Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Σχετικά έγγραφα
Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Structural Expression of Exo-Anomeric Effect

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Synthesis, characterization and luminescence studies of

Accessory Publication

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Electronic Supplementary Information for

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Electronic Supplementary Information

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information for

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Electronic Supplementary Information (ESI) for

Supporting Information

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Chemical Communications. Electronic Supporting Information

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supporting Information

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

Supporting Information for

Sequential Addition of Phosphine to Alkynes for the Selective. Synthesis of 1,2-Diphosphinoethanes under Catalysis. Well-Defined

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Electronic Supplementary Information

Supporting information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting information

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Electronic Supplementary Information

Supporting Material. Hydrogen Oxidation and Production Using Nickel-Based Molecular Catalysts with Positioned Proton Relays

Supplementary Figures

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry Supporting Information

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Effect of uridine protecting groups on the diastereoselectivity

Supporting Information

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Diastereoselective Access to Trans-2-Substituted Cyclopentylamines

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information

Sculpting the β-peptide foldamer H12 helix via a designed side chain shape

Transcript:

SUPPLEMENTARY MATERIALS Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory Ewelina Drabik, 1 Grzegorz Krasiński, 2 Marek Cypryk, 2 Roman Błaszczyk, 3 Tadeusz Gajda, 3 Marek Sochacki 1 1 Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Laboratory for Analysis of Organic Compounds and Polymers, Sienkiewicza 112, 90-363 Łódź, Poland 2 Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Department of Computer Modeling, Sienkiewicza 112, 90-363 Łódź, Poland 3 Lodz University of Technology, Institute of Organic Chemistry, Żeromskiego 116, 90-924 Łódź, Poland Table of contents The procedure for synthesis of compounds 7_a and 8_a...2 Diethyl dideuteriohydroxymethylphosphonate [1] (1)...2 Diethyl azidodideuteriomethylphosphonate [2] (2)...3 Diethyl dideuterioisothiocyanatomethylphosphonate [3] (3)...4 Diethyl trans- and cis-(4-deuterio-5-phenyl-2-thioxoimidazolidin-4-yl)phosphonates [4] (cis- 7_a and trans-8_a)...4 References...5 Mass spectra...6 Theoretical calculations...8 1

The procedure for synthesis of compounds 7_a and 8_a Diethyl dideuteriohydroxymethylphosphonate [1] (1), diethyl azidodideuteriomethylphosphonate [2] (2), diethyl dideuterioisothiocyanatomethylphosphonate [3] (3), diethyl trans- and cis-(4-deuterio-5- phenyl-2-thioxoimidazolidin-4-yl)phosphonates [4] (4) were prepared according to the procedures described in the literature. N-tert-Butyl-benzylidenecarbamate [5] (N-Boc-imine) was prepared as described previously. Diastereoisomeric mixture of compound 7_a and 8_a was resolved into individual cis- and trans-diastereoisomers using preparative TLC (Analtech UV254 plates were used). The homogeneity of the samples was confirmed by TLC analysis and 31 P and 1 H NMR spectroscopy. Scheme S1. Synthesis of diethyl trans- and cis-(4-deuterio-5-phenyl-2-thioxoimidazolidin-4- yl)phosphonates (7_a and 8_a). Diethyl dideuteriohydroxymethylphosphonate [1] (1) A mixture of paraformaldehyde-d 2 (1.0 g, 31.2 mmol), diethyl phosphonate (3.9 g, 28.3 mmol) and triethylamine (1.44 g, 14.2 mmol) was slowly heated to 60 o C for 30 minutes. Next, the suspension was heated for 1.5 h at 75-85 o C until all paraformaldehyde was dissolved. Excess of triethylamine was evaporated under reduced pressure, and the oily residue was subjected to bulb 2

