Supporting Information

Σχετικά έγγραφα
Electronic Supplementary Information

Supporting Information

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting information

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information for

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Aminofluorination of Fluorinated Alkenes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Synthesis and evaluation of novel aza-caged Garcinia xanthones

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Aluminium-mediated Aromatic C F Bond Activation: Regioswitchable Construction of Benzene-fused Triphenylene. Frameworks

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Supporting Information

Supporting Information for. Impregnated Copper on Magnetite as Recyclable Catalyst for the Addition of Alkoxy Diboron. Reagents to C-C Double Bonds.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Reusable Cu 2 O/PPh 3 /TBAB System for the Cross-Couplings of Aryl Halides and Heteroaryl Halides with Terminal Alkynes. Supporting Information

Supporting information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Supporting Information

Supporting Materials

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information for

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information

Supporting Information for

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supplementary Material

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

The Free Internet Journal for Organic Chemistry

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

multicomponent synthesis of 5-amino-4-

Supporting Information. Palladium-Catalyzed Interannular meta-c H Arylation

Supplementary information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Supplementary Information for. Singlet excited state of BODIPY promoted aerobic crossdehydrogenative-coupling

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary Information for

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information. Experimental section

Selective Synthesis of Indoles by Cobalt(III) Catalyzed. C H/N O Functionalization with Nitrones

Supporting Information

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information for

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Transcript:

Supporting Information 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Convenient and General Zinc-Catalyzed Borylation of Aryl Diazonium Salts and Aryltriazenes under Mild Conditions Xinxin Qi, [a] Li-Bing Jiang, [a] Chao Zhou, [a] Jin-Bao Peng, [a] [a, b] and Xiao-Feng Wu* open_201700036_sm_miscellaneous_information.pdf

Supporting Information 1. General procedure for the preparation of aryl diazonium tetrafluoroborates 1 Arylamine (10 mmol) was dissolved in a mixture of 5 ml of distilled water and 3.4mL of 50% hydrofluoroboric acid. After cooling the reaction mixture to 0 C using ice bath and the sodium nitrite (0.69 g in 2 ml distilled water) was added dropwise in 5 min interval of time. The resulting mixture was stirred for 1h and the precipitate was collected by filtration and redissolved in minimum amount of acetone. Diethylether was added until precipitation of aryl diazonium tetrafluoroborate, which is filtered, washed several times with diethyl ether and dried under vacuum 2. General procedure for the preparation of triazenes 2 Aryl amine (21 mmol) was added to 12 ml of 6 M HCl at 0 C, and then sodium nitrite (1.63 g, 23.6 mmol) in 6 ml of H 2 O was added dropwise. After stirring for 10 min, the mixture was added slowly to a solution of Et 2 NH (3.3 ml, 56.7 mmol) and K 2 CO 3 (4.5 g, 32 mmol) in ice water (30 ml). Stirring at room temperature for 0.5 hour and extracted with ethyl acetate (30 ml 3). The combined organic phase was dried over Na 2 SO 4 and the product was obtained by column chromatography. 3.Typical procedure for the borylation of aryldiazonium salts Aryldiazonium salts (1.0 mmol), bis(pinacolato)diboron (1.2 mmol), Zn(ClO 4 ) 2 (5 mol%) were added into a 15 ml Schlenk tube under nitrogen atmosphere. Then 4 ml CH 3 OH was added by a syringe. The mixture was stirred for 8-15 h at 40 C. After the reaction was completed, the reaction mixture was filtered, concentrated and column chromatography on silica gel (petroleum ether/ethyl acetate 50:1). 4.Typical procedure for the borylation of triazenes Triazenes (1 mmol), bis(pinacolato)diboron (1.2 mmol), Trifluoromethanesulfonic acid (1 mmol), Zn(ClO 4 ) 2 (5 mol%) were weighed in a 15 ml Schlenk tube under nitrogen atmosphere. Then 4 ml CH 3 OH was added by a syringe. The mixture was stirred for 10-15 h at 60 C. After the reaction was complete, the reaction mixture was filtered, concentrated and column chromatography on silica gel (petroleum ether/ethyl acetate 50:1). 1

