Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Electronic Supplementary Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Divergent synthesis of various iminocyclitols from D-ribose

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

Supporting Information

Supporting information

Supplementary Material

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supporting Information

Supporting Information for

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Selective mono reduction of bisphosphine

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Experimental section

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Electronic Supplementary Information (ESI)

Supporting Information. Experimental section

Supporting Information

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information for

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

gem-dichloroalkenes for the Construction of 3-Arylchromones

Aminofluorination of Fluorinated Alkenes

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary Information for

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information for

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Supporting Information

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Supporting Information

Supporting Information

Supporting information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Acylative Suzuki coupling of amides: Acyl-nitrogen activation via synergy of independently modifiable activating groups

Supporting Information

Synthesis of spiropyrazoline oxindoles by a formal [4+1] annulation reaction between 3-bromooxindoles and in situ-derived 1,2-diaza-1,3- dienes

The Free Internet Journal for Organic Chemistry

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information. Chemoselective Acylation of 2-Amino-8-quinolinol in the Generation of C2-Amides or C8-Esters

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Transcript:

Supplementary Data Synthesis, Chemo-selective Properties of Substituted 9-Aryl-9H-fluorenes from Triarylcarbinols and Enantiomerical Kinetics of Chiral 9-Methoxy-11-(naphthalen-1-yl)-11H-benzo[a]fluorene Ming-yu Teng* a,b, Ying Liu b, Shao-lu Li b, Guoli Huang a,b, Juli Jiang* b, and Leyong Wang* b a Facult of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, P. R. China; E-mail: mingyu_teng@hotmail.com b Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China; E-mail: jjl@nju.edu.cn; lywang@nju.edu.cn Contents I. General Procedure for Preparation of 1c, 1d, 1e, 1g, 1j, 1k... S2 II. General Procedure for Preparation of 1i... S5 III. NMR Spectral Characterization ( 1 H and 13 C NMR for 1c, 1d, 1e, 1g, 1i, 1j, 1k, 2a, 2b, 2c, 2d, 2e, 2f, and 2g)... S7 IV. Variable-temperature 1 H NMR and Eyring Plot Analysis of 2g and 2g... S21 V. EI-TF HRMS Spectra of 1d, 1e, 2a, and 2g... S23 VI. HPLC of 2g.... S25 VII. HMBC/HMQC 2D NMR Spectroscopy of 2g..... S26 Reference..... S29 S1

I. General Procedure for Preparation of 1c, 1d, 1e, 1g, 1h, 1k, 1l) (except 1i). [S1] R 3 R 1 Br Mg THF R 1 MgBr + R 3 CEt 1. THF H 2. H + R 1 R 2. R 1 = R 2 A mixture of bromoarene (32.0 mmol) and 20 ml of anhydrous THF is added to magnesium (2.30 g, 96.0 mmol), and the flask warmed gently until the reaction start. A mixture of bromoarene (64.0 mmol) and 40 ml of anhydrous THF is run in at such a rate as to cause vigorous refluxing, the mixture is warmed to refluxing for two hours, in order to dissolve all the magnesium. The reaction was cooled to room temperature, aromatic ester (40.0 mmol) is added into the Grinard solution, and the mixture is warmed to reflux over night. The reaction mixture is cooled in an ice-salt bath and then added slowly, with constant stirring, into 60 ml saturated NH 4 Cl aqueous solution. The mixture is distilled to remove THF and stream-distilled to remove biphenyl and unchanged bromobenzene. The product is filtered, washed with water, and recrystallized from ethanol and water. (4-Bromophenyl)bis(3-methoxyphenyl)methanol (1c) 5' 6' 2 3 3' 4' 2' H 6 5 Br Colorless solid; m.p. 127-128 ºC; R f = 0.43 (petroleum ether/ethyl acetate = 4/1); product 1.41 g (yield 35.3%). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 7.42 (d, 2H, J = 8.7 Hz; H-3, 5), 7.23 (t, 2H, J = 8.7 Hz; H-5 ), 7.18 (d, 2H, J = 8.7 Hz; H-2, 6), 6.84 (s, 2H; H-2 ), 6.84-6.78 (m, 4H; H-4, 6 ), 3.75 (s, 6H; H-3 ). 13 C NMR (75M Hz): δ = 159.2, 147.8, 145.5, 130.1, 129.6, 129.0, 121.4, 120.3, 113.8, 112.5, 81.5, 55.1. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3554, 2969, 1597, 1484, 1421, 1321, 1286, 1251, 1166, 1137, 1072, 1042, 1022, 1010, 934, 865, 833, 775, 704. Anal. Calc. for C 21 H 19 Br 3 : C, 63.17; H, 4.80. Found: C, 63.13; H, 4.69. (2,5-Dichlorophenyl)bis(3-methoxyphenyl)methanol (1d) 5' 6' 6 Cl 3' 4' 2' H Cl 3 4 S2

