τη μικρότερη μέση μηνιαία τιμή Μονάδες 5 ε. να βρίσκει και να εμφανίζει το όνομα ή τα ονόματα των αιθουσών που έχουν την ανωτέρω μικρότερη μέση μηνιαία τιμή. Μονάδες 3 Παρατήρηση: Θεωρήστε ότι οι µηνιαίες εισπράξεις είναι θετικοί αριθµοί. Αλγόριθμος Θέμα_4 Για i από 1 μέχρι 10! ερώτημα α Διάβασε ΟΝΟΜΑ[i] Για i από 1 μέχρι 10! ερώτημα β Για j από 1 μέχρι 12 Διάβασε ΕΙΣΠΡΑΞΕΙΣ[i, j] Για i από 1 μέχρι 10 άθροισμα 0 Για j από 1 μέχρι 12 άθροισμα άθροισμα + ΕΙΣΠΡΑΞΕΙΣ[i, j] MO[i] άθροισμα / 12! ερώτημα γ ελάχιστος ΜΟ[1]! ερώτημα δ Για i από 2 μέχρι 10 Αν ελάχιστος > ΜΟ[i] τότε ελάχιστος ΜΟ[i]

Εμφάνισε "Η μικρότερη τιμή είναι ", ελάχιστος Για i από 1 μέχρι 10! ερώτημα δ Αν ΜΟ[i] = ελάχιστος τότε Εμφάνισε ΟΝΟΜΑ[i] Τέλος Θέμα_4