5.NMR data of products 4,4,5,5-Tetramethyl-2-phenyl-[1,3,2]dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 7.83 (d, J = 7.6 Hz, 2H), 7.47 (t, J = 7.2 Hz, 1H), 7.38 (t, J = 7.5 Hz, 2H), 1.36 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 134.68, 131.21, 127.65, 83.68, 24.81. GC-MS (EI, 70 ev): m/z( % ) = 204.0 ([M]+, 13), 204.0 (40), 189.0 (73), 118.0 (73), 105.0 (100), 85.0 (18), 77.0 (10), 59.0 (10). 4,4,5,5-Tetramethyl-2-(o-tolyl)-1,3,2-dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 7.68 (d, J = 7.1 Hz, 1H), 7.21 (dd, J = 11.1, 3.7 Hz, 1H), 7.07 (dd, J = 7.1, 3.6 Hz, 2H), 2.45 (s, 3H), 1.24 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 144.76, 135.83, 130.75, 129.72, 124.65, 83.31, 24.83, 22.18. GC-MS (EI, 70 ev): m/z( % ) = 218.0 ([M]+, 13), 218.0 (40), 203.0 (50), 161.0 (93), 119.0 (100), 91.0 (14), 85.0 (12). 4,4,5,5-Tetramethyl-2-(m-tolyl)-1,3,2-dioxaborolane 6 1 H NMR (400 MHz, CDCl 3 ) δ 7.55 (d, J = 4.3 Hz, 1H), 7.54 7.49 (m, 1H), 7.18 (dd, J = 8.2, 4.1 Hz, 2H), 2.25 (d, J = 8.4 Hz, 3H), 1.25 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 137.05, 135.35, 135.22, 131.79, 131.67, 127.57, 83.64, 24.84, 21.21. GC-MS (EI, 70 ev): m/z( % ) = 218.0 ([M]+, 13), 218.0 (40), 203.0 (45), 161.0 (13), 132.0 (90), 119.0 (100), 91.0 (14), 85.0 (10). 2

4,4,5,5-Tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 7.62 (d, J = 7.8 Hz, 2H), 7.09 (d, J = 7.8 Hz, 2H), 2.26 (s, 3H), 1.23 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 141.43, 134.95, 128.67, 83.64, 24.87, 21.80. GC-MS (EI, 70 ev): m/z( % ) = 218.0 ([M]+, 13), 218.0 (64), 203.0 (70), 132.0 (91), 119.0 (100), 91.0 (14), 85.0 (10). 2-(4-(tert-Butyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 7 1 H NMR (400 MHz, CDCl 3 ) δ 7.83 (d, J = 8.1 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 1.38 (s, 12H), 1.37 (s, 9H). 13 C NMR (101 MHz, CDCl 3 ) δ 154.40, 134.67, 124.63, 83.51, 34.81, 31.15, 24.78. GC-MS (EI, 70 ev): m/z( % ) = 260.0 ([M]+, 14), 260.0 (18), 245.0 (100), 161.0 (27), 145.0 (32), 130.9 (10), 117.0 (14), 101.0 (10). 2-(4-Methoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5 1 H NMR (400 MHz, CDCl 3 ) δ 7.75 (d, J = 8.7 Hz, 2H), 6.89 (d, J = 8.7 Hz, 2H), 3.82 (s, 3H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 162.09, 136.47, 113.25, 83.50, 55.01, 24.79. GC-MS (EI, 70 ev): m/z( % ) = 234.0 ([M]+, 12), 234.0 (86), 219.0 (58), 176.0 (10), 148.0 (64), 134.0 (100), 104.0 (13), 91.0 (13), 85.0 (12), 77.0 (12). 4,4,5,5-Tetramethyl-2-(4-(methylthio)phenyl)-1,3,2-dioxaborolane 6 3

1 H NMR (400 MHz, CDCl 3 ) δ 7.70 (d, J = 8.2 Hz, 2H), 7.21 (d, J = 8.2 Hz, 2H), 2.47 (s, 3H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 142.52, 135.04, 124.90, 83.67, 24.81, 14.97. GC-MS (EI, 70 ev): m/z( % ) = 250.0 ([M]+, 12), 250.0 (100), 234.9 (34), 163.9 (32), 149.9 (96), 135.9 (14), 117.0 (14), 85.0 (12). 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenol 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.69 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 8.4 Hz, 2H), 6.62 (s, 1H), 1.34 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 158.71, 136.75, 114.97, 83.87, 24.67. GC-MS (EI, 70 ev): m/z( % ) = 220.0 ([M]+, 12), 220.0 (70), 204.9 (70), 134.0 (50), 121.0 (100), 85.0 (15), 77.0 (15), 59.0 (12). 4,4,5,5-Tetramethyl-2-(4-nitrophenyl)-1,3,2-dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 8.09 (d, J = 8.6 Hz, 2H), 7.87 (d, J = 8.5 Hz, 2H), 1.28 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 149.71, 135.57, 122.30, 84.54, 24.81. GC-MS (EI, 70 ev): m/z( % ) = 249.0 ([M]+, 11), 248.9 (13), 234.0 (100), 205.9 (15), 162.9 (75), 149.9 (43), 104.0 (12), 85.0 (11), 58.0 (14). 4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzonitrile 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.86 (d, J = 8.2 Hz, 2H), 7.62 (d, J = 8.3 Hz, 2H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 135.03, 131.06, 118.80, 114.44, 84.42, 24.77. GC-MS (EI, 70 ev): m/z( % ) = 229.0 ([M]+, 12), 228.9 (17), 213.0 (100), 185.9 (13), 171.9 (10), 142.9 (75), 129.9 (45), 85.0 (10), 58.0 (11). 4