Colorless solid; m.p. 42-44 ºC; R f = 0.53 (petroleum ether/ethyl acetate = 4/1); product 6.59 g (yield 42.3%). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 7.32 (d, 1H, J = 8.4 Hz; H-3), 7.24 (t, 2H, J = 8.4 Hz; H-5 ), 7.23 (dd, 1H, J = 8.4, 2.1 Hz; H-4), 6.89 (t, 2H, J = 2.1 Hz; H-2 ), 6.85 (dd, 2H, J = 8. 4, 2.1 Hz; H-4 ), 6.76 (d, 2H, J = 8.4 Hz; H-6 ), 6.74 (d, 2H, J = 2.1 Hz, H-6), 3.78 (s, 6H; H-3 ). 13 C NMR (75M Hz): δ = 159.4, 146.2, 145.3, 132.5, 132.2, 131.4, 131.3, 129.0, 120.1, 113.4, 112.8, 82.1, 55.1. FT-IR (cm -1 ): max (KBr/cm -1 ), 3445, 2956, 1599, 1559, 1487, 1457, 1289, 1250, 1105, 1047, 776, 758, 699, 553. HRMS (EI): m/z calcd for C 21 H 18 Cl 2 3 [M + ]: 388.0633; found: 388.0659. Bis(3-methoxyphenyl)(naphthalen-1-yl)methanol (1e) 5' 6' 2 3 3' 4' 2' H 8 7 6 4 5 Colorless solid; m.p. 71-73 ºC; R f = 0.42 (petroleum ether/ethyl acetate = 4/1); product 6.04 g (yield 62.7%). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 8.11 (d, 1H, J = 8.7 Hz; H-8), 7.85-7.78 (m, 2H; H-4, 5), 7.39 (td, 1H, J = 8.8, 0.9 Hz; H-6), 7.31-7.27 (m, 1H; naphthalen H), 7.22 (t, 2H, J = 8.1 Hz; H-5 ) 7.17-7.12 (m, 1H; naphthalen H), 6.95 (t, 2H, J = 2.1 Hz; H-2 ), 6.88 (dd, 2H, J = 7.5, 0.9 Hz; naphthalen H), 6.84-6.81 (m, 3H; H-6, naphthalen 2-H), 3.74 (s, 6H; H-3 ). 13 C NMR (75M Hz): δ = 159.3, 148.4, 141.7, 134.8, 131.1, 129.3, 128.9, 128.1, 127.8, 125.6, 125.2, 124.2, 120.3, 113.6, 113.5, 112.3, 83.1, 55.1. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3454, 2935, 1597, 1486, 1463, 1432, 1316, 1289, 1250, 1143, 1040, 865, 781, 760, 700. HRMS (EI): m/z calcd for C 25 H 22 3 [M] + : 370.1569; found: 370.1575. (3-Methoxyphenyl)dinaphthalen-1-ylmethanol (1g) 4 5 3 2 H 8 6' 2' 5' 4' 3' 6 7 Colorless solid; m.p. = 206-207 ºC; R f = 0.63 (petroleum ether/ethyl acetate = 4/1); product 4.06 g (yield 52.1%).. S3

