Supporting Information

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Supporting Information for

Supporting Information

Supporting information

Supporting Information. Experimental section

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

The Free Internet Journal for Organic Chemistry

Supporting Information

Electronic Supplementary Information

Supplementary Information for

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Supporting Information for

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Aminofluorination of Fluorinated Alkenes

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supplementary Information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Electronic Supplementary Information (ESI)

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

multicomponent synthesis of 5-amino-4-

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information for

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

Supporting Information. for

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Enantioselective Organocatalyzed Direct α-thiocyanation of. Cyclic β-ketoesters by N-Thiocyanatophthalimide

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information File 2. Crystallographic data of syn-bis-quinoxaline, 16c CH 3 CO 2 C 2 H 5 ;

Supporting information

Supporting Information. Experimental section

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Divergent synthesis of various iminocyclitols from D-ribose

SUPPORTING INFORMATION

Supplementary information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

The Asymmetric Synthesis of CF3- Containing. Spiro[pyrrolidin-3,2 -oxindole] through the Organocatalytic. 1, 3-dipolar Cycloaddition Reaction

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Supporting Information for

Transcript:

Supporting Information Catalytic Enantioselective Trifluoromethylthiolation of Oxindoles using Shelf-Stable N-(Trifluoromethylthio)phthalimide and a Cinchona Alkaloid Catalyst Magnus Rueping, *a Xiangqian Liu, a Teerawut Bootwicha, a Roman Pluta a and Carina Merkens b a RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany b RWTH Aachen University, Institute of Inorganic Chemistry, Landoltweg 1, D-52074 Aachen, Germany magnus.rueping@rwth-aachen.de Table of Contents General Methods General procedure for the enantioselective trifluoromethylsulfenylation Characterization of the products X-Ray Crystallographic Analysis of 6k References NMR spectra and HPLC chromatograms S2 S3 S4 S12 S14 S15 s1

General Methods. Unless otherwise noted, all commercially available compounds were used as provided without further purification. Solvents for chromatography were technical grade and distilled prior to use. Dry dichloromethane, chloroform and chlorobenzene used in reactions were obtained by distilling over calcium hydride and were stored over activated molecular sieves (4 Å). Diethyl ether, toluene and o-xylene used in reactions were obtained by distilling over sodium-benzophenone ketyl. Analytical thin-layer chromatography (TLC) was performed on Macherey-Nagel silica gel 60 aluminium plates with F-254 indicator, visualised by UV irradiation. Column chromatography was performed using MN silica gel (particle size 0.040-0.063 mm). 1 H-NMR, 13 C-NMR, and 19 F-NMR spectra were recorded on a vnmrs-400 or vnmrs-600 spectrometer in CDCl 3 with residual proton signal of the deuterated solvents as the internal reference (δh = 7.26 ppm and δc = 77 ppm for CDCl 3 or δh = 0.00 ppm for TMS). Data are reported in the following order: chemical shift (δ) in ppm; multiplicities are indicated s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), dd (doublet of doublet), tt (triplet of triplet), dt (doublet of triplet), td (triplet of doublet); coupling constants (J) are in Hertz (Hz). IR spectra were recorded on a Jasco FT/IR-420 spectrometer and are reported in terms of frequency of absorption (cm -1 ). (MS-EI, 70 ev) were conducted on Finnigan SSQ 7000 mass spectrometer. (MS-ESI) were conducted on ThermoFinnigan LCQ Deca XP plus. Melting points were recorded on a Büchi 560 Melting Point Apparatus. Optical rotations were measured on a Perkin Elmer 241 polarimeter. The enantiomeric excesses were determined by Supercritical Fluid Chromatography (SFC) analysis and HPLC ananlysis using a chiral stationary phase column (column, Daicel Co. Chiralpak IA or (S,S)-Whelk-01 columns. The chiral SFC methods and HPLC methods were calibrated with the corresponding racemic mixtures. Chemical yields refer to pure isolated substances. The yields and enantiomeric excesses are given in the corresponding tables. The oxindoles 5a, 1 5b-l, 2 and 5m-r 3 were synthesized according to the literature procedures. s2