4,4,5,5-Tetramethyl-2-(4-(trifluoromethyl)phenyl)-1,3,2-dioxaborolane 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.90 (d, J = 7.7 Hz, 2H), 7.60 (d, J = 7.8 Hz, 2H), 1.35 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 134.98, 132.79 (d), 124.30 (d),124.11 (d), 84.25, 24.83. GC-MS (EI, 70 ev): m/z( % ) = 272.0 ([M]+, 14), 271.9 (20), 256.9 (100), 185.9 (87), 172.9 (87), 152.9 (20), 85.0 (17), 58.0 (17). 1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)ethan-1-one 3 1 H NMR (400 MHz, CDCl 3 ) δ 7.91 (d, J = 8.2 Hz, 2H), 7.87 (d, J = 8.2 Hz, 2H), 2.59 (s, 3H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 198.43, 138.89, 134.85, 127.22, 84.14, 26.72, 24.80. GC-MS (EI, 70 ev): m/z( % ) = 246.0 ([M]+, 13), 245.9 (25), 230.9 (100)202.9 (13), 188.9 (15), 160.0 (38), 146.9 (63), 130.9 (19),103.0 (10) Ethyl 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzoate 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.99 (t, J = 6.1 Hz, 2H), 7.84 (d, J = 8.2 Hz, 2H), 4.39 4.30 (m, 2H), 1.40 1.33 (m, 3H), 1.32 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 166.51, 134.52, 132.55, 131.42, 128.44, 84.03, 60.91, 24.77, 14.21. GC-MS (EI, 70 ev): m/z( % ) = 276.0 ([M]+, 18), 276.0 (25), 261.0 (80), 231.0 (43), 190.0 (96), 177.0 (100), 161.9 (13), 148.9 (30), 130.9 (20), 103.0 (20), 85.0 (15), 77.0 (13). 5

2-(4-Fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.79 (dd, J = 8.3, 6.3 Hz, 2H), 7.04 (t, J = 8.9 Hz, 2H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 165.06 (d), 136.95 (d), 114.81 (d), 83.86, 24.82. GC-MS (EI, 70 ev): m/z( % ) = 222.0 ([M]+, 11), 222.0 (37), 207.0 (95), 178.9 (18), 164.9 (18), 136.0 (64), 123.0 (100), 85.0 (19), 59.0 (10). 2-(4-Chlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 7.73 (d, J = 8.3 Hz, 2H), 7.34 (d, J = 8.3 Hz, 2H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 137.55, 136.15, 128.02, 84.02, 24.86. GC-MS (EI, 70 ev): m/z( % ) = 238.0 ([M]+, 14), 237.9 (36), 222.9 (86), 151.9 (64), 138.9 (100), 117.0 (10), 103.0 (13), 85.0 (25), 77.0 (20), 59.0 (20). 2-(4-Bromophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5 1 H NMR (400 MHz, CDCl 3 ) δ 7.66 (d, J = 8.2 Hz, 2H), 7.50 (d, J = 8.2 Hz, 2H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 136.27, 130.90, 126.19, 83.98, 24.81. GC-MS (EI, 70 ev): m/z( % ) = 282.0 ([M]+, 15), 281.8 (50), 266.8 (100), 195.8 (72), 182.8 (93), 117.0 (14), 103.0 (25), 85.0 (21), 77.0 (15), 59.0 (12). 2-(4-Iodophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 6 1 H NMR (400 MHz, CDCl 3 ) δ 7.71 (d, J = 8.0 Hz, 2H), 7.51 (d, J = 8.0 Hz, 2H), 1.33 (s, 12H). 6