1 H NMR (300M Hz, CDCl 3, TMS): δ = 8.26 (brs), 2H; H-8), 7.87 (d, 2H, J = 8.1 Hz; H-5), 7.80 (d, 2H, J = 8.1 Hz; H-4), 7.41 (td, 2H, J = 7.5, 0.9 Hz; H-6), 7.28 (t, 2H, J = 7.5 Hz; H-7), 7.23-7.18 (m, 3H, H-3, 5 ), 7.05 (s, 1H; H-2 ), 6.88-6.82 (m, 4H, H-2, 4 6 ), 3.75 (s, 6H; H-3 ). 13 C NMR (75M Hz): 159.4, 148.6, 141.9, 135.0, 131.2, 129.4, 129.2, 128.9, 128.8, 128.4, 128.2, 125.5, 124.3, 120.5, 113.9, 112.1, 85.1, 55.1. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3412, 3043, 1582, 1504, 1482, 1434, 1393, 1284, 1237, 1160, 1019, 875, 833, 806, 793, 776, 698, 560. Anal. Calc. for C 28 H 22 2 : C, 86.13; H, 5.68. Found: C, 86.21; H, 5.47. phenylbis(3-(trifluoromethyl)phenyl)methanol (1j) F 3 C 5' 6' 2 3 4' F 3 C 2' H 6 5 4 Colorless oil; R f = 0.30 (petroleum ether/ethyl acetate = 10/1); product 1.68 g (yield 42.4%). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 7.68 (s, 2H, H-2 ), 7.57 (d, 2H; J = 6.3 Hz; H-4 ), 7.48-7.43 (m, 4H; H-5, 6 ), 7.36 (m, 1H; H-4), 7.34 (d, 2H, J = 2.4 Hz; H-2, 6) 7.22-7.18 (m, 2H; H-3, 5), 2.91 (s, 1H; -H). 13 C NMR (75M Hz): δ = 146.1, 144.5, 130.3, 129.4 (t, J = 31.9), 127.5, 127.5, 127.1, 126.7, 124.9, 123.4, 123.3, 121.3, 80.6. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3454, 3076, 2926, 1492, 1446, 1330, 1168, 1120, 1076, 806, 703, 675. Anal. Calc. for C 21 H 14 F 6 : C, 63.64; H, 3.56. Found: C, 63.69; H, 3.47. (3-methoxyphenyl)bis(3-(trifluoromethyl)phenyl)methanol (1k) 5' F 3 C 6' 2 3 Me 4' F 3 C 2' H 6 5 4 Colorless solid; m.p. = 73-74 ºC; R f = 0.43 (petroleum ether/ethyl acetate = 10/1); product 1.59 g (yield 37.3%). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 7.68 (s, 2H, H-2 ), 7.57 (d, 2H; J = 6.3 Hz; H-4 ), 7.47-7.41 (m, 4H; H-5, 6 ), 7.27 (t, 1H; J = 8.1 Hz; H-5), 6.87 (dd, 1H, J = 8.1, 2.1 Hz; H-4), 6.78 (t, 1H; J = 2.1 Hz; H-2), 6.75 (d, 1H; J = 7.5 Hz; H-6), 3.75 (s, 3H; -Me), 2.92 (s, 1H; -H). S4