to bulb distillation (130 140 o C/0.3 Torr) to give pure diethyl dideuteriohydroxymethylphosphonate (1) (2.88 g, 59.8%) as a pale yellow oil. 31 P NMR (101 MHz, CDCl 3, δ): 24.8 1 H NMR (250 MHz, CDCl 3, δ): 1.33 (brt, 3 J HH 7.1 Hz, 6H, 2CH 3 CH 2 O), 4.09-4.21 (m, 4H, 2CH 3 CH 2 O), 4.35 (brs, 1H, OH) 13 C NMR (63 MHz, CDCl 3, δ): 14.5 (d, 3 J CP 5.6 Hz, 2CH 3 CH 2 O), X (dqu, 1 J CP Hz, 1 J CD Hz, CD 2 ), 60.6 (d, 2 J CP 6.8 Hz, 2CH 3 CH 2 O) IR (ATR, ν): 3311, 2908, 1229, 1017, 967 HRMS (EI, 70 ev): m/z calcd for C 5 H 11 D 1 P 1 O 4 : 170.0677; found: 170.0680. Diethyl azidodideuteriomethylphosphonate [2] (2) A solution of DEAD (1.89 g, 10.8 mmol) in anhydrous CH 2 Cl 2 (3 ml) was added dropwise with stirring and external cooling (dry ice/acetone bath) to a solution of Ph 3 P (2.84 g, 10.8 mmol) in CH 2 Cl 2 (25 ml) at 5 o C. The mixture was cooled to 10 o C and 1.0 M solution of HN 3 in toluene (11.25 ml, 11.25 mmol) was added dropwise at this temperature. The solution of diethyl dideuteriohydroxymethylphosphonate (1) (8.0 mmol) was then added and stirring was continued for 24 hours at room temperature. The mixture was cooled to 0 o C, partialy precipitated ethyl 3- (ethoxycarbonyl)carbazate was filtered off, the filtrate was evaporated under reduced pressure, and the semi-solid residue was extracted with hexane (4 50 ml). The combined extracts were evaporated under reduced pressure to give crude azide 2. The oily residue was next subjected to bulb to bulb distillation (75 90 o C/0.2 Torr) to give pure diethyl azidodideuteriomethylphosphonate (2) (1.4 g, 89.7%) as a pale yellow oil. Warning: Since hydrazoic acid (HN 3 ) is highly toxic azidation reaction should be carried out under the well ventilated hood and behind the protective screen. 31 P NMR (101 MHz, CDCl 3, δ): 20.5 1 H NMR (250 MHz, CDCl 3, δ): 1.33 (brt, 3 J HH 7.1 Hz, 6H, 2CH 3 CH 2 O), 4.20 (dq, 3 J HH 7.1 Hz, 3 J HP 8.2 Hz, 4H, 2CH 3 CH 2 O) 13 C NMR (63 MHz, CDCl 3, δ): 14.6 (d, 3 J CP 5.7 Hz, 2CH 3 CH 2 O), X (dqu, 1 J CP Hz, 1 J CD Hz, CD 2 ), 61.1 (d, 2 J CP 6.6 Hz, 2CH 3 CH 2 O), IR (ATR, ν): 2921, 2124, 2095, 1241, 1018, 968 HRMS (EI, 70 ev): m/z calcd for C 5 H 10 D 2 P 1 N 3 O 3 : 195.0742; found: 195.0743. 3