General procedure for enantioselective trifluoromethanesulfenylation: In a screwcapped reaction tube, a mixture of oxindole 5a (0.1 mmol, 1.0 equiv) and (DHQD) 2 Pyr (10 mol%) was dissolved in toluene (0.5 ml) and N-(trifluoromethylthio)phthalimide 1 (0.12 mmol, 1.2 equiv) was added at 10 o C. The resulting solution was stirred at 10 o C until being completed (TLC monitoring). The crude reaction mixture was directly charged on silica gel and purified by column chromatography (SiO 2, n-hexane/et 2 O, 94:6) to afford the desired product 6a. Figure 1. Structure of the catalysts evaluated in this study. R R H N N H N OH R = H: Cinchonidine R = OMe: Quinine HO N R = H: Cinchonine R = OMe: Quinidine H R H N N Et O H O H O O Et N H H R R Et H N N O O O O N N Et R N (DHQD) 2 AQN, R = OMe (DHQ) 2 AQN, R = OMe H Et Et H H Et Et H H N H O O N H N H O O N R N N H H R R N N H H R N N N N (DHQD) 2 PHAL, R = OMe (DHQD) 2 Pyr, R = OMe s3

(S)-tert-Butyl 3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1-carboxylate Isolated as a colorless oil, = +66.5 (c=1.62 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.97 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 7.6, 1.0 Hz, 1H), 7.55 7.49 (m, 2H), 7.46 (td, J = 7.9, 1.4 Hz, 1H), 7.40 7.30 (m, 4H), 1.62 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.3, 148.9, 139.2, 134.0, 130.4, 129.4, 129.1, 128.5 (q, J = 310.8 Hz, SCF 3 ), 127.7, 126.9, 126.0, 124.8, 115.7, 85.0, 59.5, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.8 (s, SCF 3 ); IR (ATR): ~ =2984, 2935, 2429, 2262, 1778, 1604, 1474, 1340, 1294, 1253, 1117, 1029, 934, 840, 756, 697, 605, 541, 468 cm -1 ; MS (ESI): m/z (%) = 432 ([M+Na] +, 3), 327 (10), 313 (15), 180 (46), 166 (34) 148 (23); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 5.22 min, minor enantiomer: t R = 7.20 min (92% ee). (S)-tert-Butyl 3-p-tolyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1-carboxylate Isolated as a colorless oil, = +55.3 (c=1.70 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.96 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 7.6, 1.0 Hz, 1H), 7.48 7.42 (m, 1H), 7.42 7.35 (m, 2H), 7.32 (td, J = 7.6, 1.0 Hz, 1H), 7.16 (d, J = 8.1 Hz, 2H), 2.32 (s, 3H), 1.61 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.4, 148.9, 139.6, 139.2, 131.0, 130.3, 129.8, 128.5 (q, J = 310.9 Hz, SCF 3 ), 127.6, 126.9, 126.2, 124.7, 115.6, 85.0, 59.3, 28.0, 21.0; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ =2982, 2323, 2098, 1774, 1738, 1605, 1469, 1339, 1289, 1249, 1111, 1026, 837, 749 cm -1 ; MS (EI) m/z (%) = 423 ([M] +, 4), 323 (13), 322 (17), 223 (17), 222 (100), 57 (27); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 6.10 min; major enantiomer: t R = 9.80 min (95% ee). (S)-tert-Butyl 3-(4-tert-butylphenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate t-bu Isolated as a colorless oil, = +43.4 (c=2.02 in CHCl 3 ); 1 H NMR (600 N Boc SCF 3 O MHz, CDCl 3 ): δ = 7.95 (d, J = 8.2 Hz, 1H), 7.57 (dd, J = 7.6, 1.1 Hz, 1H), 7.47 7.41 (m, 3H), 7.39 7.35 (m, 2H), 7.32 (td, J = 7.6, 1.0 Hz, 1H), 1.61 (s, s4