13 C NMR (75M Hz): δ = 159.6, 147.2, 147.0, 131.3, 130.4 (t, J = 31.7), 129.6, 128.8, 128.6, 124.5, 124.3 120.1, 114.0, 113.1, 81.4, 55.2. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3507, 2955, 1597, 1489, 1470, 1437, 1330, 1255, 1164, 1123, 1076, 1034, 809, 771, 705. Anal. Calc. for C 22 H 16 F 6 2 : C, 61.98; H, 3.78. Found: C, 61.93; H, 3.87. II. Procedure for Preparation of 1i A mixture of 1-bromo-3-(trifluoromethyl)benzene (4.95, 22.0 mmol) and 40 ml of anhydrous THF is added one third to magnesium (0.53g, 22.0 mmol), and the flask warmed gently until the reaction start. The residual mixture of benzophenone and anhydrous THF is run in at such a rate as to cause vigorous refluxing, the mixture is warmed to refluxing for two hours, in order to dissolved all the magnesium. The reaction was cooled to room temperature, 20.0 mmol of benzophenone is added into the Grinard solution, the mixture is warmed to reflux over night. The reaction mixture is cooled in an ice-salt bath and then added slowly, with constant stirring, into 16 ml saturated NH 4 Cl aqueous solution. The mixture is distilled to remove THF and stream-distilled to remove biphenyl and unchanged bromobenzene. The crude product was purified by column chromatography with silica gel using CH 2 Cl 2 as eluant to afford pure product. diphenyl(3-(trifluoromethyl)phenyl)methanol (1i) Colorless oil; R f = 0.41 (petroleum ether/ethyl acetate = 10/1); product 2.71g (yield 41.3 %). 1 H NMR (300M Hz, CDCl 3, TMS): δ = 7.75 (s, 1H, H-2 ), 7.58 (d, 1H; J = 7.8 Hz; H-4 ), 7.51-7.44 (m, 2H; H-5, 6 ), 7.39-7.27 (m, 10H; H-2, 3, 4, 5, 6), 2.98 (s, 1H; -H). 13 C NMR (75M Hz): δ = 147.9, 146.3, 131.5, 128.9, 128.8, 128.3, 127.9, 127.7, 124.5, 124.5, 124.2, 124.1, 81.9. FT-IR (cm -1 ): ν max (KBr/cm -1 ), 3449, 2925, 2855, 1448, 1167, 1128, 1076, 1018, 804, 755, 702, 661. Anal. Calc. for C 20 H 15 F 3 : C, 73.16; H, 4.60. Found: C, 73.07; H, 4.71. References [S1] Bachmann, W. E., Hetzner, H. P. rg. Synth. 1955, Coll. Vol. 3, 839. S5

III. NMR Spectral Characterization ( 1 H and 13 C NMR for 1c, 1d, 1e, 1g, 1i, 1j, 1k, 2a, 2b, 2c, 2d, 2e, 2f, 2g, and 3a) 1c in CDCl 3 7.427 7.399 7.248 7.242 7.214 7.187 7.180 7.157 6.839 6.828 6.801 6.775 6.772 3.737-0.011 Br Me Me 2.86 2.91 3.53 2.00 7.50 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 water 6.02 2.91 2.86 3.53 2.00 10.0 5.0 0.0 159.226 147.757 145.504 130.891 129.577 128.972 121.357 120.265 113.826 112.482 81.502 77.375 76.952 76.528 55.136 H Br 150 100 50 0 S6

1d in CDCl 3 7.325 7.297 7.266 7.258 7.244 7.239 7.213 7.208 6.892 6.885 6.879 6.867 6.861 6.840 6.834 6.778 6.752 6.746 6.737 3.767-0.000000 Cl Cl H 7.40 7.30 7.20 7.10 7.00 6.90 6.80 6.70 EtH EtH 6.00 3.01 1.03 2.98 1.01 3.42 10.0 5.0 0.0 159.419 146.153 145.252 132.481 132.225 131.393 131.316 128.990 120.301 120.113 113.420 112.818 82.118 55.123 Cl H Cl 150 100 50 0 S7

1e in CDCl 3 159.327 148.408 141.710 134.829 131.147 129.560 129.315 129.213 128.866 128.107 127.844 125.557 125.227 124.206 120.335 113.609 113.521 112.264 83.103 77.377 76.953 76.529 55.140 55.046 H 200 150 100 50 0 S8

1g in CDCl 3 159.421 148.580 141.874 134.994 131.232 129.437 129.159 128.877 128.763 128.449 128.235 125.475 125.241 124.262 120.505 113.852 112.128 85.110 77.391 77.173 76.968 76.545 55.069 H 200 150 100 50 0 S9