Diethyl dideuterioisothiocyanatomethylphosphonate [3] (3) Ph 3 P (1.76 g, 6.71 mmol, 1.05 equiv) was added in one portion with stirring and external cooling (ice bath) to a solution of diethyl azidodideuteriomethylphosphonate (2) (1.25 g, 6.41 mmol) in anhydrous toluene (20 ml). Stirring was continued for 3 h at room temperature, and CS 2 (3.91 g, 3.1 ml, 51.0 mmol) was then added in one portion. Next, the mixture was kept at room temperature for 2 days. Toluene and excess of CS 2 was evaporated under reduced pressure, and the semi-crystalline residue was extracted with hexane (4 40 ml) to remove most of Ph 3 PS. The combined extracts were evaporated under reduced pressure, and the oily residue was subjected to bulb to bulb distillation (100 120 o C /0.2-0.4 Torr) to give pure diethyl dideuterioisothiocyanatomethylphosphonate (3) (0.95 g, 70.2%) as a colorless oil [R f (AcOEt/Hexanes 3:1 v/v) 0.45]. 31 P NMR (101 MHz, CDCl 3, δ): 16.3 1 H NMR (250 MHz, CDCl 3, δ): 1.38 (brt, 3 J HH 7.1 Hz, 6H, 2CH 3 CH 2 O), 4.17-4.29 (m, 4H, 2CH 3 CH 2 O) 13 C NMR (63 MHz, CDCl 3, δ): 16.3 (d, 3 J CP 5.7 Hz, 2CH 3 CH 2 O), 39.8 (dqu, 1 J CP 152.8 Hz, 1 J CD 21.8 Hz, CD 2 ), 61.1 (d, 2 J CP 6.6 Hz, 2CH 3 CH 2 O), 135.3 (brs, NCS). IR (ATR, ν): 2982, 2074, 1253, 1052,1012, 971 HRMS (EI, 70 ev): m/z calcd for C 6 H 10 D 2 P 1 N 1 O 3 S 1 : 211.0401; found: 211.0402. Diethyl trans- and cis-(4-deuterio-5-phenyl-2-thioxoimidazolidin-4-yl)phosphonates [4] (cis- 7_a and trans-8_a) A solution of NaHMDS (0.5 M, 0.6 ml, 1.2 mmol) in THF (15 ml) was cooled to 75 o C. Next a solution of diethyl dideuterioisothiocyanatomethylphosphonate (3) (0.211 g, 1.0 mmol) and N- tert-butyl-benzylidenecarbamate (N-Boc-imine) (0.205 g, 1.0 mmol) in THF (3 ml) was added dropwise to the reaction mixture. The mixture was stirred for 3 h at 75 o C and then quenched with D 2 O (1.5 ml). The mixture was stirred for 30 min at 0 o C. A saturated aq solution of NH 4 Cl (3 ml) was added and the mixture was diluted with methylene chloride (60 ml). Organic layer was separated and was washed successively with saturated aq NH 4 Cl (2 ml), water (2 ml), then dried (MgSO 4 ) and concentrated under reduced pressure to give 0.369 g (88.8%) of crude imidazolidine-2-thiones 4. Analytically pure trans- and cis-isomers of 4 were isolated after preparative TLC (AcOEt/hexanes 5:1 v/v). 4