9H), 1.28 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.5, 152.6, 148.9, 139.2, 130.9, 130.3, 128.6 (q, J = 311.0 Hz, SCF 3 ), 127.4, 126.9, 126.2, 126.1, 124.7, 115.6, 85.0, 59.3, 34.6, 31.1, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ =2970, 2318, 1772, 1736, 1606, 1471, 1342, 1289, 1251, 1114, 1022, 938, 830, 750, 679 cm -1 ; MS (ESI): m/z (%) = 488 ([M+Na] +, 94), 483 (23), 411 (13), 410 (62), 388 (24), 366 (29), 264 (45), 191 (11); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 4.73 min, minor enantiomer: t R = 9.58 min (94% ee). (S)-tert-Butyl 3-(4-butylphenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1- Carboxylate Isolated as a colorless oil, = +45.6 (c=1.77 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.96 (d, J = 8.3 Hz, 1H), 7.57 (dd, J = 7.6, 1.1 Hz, 1H), 7.45 (ddd, J = 8.3, 7.7, 1.4 Hz, 1H), 7.42 7.39 (m, 2H), 7.32 (td, J = 7.6, 1.0 Hz, 1H), 7.18 7.14 (m, 2H), 2.60 2.55 (m, 2H), 1.62 (s, 9H), 1.59 1.53 (m, 2H), 1.37 1.29 (m, 2H), 0.91 (dd, J = 8.5, 6.3 Hz, 3H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.5, 148.9, 144.5, 139.2, 131.1, 130.3, 129.2, 128.6 (q, J = 311.0 Hz, SCF 3 ), 127.6, 126.9, 126.2, 124.7, 115.6, 85.0, 59.4, 35.2, 33.3, 28.0, 22.3, 13.9; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ = 2938, 2866, 2170, 1768, 1734, 1602, 1467, 1372, 1332, 1284, 1250, 1103, 1022, 868, 829, 753, 673 cm -1 ; MS (ESI): m/z (%) = 488 ([M+Na] +, 20), 410 (15), 366 (4), 181 (12), 180 (92), 166 (14), 148 (29), 134 (11); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 6.04 min, minor enantiomer: t R = 11.39 min (94% ee). (S)-tert-Butyl 3-(biphenyl-4-yl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +43.1 (c=1.93 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.99 (d, J = 8.4 Hz, 1H), 7.61 (dd, J = 7.7, 1.1 Hz, 1H), 7.60 7.56 (m, 4H), 7.56 7.53 (m, 2H), 7.48 (ddd, J = 8.2, 7.7, 1.4 Hz, 1H), s5