1i in CDCl 3 146.197 131.439 128.759 128.218 127.829 127.697 124.428 124.382 124.124 124.073 77.445 77.021 76.599 29.715 H F 3 C 200 150 100 50 0 S10

1j in CDCl 3 0.00000 2.905 7.184 7.191 7.202 7.206 7.216 7.251 7.340 7.346 7.357 7.364 7.429 7.437 7.449 7.475 7.561 7.577 7.582 7.678 F 3 C H 2.02 2.08 4.27 3.08 2.05 CF 3 7.70 7.60 7.50 7.40 7.30 7.20 7.10 water petroleum 2.02 2.08 4.27 3.08 2.05 1.00 10.0 5.0 0.0 29.796 76.626 77.054 77.476 81.688 122.378 123.764 124.441 124.533 125.989 126.935 127.842 128.231 128.581 128.655 130.533 130.966 131.429 145.636 147.191 F 3 C H CF 3 200 150 100 50 0 S11

1k in CDCl 3 55.23 76.58 77.01 77.43 81.43 113.12 114.01 120.22 124.33 124.53 128.57 128.75 129.55 131.31 146.96 147.16 159.63 F 3 C H CF 3 200 150 100 50 0 S12

2a in CDCl 3 7.592 7.564 7.254 7.228 7.202 7.175 6.911 6.904 6.884 6.876 6.834 6.828 6.791 6.785 6.764 6.758 6.715 6.689 6.641 6.635 4.919 3.770 3.735 0.000000 7.50 7.00 3.09 5.86 1.00 2.01 1.96 1.07 1.03 1.01 1.05 1.98 10.0 5.0 0.0 159.978 158.993 149.120 143.401 134.130 129.817 120.987 119.820 114.430 113.516 112.047 111.024 77.584 77.160 76.736 55.642 55.284 54.623 200 150 100 50 0 S13

2b in CDCl 3 0,02 3,78 3,79 4,02 4,96 6,83 6,83 6,89 6,90 6,92 6,93 7,09 7,10 7,12 7,13 7,26 7,26 7,27 7,29 7,59 7,61 Me Me 7.50 7.00 2.09 3.98 2.42 2.45 2.16 1.00 6.08 10.0 5.0 0.0 158.885 149.261 141.771 134.022 128.786 128.729 128.425 127.202 126.888 126.838 124.392 119.749 117.540 113.363 113.115 110.953 110.527 109.249 55.523 54.552 Me Me 200 150 100 50 0 S14

2c in CDCl 3 S15

2d in CDCl 3 7.611 7.584 7.453 7.424 7.258 7.151 7.143 7.122 7.114 6.944 6.936 6.916 6.909 6.873 6.502 6.493 5.614 3.794 1.518-0.00000 Cl Cl 7.50 7.00 6.50 6.66 1.00 1.01 2.10 2.29 1.13 1.05 2.20 10.0 5.0 0.0 159.052 147.850 141.949 134.185 133.193 132.798 130.724 129.067 128.416 120.090 113.733 110.968 55.651 50.227 Cl Cl 200 150 100 50 0 S16

2e in CDCl 3 160.041 159.596 150.960 143.462 141.676 139.452 134.102 133.016 130.597 130.013 129.043 128.962 126.455 124.859 124.453 120.619 120.387 118.306 114.203 113.052 111.832 111.073 77.583 77.160 76.737 55.635 55.213 54.154 200 150 100 50 0 S17

2f in CDCl 3 144.882 141.813 139.337 133.485 130.367 129.206 129.060 128.947 128.875 126.810 126.605 125.195 123.950 118.541 77.584 77.160 76.737 54.246 200 150 100 50 0 S18

2g in CDCl 3 159.124 151.032 142.032 139.688 137.685 134.342 133.814 132.900 132.145 130.057 129.225 128.856 128.783 128.713 128.557 128.384 128.243 127.124 126.396 126.233 126.084 125.674 125.593 125.397 124.681 124.380 124.289 123.548 120.390 118.431 118.182 113.224 112.407 110.801 110.109 55.328 48.037 200 150 100 50 0 S19