cis-7_a. Yield: 63 mg (15%), colorless solid, mp 154-156 o C; R f (AcOEt/hexanes 5:1 v/v) 0.23 31 P NMR (101 MHz, CDCl 3, δ): 15.4 1 H NMR (250 MHz, CDCl 3, δ): 1.03 (t, 3 J HH 7.1 Hz, 3H, CH 3 CH 2 O), 1.18 1.28 (m, 12H, C(CH 3 ) 3 + CH 3 CH 2 O), 3.18 3.29 (m, 1H, CH 3 CH 2 O), 3.55 3.63 (m, 1H, CH 3 CH 2 O), 3.88 4.00 (m, 2H, CH 3 CH 2 O), 6.83 (brs, 1H, NH), 7.20 7.40 (m, 5H ar ); 13 C NMR (63 MHz, CDCl 3, δ): 16.2, 16.3 (2d, 3 J CP 5.8 Hz, 2CH 3 CH 2 O), 27.6 (s, C(CH 3 ) 3 ), 55.0 (dt, 3 J CP 169.5 Hz, 3 J CD 21.0 Hz, CDP), 62.8(d, 2 J CP 6.4 Hz, 2CH 3 CH 2 O), 64.2 (s, CHP), 83.7 (s, C(CH 3 ) 3 ), 128.3, 128.8 (CH ar ), 136.4 (d, 3 J CP 6.0 Hz, CHC ar ), 149.0 (s, C=O), 181.5 (d, 3 J CP 9.8 Hz,, C=S). IR (ATR, ν): 3164, 2977, 1744, 11496, 1250, 1139, 1012, 960. HRMS (EI, 70 ev): m/z calcd for C 18 H 26 D 1 P 1 N 2 O 6 S 1 : 415.1441; found: 415.1446. trans-8_a. Yield: 108 mg (26%), colorless viscous oil; R f (AcOEt/hexanes 5:1 v/v) 0.33 31 P NMR (101 MHz, CDCl 3, δ): 17.7 1 H NMR (250 MHz, CDCl 3, δ): 1.28 (s, 9H, C(CH 3 ) 3 ), 1.35, 1.36 (2t, 3 J HH 7.1 Hz, 6H, 2CH 3 CH 2 O), 4.15 4.34 (m, 4H, 2CH 3 CH 2 O), 5.54 (d, 3 J HP 19.6 Hz, 1H, CHCHP), 7.24 7.38 (m, 5H ar ), 7.75 (brs, 1H, NH). 13 C NMR (63 MHz, CDCl 3, δ): 16.5, 16.6 (2d, 3 J CP 5.4 Hz, 2CH 3 CH 2 O), 27.7 (s, C(CH 3 ) 3 ), 57.5 (dt, 3 J CP 159.4 Hz, 1 J CD 21.0 Hz CDP), 63.6 (d, 2 J CP 7.0 Hz, CH 3 CH 2 O), 63.9 (s, CHPh), 64.3 (d, 2 J CP 76.3 Hz, CH 3 CH 2 O), 83.6 (s, C(CH 3 ) 3 ), 125.3, 128.6, 129.1 (CH ar ), 140.5 (d, 3 J CP 12.6 Hz, CHC ar ), 149.4 (brs, C=O), 180.4 (brs, C=S). IR (ATR, ν): 3158, 2979, 1751, 1711, 1492, 1227, 1134, 1012, 972. HRMS (EI, 70 ev): m/z calcd for C 18 H 26 D 1 P 1 N 2 O 5 S 1 : 415.1441; found: 415.1437. References 1. Baraldi, P.G., Guarneri, M., Moroder, F., Pollini, G.P., Simoni, D.: Synthesis of 1- Phthalimidoalkanephosphonates. Synthesis 653-654 (1982) 2. Gajda, T., Matusiak, M.: An Expedient Synthesis of Diethyl 1-Azidoalkylphosphonates via the Mitsunobu Reaction. Synthesis 367-368 (1992). 3. Sikora, D., Gajda, T.: A Facile Synthesis of Diethyl 1-(Isothiocyano)alkylphosphonates. Phosphorus, Sulfur and Silicon 157, 201-201 (2000). 4. Błaszczyk, R., Gajda, T.: Direct synthesis of protected diethyl 1,2- diaminoalkylphosphonates. Tetrahedron Lett. 48, 5859-5863 (2007) 5. Cowen, B.J., Saunders, L.B., Miller, S.J.: Pyridylalanine (Pal)-Peptide Catalyzed Enantioselective Allenoate Additions to N-Acyl Imines. J. Am. Chem. Soc. 131, 6105-6107 (2009) 5

Mass spectra Figure S1. EI mass spectra of a) cis-1, b) trans-2, c) cis-3, d) trans-4, e) cis-5, f) trans-6, g) cis-7 and h) trans-8. 6

Figure S2. Product ion mass spectra of molecular ion of compounds a) cis-1, b) trans-2, c) cis-3 and d) trans-4. 7

Theoretical calculations To confirm the stability of each diastereoisomer the conformer analysis of molecular ion of cis-1 and trans-2 was performed. SUB_cis_1 SUB_cis_1 SUB_cis_1 SUB_cis_1 Figure S3. Different conformations of molecular ion of cis-1 (SUB_cis) isomer. 8

SUB_trans_2 SUB_trans_2 SUB_trans_2 SUB_trans_2 Figure S4. Different conformations of molecular ion of trans-2 (SUB_trans) isomer. 9