13 C NMR (101 MHz, CDCl 3 ) δ 136.86, 136.23, 98.82, 83.98, 24.82. GC-MS (EI, 70 ev): m/z( % ) = 330.0 ([M]+, 13), 329.8 (100), 314.8 (89), 243.8 (89), 229.8 (78), 160.9 (12), 117.0 (20), 104.0 (31), 94.0 (20), 85.0 (22), 77.0 (20), 59.0 (20). 2-(2,6-Dichlorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5 1 H NMR (400 MHz, CDCl 3 ) δ 7.63 (s, 2H), 7.42 (s, 1H), 1.33 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 134.68, 132.67, 131.06, 84.48, 24.81. GC-MS (EI, 70 ev): m/z( % ) = 272.0 ([M]+, 14),271.8 (43), 256.8 (79), 185.9 (100), 172.8 (64), 150.9 (15), 85.0 (22), 58.0 (22). 2-(2-Chloro-6-methylphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 5 1 H NMR (400 MHz, CDCl 3 ) δ 7.63 (d, J = 2.3 Hz, 1H), 7.18 (dd, J = 8.1, 2.4 Hz, 1H), 7.01 (d, J = 8.1 Hz, 1H), 2.41 (s, 3H), 1.26 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 143.06, 135.29, 131.24, 130.56, 83.75, 24.84, 21.54. GC-MS (EI, 70 ev): m/z( % ) = 252.0 ([M]+, 10), 251.9 (40), 236.9 (40), 194.9 (100), 165.9 (14), 151.9 (70),117.0 (34), 85.0 (12), 58.0 (11). 4,4,5,5-Tetramethyl-2-(naphthalen-1-yl)-1,3,2-dioxaborolane 3 1 H NMR (400 MHz, CDCl 3 ) δ 8.79 (d, J = 8.5 Hz, 1H), 8.10 (d, J = 6.8 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 7.55 (dd, J = 11.1, 4.1 Hz, 1H), 7.51 7.46 (m, 2H), 1.44 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 136.86, 135.61, 133.15, 131.58, 128.31, 126.30, 125.44, 124.92, 83.68, 24.93. GC-MS (EI, 70 ev): m/z( % ) = 254.0 ([M]+, 14), 254.0 (78), 239.0 (12), 210.0 (12), 196.0 (10), 180.9 (34), 168.0 (35), 154.0 (100), 128.0 (10). 7

2-([1,1'-Biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 4 1 H NMR (400 MHz, CDCl 3 ) δ 7.88 (d, J = 8.0 Hz, 2H), 7.64 7.58 (m, 4H), 7.43 (t, J = 7.5 Hz, 2H), 7.34 (t, J = 7.3 Hz, 1H), 1.35 (s, 12H). 13 C NMR (101 MHz, CDCl 3 ) δ 143.86, 140.97, 135.22, 128.74, 127.53, 127.21, 126.45, 83.81, 24.83. GC-MS (EI, 70 ev): m/z( % ) = 280.0 ([M]+, 9), 280.0 (80), 264.9 (27), 206.8 (11), 194.0 (60), 179.9 (100), 151.9 (14). 2,2,6,6-Tetramethyl-1-(4-nitrophenoxy)piperidine 8 1 H NMR (400 MHz, CDCl 3 ) δ 8.04 (d, J = 8.1 Hz, 2H), 7.24 (s, 2H), 1.51 (s, 5H), 1.33 (s, 1H), 1.13 (s, 6H), 0.87 (s, 6H). 13 C NMR (101 MHz, CDCl 3 ) δ 168.19, 140.63, 125.02, 113.68, 60.39, 39.15, 31.76, 19.95, 16.38. GC-MS (EI, 70 ev): m/z( % ) = 278.0 ([M]+, 12),277.9 (14),194.7 (10), 162.9 (13), 153.9 (17), 125.0 (30), 69.0 (100),58.0 (11). References: 1.P. Hanson, J. R. Jones, A. B. Taylor, P. H. Walton, A. W. Timms, J. Chem. Soc., Perkin Trans. 2002, 2, 1135-1150. 2.M. Kovac, M. Anderluh, J. Vercouillie, D. Guilloteau, P. Emond, S. Mavel, J. Fluorine Chem. 2013, 147, 5-9. 3.P. B. Dzhevakov, M. A. Topchiy, D. A. Zharkova, O. S. Morozov, A. F. Asachenko, M. S. Nechaev, Adv. Synth. Catal.2016, 358, 977-983. 4.K. Chen, S. Zhang, P. He, P. F. Li, Chem. Sci. 2016, 7, 3676-3680. 5.J. Yu, L. Zhang, G. Yan, Adv. Synth. Catal. 2012, 354, 2625-2628. 6.D. Qiu, L. Jin, Z. T. Zheng, H. Meng, F. Y. Mo, X. Wang, Y. Zhang, J. B. Wang, J. Org. Chem. 2013, 78, 1923-1933. 7.W. K. Chow, C. M. So, C. P. Lau, F. Y. Kwong, Chem. Eur. J. 2011, 17, 6913-6917. 8.M. D. Perretti, D. M. Monzón, F. P. Crisóstomo, V. S. Martín, R. Carrillo, Chem. Commun. 2016, 52, 9036-9039. 8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30