2g in DMS-d6 8.9826 8.9537 8.1739 8.1423 8.1143 8.0570 8.0299 7.9961 7.9698 7.9474 7.9198 7.9081 7.8229 7.8188 7.7948 7.7677 7.7134 7.6887 7.3544 7.2062 7.1940 7.1814 7.1390 7.1138 6.9895 6.9821 6.9617 6.9543 6.6859 6.6797 6.6650 6.4441 6.3776 6.3546 5.8528 3.6488 3.6066 3.3507 2.5078 2.5023 2.4968 Me 0.65 0.40 0.39 0.40 0.95 0.45 1.78 0.36 0.99 0.86 1.90 0.66 0.40 0.75 1.96 0.32 1.42 0.44 0.69 1.01 0.41 0.63 0.62 0.40 DMS 8.00 7.50 7.00 6.50 water 3.00 0.12 0.35 0.63 0.62 0.40 1.01 0.41 0.66 0.75 0.40 1.96 0.44 1.42 0.32 0.69 0.40 0.95 0.45 1.78 0.40 0.65 1.90 0.86 0.99 0.36 0.39 0.63 10.0 2g in benzene-d6 5.0 0.0 S20

IV. Variable-temperature 1 H NMR and Eyring Plot Analysis of 2g and 2g (300 MHz, DMS) 393 K 388 K 383 K 378 K 373 K 363 K 338 K 297 K 9.0 8.0 7.0 6.0 5.0 4.0 3.0 S21

ln(k)\ln(k/t) Electronic Supplementary Material (ESI) for RSC Advances T (K) rate constant k/s -1 1/T (K -1 ) 1/T 1000 ln(k) ln(k/t) ΔG (J/mol) 3.630E+02 4.000E+00 2.7548E-03 2.7548209 1.3863-4.50811 8.5313E+04 3.730E+02 8.000E+00 2.6810E-03 2.6809651 2.0794-3.84214 8.5598E+04 3.780E+02 1.200E+01 2.6455E-03 2.6455026 2.4849-3.44999 8.5513E+04 3.830E+02 2.000E+01 2.6110E-03 2.6109661 2.9957-2.9523 8.5059E+04 3.880E+02 3.500E+01 2.5773E-03 2.5773196 3.5553-2.40566 8.4406E+04 3.930E+02 5.000E+01 2.5445E-03 2.5445293 3.9120-2.06179 8.4370E+04 1/T - ln(k)\ln(k/t) 5.0000 4.0000 3.0000 2.0000 1.0000 0.0000-1.00002.5000-2.0000 E-03-3.0000-4.0000-5.0000-6.0000 2.5500 E-03 2.6000 E-03 2.6500 E-03 1/T ln(k) = -12364*1/T + 35.323 2.7000 E-03 2.7500 E-03 R 2 = 0.9875 2.8000 E-03 ln(k) ln(k/t) = -11986*1/T + 28.389 R 2 = 0.9868 ln(k/t) R 8.314E+0 ln(k)=lna-ea/rt Ea/R 12364 Ea (J/mol) 102.794E+3 -ΔH / R -1.199E+04 ln(k/t) = 23.76 + ΔS /8.31- ΔH /(8.31T) ΔH (J/mol) 99651.60 ΔG =(23.76-ln(k/T))*R*T ΔG =at(10.319-log(k/t)) a=1.914*0.01 (ΔG in kj/mol) a=1.914*10 (ΔG in J/mol) ΔG =ΔH -TΔS ΔS (J/mol*K) 37.6783112 (T = 373K) S22

V. MS Spectra 1d 1e S23

2a 2g S24

VI. HPLC of 2g. S25

VII. H-HCSY/HMBC/HMQC 2D NMR Spectroscopy of 2g (500M Hz, in CDCl 3 ). S26

S27

S28

Reference [S1]. Bachmann, W. E.; Hetzner H. P. rg. Synth. 1955, Coll. Vol. 3, 839-840. S29