Table S1. Comparison of the B3LYP and M06-2x functionals. cis trans structure B3LYP/ M06-2x/ 6-311+G(2d,p) 6-311+G(2d,p) SUB_cis_1 0.0 0.0 TS1_E_H c _1 45.9 49.6 INT_E_H c _1-4.7-1.4 TS2_E_H c _1-1.4 4.8 IC_E_H c _1-19.6-11.3 SUB_trans_2 0.0 0.0 TS1_E_H c _2 19.4 23.3 INT_E_H c _2 0.3 2.6 TS2_E_H c _2 5.8 10.8 IC_E_H c _2-12.5-3.6 Table S2. Thermodynamic properties of the cis-1 and trans-2 conformers. As a reference for the G relative (B3LYP/6-311+G(2d,p)//B3LYP/6-31G*) the G of most stable conformer was used. E electron 1 G absolut 1 G relative 2 SUB_cis_1-1581.66650-1581.41046 0.00 SUB_cis_1-1581.66739-1581.40503 3.40 SUB_cis_1-1581.66082-1581.39841 7.56 SUB_cis_1-1581.66459-1581.40410 3.99 SUB_trans_2-1581.67464-1581.41983 0.00 SUB_trans_2-1581.67498-1581.41346 4.00 SUB_trans_2-1581.67476-1581.41377 3.81 SUB_trans_2-1581.66608-1581.40509 9.25 1 Ha 2 kcal/mol Table S3. Electron spin density of SUB_cis_1 and SUB_trans_1 structures. SUB_cis_1 SUB_trans_1 Mulliken NPA Mulliken NPA N 1 0.062 0.050 0.060 0.050 C 2-0.074-0.030-0.075-0.034 N 3 0.021 0.011 0.018 0.018 C 4 0.004 0.006-0.006 0.007 C 5-0.018-0.002-0.015-0.002 S 6 0.881 0.839 0.905 0.853 P 7-0.001-0.001 0.005 0.003 O 8 0.000 0.000 0.003 0.003 O 9-0.001 0.000 0.002 0.001 O 10 0.001 0.000 0.002 0.002 10

Table S4. Comparison of the optimized bond lengths [Å] between the ground state and cationic radical form for cis-1 and trans-2. cis-1 trans-2 Bond Neutral Free radical Difference Neutral Free radical Difference C 2 -S 6 1.669 1.719 0.050 1.669 1.723 0.054 N 3 -C 2 1.371 1.339-0.032 1.369 1.332-0.037 N 1 -C 2 1.370 1.339-0.031 1.364 1.335-0.029 C 4 -N 3 1.466 1.477 0.011 1.459 1.471 0.012 C 5 -N 1 1.464 1.483 0.019 1.463 1.495 0.032 C 4 -C 5 1.564 1.569 0.005 1.567 1.567 0.000 C 4 -P 7 1.853 1.858 0.005 1.847 1.861 0.014 Table S5. NPA spin densities for main atoms in function of reaction coordinate for loss of the diethoxyphosphoryl radical, phenyl ring, H c and H d. a) cis isomer substrate transition states SUB_cis-1 TS_L_PO_1 TS_L_Ph_1 TS_L_H c _1 TS_L_H d _1 N 1 0.050-0.002 0.079 0.101-0.006 C 2-0.030-0.019-0.013-0.018-0.022 N 3 0.011 0.107 0.005-0.006 0.126 C 4 0.006 0.096 0.003 0.014-0.028 C 5-0.002-0.001 0.029-0.041 0.010 S 6 0.839 0.052 0.025 0.047 0.055 P 7-0.001 0.414 0.001 0.001 0.001 O 8 0.000 0.158 0.003 0.008 0.003 O 9 0.000 0.085 0.001 0.001 0.021 O 10 0.000 0.071 0.007 0.003 0.007 H a 0.000-0.003 0.000 0.000-0.003 H b -0.002 0.000-0.002-0.003 0.000 H c 0.004 0.005 0.004 0.773-0.002 H d 0.003 0.003 0.004-0.001 0.828 C Ph 0.048 0.006 0.805 0.029 0.004 11

b) trans isomer substrate transition states SUB_trans-2 TS_L_PO_2 TS_L_Ph_2 TS_L_H c _2 TS_L_H d _2 N 1 0.050-0.001 0.084 0.090-0.011 C 2-0.034-0.018-0.023-0.016-0.054 N 3 0.018 0.108 0.015-0.004 0.195 C 4 0.007 0.079 0.001 0.006 0.206 C 5-0.002 0.003 0.026-0.019-0.006 S 6 0.853 0.048 0.020 0.039 0.199 P 7 0.003 0.431-0.003 0.000 0.009 O 8 0.003 0.186 0.009 0.005 0.005 O 9 0.001 0.040 0.005 0.000 0.003 O 10 0.002 0.078 0.014 0.028 0.020 H a 0.000-0.002 0.000 0.000-0.005 H b -0.002 0.000-0.003-0.002 0.000 H c 0.000 0.001 0.005 0.773 0.009 H d 0.000 0.004 0.009 0.000 0.054 C Ph 0.036 0.007 0.769 0.011 0.149 Table S6. NPA spin densities for main atoms in function of reaction coordinate for elimination of DEPI for exemplary reaction pathways (a) and (c). a) pathway (a) for cis isomer SUB_cis-1 TS1_E_H a _1 INT_E_H a _1 TS2_E_H a _1 IC_E_H a _1 N 1 0.050-0.008-0.022-0.025 0.000 C 2-0.030-0.043-0.068-0.061 0.000 N 3 0.011 0.118 0.217 0.138 0.003 C 4 0.006 0.001-0.007-0.082 0.000 C 5-0.002 0.003 0.004 0.005 0.000 S 6 0.839 0.914 0.852 0.588 0.000 P 7-0.001 0.005 0.007 0.264 0.572 O 8 0.000 0.001 0.000 0.041 0.173 O 9 0.000 0.001 0.001 0.015 0.105 O 10 0.000 0.002 0.002 0.075 0.133 H a 0.000-0.002-0.001-0.001 0.001 H b -0.002 0.000 0.000 0.000 0.000 H c 0.004 0.002 0.001-0.007 0.000 H d 0.003 0.005 0.012 0.004 0.001 C Ph 0.048 0.000-0.001 0.008 0.000 12

b) pathway (a) for trans isomer SUB_trans-2 TS1_E_H a _2 INT_E_H a _2 TS2_E_H a _2 IC_E_H a _2 N 1 0.050-0.005-0.018 0.000 0.000 C 2-0.034-0.038-0.059 0.025 0.111 N 3 0.018-0.001-0.001-0.005 0.021 C 4 0.007 0.002-0.004-0.028-0.008 C 5-0.002 0.002 0.002 0.004 0.005 S 6 0.853 0.928 0.871-0.001-0.001 P 7 0.003 0.002 0.000 0.856 0.395 O 8 0.003 0.001 0.001-0.001-0.002 O 9 0.001 0.002 0.002 0.001 0.001 O 10 0.002 0.000 0.001 0.002 0.001 H a 0.000 0.093 0.185 0.058 0.002 H b -0.002 0.000 0.000-0.037-0.016 H c 0.000 0.000 0.000 0.000 0.000 H d 0.000 0.002 0.009 0.000 0.000 C Ph 0.036 0.002 0.001 0.002 0.002 c) pathway (c) for cis isomer SUB_cis-1 TS1_E_H c _1 INT_E_H c _1 TS2_E_H c _1 IC_E_H c _1 N 1 0.050 0.190 0.101 0.082 0.031 C 2-0.030-0.057-0.012-0.018-0.074 N 3 0.011-0.010 0.003-0.020 0.096 C 4 0.006 0.013-0.029-0.014 0.184 C 5-0.002 0.291 0.490 0.387 0.127 S 6 0.839 0.245 0.104 0.177 0.516 P 7-0.001 0.001 0.045 0.157 0.000 O 8 0.000 0.112 0.006 0.021 0.000 O 9 0.000 0.000 0.003 0.005 0.000 O 10 0.000 0.006 0.010 0.036 0.000 H a 0.000 0.000-0.001 0.000-0.002 H b -0.002-0.005-0.003-0.003-0.001 H c 0.004 0.059 0.003 0.001 0.000 H d 0.003 0.003 0.023 0.007-0.006 C Ph 0.048 0.043-0.096-0.073-0.003 13

d) pathway (c) for trans isomer SUB_trans-2 TS1_E_H c _2 INT_E_H c _2 TS2_E_H c _2 IC_E_H c _2 N 1 0.050 0.219 0.067 0.065 0.033 C 2-0.034-0.067-0.002 0.000 0.000 N 3 0.018-0.020 0.001-0.018 0.096 C 4 0.007 0.000-0.029-0.007 0.189 C 5-0.002 0.228 0.511 0.393 0.123 S 6 0.853 0.263 0.118 0.000 0.000 P 7 0.003 0.012 0.040-0.010-0.079 O 8 0.003 0.106 0.002 0.158 0.519 O 9 0.001 0.001 0.004-0.078-0.003 O 10 0.002 0.003 0.001 0.124 0.057 H a 0.000 0.001 0.000 0.001-0.002 H b -0.002-0.006-0.002-0.001-0.001 H c 0.000 0.067 0.000-0.001 0.000 H d 0.000 0.003 0.029 0.007-0.006 C Ph 0.036-0.004-0.103 0.000 0.000 14

Table S7. NPA spin densities for intermediates INT. (most significant are in bold) cis-1 trans-2 INT_E_H a INT_E_H b INT_E_H c INT_E_H d INT_E_H e INT_E_H a INT_E_H b INT_E_H c INT_E_H d INT_E_H e N 1-0.0221 0.3375 0.1012 0.0056 0.0061-0.0182 0.0252 0.0669 0.0076-0.0009 C 2-0.0680-0.1153-0.0116-0.0455-0.0023-0.0590-0.0196-0.0021-0.0438 0.0001 N 3 0.2174-0.0222 0.0031 0.2437 0.0008 0.1850 0.0072 0.0012 0.2363 0.0002 C 4 0.0042-0.0148-0.0291 0.5184 0.0132 0.0018 0.0068-0.0294 0.5386 0.0135 C 5-0.0069 0.0035 0.4903-0.0209-0.0012-0.0043 0.0030 0.5114-0.0222-0.0009 S 6 0.8519 0.7761 0.1037 0.1404 0.0059 0.8711 0.9736 0.1179 0.1364 0.0005 P 7 0.0069-0.0003 0.0450 0.0593-0.0002 0.0105 0.0008 0.0400 0.0540-0.0003 O 8 0.0000 0.0000 0.0060 0.0085 0.0286 0.0005 0.0002 0.0019 0.0313 0.0256 O 9 0.0006 0.0003 0.0030 0.0332 0.0020 0.0014 0.0001 0.0039 0.0087 0.0003 O 10 0.0024 0.0000 0.0103 0.0098-0.0001 0.0018 0.0000 0.0015 0.0031 0.0015 C_Ph -0.0010 0.0103-0.0964 0.0195-0.0288 0.0006 0.0004-0.1034 0.0175-0.0268 C_orto 0.0007 0.0013 0.1540 0.0012 0.8916-0.0001 0.0009 0.1699 0.0008 0.8963 C_orto 0.0000 0.0009 0.1698 0.0020 0.0461-0.0005 0.0013 0.1654 0.0007 0.0469 C_meta -0.0002-0.0001-0.0719 0.0009-0.0376 0.0001-0.0003-0.0772-0.0001-0.0199 C_meta 0.0004 0.0004-0.0752-0.0004-0.0232 0.0005-0.0004-0.0775 0.0013-0.0339 C_para 0.0004 0.0011 0.1849 0.0022 0.0536-0.0002 0.0017 0.1900 0.0016 0.0526 Full reference 12: Frisch, M J, Trucks, G. W., Schlegel, H. B., Robb, M. A., Cheeseman, J. R., Montgomery, J. A. Jr., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomeli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, 15

S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., Al-Laham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C., and Pople, J. A. Gaussian 03, Revision C.02. Gaussian, Inc. Wallingford CT 16