7.46 7.42 (m, 2H), 7.39 7.33 (m, 2H), 1.63 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ 172.3, 148.9, 142.3, 139.9, 139.3, 132.8, 130.4, 128.9, 128.5 (q, J = 310.9 Hz, SCF 3 ), 128.1, 127.8, 127.8, 127.1, 126.9, 126.0, 124.9, 115.7, 85.1, 59.4, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.8 (s, SCF 3 ); IR (ATR): ~ = 2983, 2288, 2062, 1970, 1775, 1737, 1604, 1474, 1339, 1289, 1250, 1108, 1017, 906, 832, 747, 697 cm -1 ; MS (ESI): m/z (%) = 508 ([M+Na] +, 55), 430 (22), 408 (13), 386 (6), 284 (20), 191 (16); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 5% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 8.14 min, minor enantiomer: t R = 16.08 min (91% ee). (S)-tert-Butyl 3-(4-ethoxyphenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +39.8 (c=1.48 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ 7.95 = (d, J = 8.2 Hz, 1H), 7.57 (dd, J = 7.6, 1.1 Hz, 1H), 7.47 7.41 (m, 3H), 7.32 (td, J = 7.6, 1.0 Hz, 1H), 6.88 6.83 (m, 2H), 4.00 (q, J = 7.0 Hz, 2H), 1.61 (s, 9H), 1.39 (t, J = 7.0 Hz, 3H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.6, 159.7, 149.0, 139.2, 130.3, 129.1, 128.5 (q, J = 311.3 Hz, SCF 3 ), 126.9, 126.2, 125.2, 124.7, 115.7, 114.9, 85.0, 63.6, 59.0, 28.0, 14.7; 19 F NMR (564 MHz, CDCl 3 ): δ = 39.1 (s, SCF 3 ); IR (ATR): ~ = 2983, 2263, 1775, 1738, 1605, 1472, 1340, 1292, 1250, 1107, 1040, 920, 828, 750 cm -1 ; MS (ESI): m/z (%) = 476 ([M+Na] +, 16), 398 (4), 181 (11), 180 (89), 166 (27), 148 (35); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 5% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 4.76 min, minor enantiomer: t R = 9.00 min (94% ee). (S)-tert-Butyl 3-(4-fluorophenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +80.5 (c=1.53 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.97 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 7.6, 1.0 Hz, 1H), 7.54 7.50 (m, 2H), 7.47 (ddd, J = 8.2, 7.7, 1.4 Hz, 1H), 7.34 (td, J = 7.6, 1.0 Hz, 1H), 7.08 7.02 (m, 2H), 1.62 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = s6

172.2, 163.2 (d, J = 250.7 Hz), 148.8, 139.2, 130.6, 129.9 (d, J = 8.5 Hz), 129.7 (d, J = 2.7 Hz), 128.4 (q, J = 311.1 Hz, SCF 3 ), 126.8, 125.8, 124.9, 116.1 (d, J = 21.9 Hz), 115.8, 85.2, 58.8, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ), 111.5 111.6 (m, F); IR (ATR): ~ = 2984, 2292, 1739, 1603, 1470, 1339, 1290, 1244, 1106, 1020, 936, 826, 752 cm -1 ; MS (ESI): m/z (%) = 450 ([M+Na] +, 31), 348 (3), 181 (13), 180 (100), 166 (16), 148 (35); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 3.44 min, minor enantiomer: t R = 5.55 min (92% ee). (S)-tert-Butyl 3-(4-chlorophenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Cl Isolated as a colorless oil, = +70.7 (c=1.57 in CHCl 3 ); 1 H NMR (600 N Boc SCF 3 O MHz, CDCl 3 ): δ = 7.97 (d, J = 8.2 Hz, 1H), 7.54 (dd, J = 7.6, 1.1 Hz, 1H), 7.50 7.44 (m, 3H), 7.36 7.30 (m, 3H), 1.62 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.0, 148.8, 139.2, 135.8, 132.5, 130.6, 129.3, 129.2, 128.4 (q, J = 311.2 Hz, SCF 3 ), 126.8, 125.6, 125.0, 115.8, 85.3, 58.9, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.8 (s, SCF 3 ); IR (ATR): ~ = 2983, 2171, 1773, 1739, 1603, 1476, 1339, 1290, 1250, 1103, 1016, 825, 752 cm -1 ; MS (ESI): m/z (%) = 468 ([M+Na] + +2, 35), 466 ([M+Na] +, 100), 390 (25), 388 (64), 368 (9), 366 (27), 344 (10), 244 (10), 242 (33), 208 (14), 191 (16); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 5.17 min, minor enantiomer: t R = 9.28 min (84% ee). (S)-tert-Butyl 3-m-tolyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1-carboxylate Isolated as a white solid, mp: 93 95 C, = +63.7 (c=1.68 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.96 (d, J = 8.2 Hz, 1H), 7.55 (dd, J = 7.6, 1.1 Hz, 1H), 7.48 7.42 (m, 1H), 7.36 7.29 (m, 2H), 7.24 (dt, J = 10.7, 6.4 Hz, 2H), 7.18 7.14 (m, 1H), 2.33 (s, 3H), 1.62 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.4, 148.9, 139.2, 139.1, 134.0, 130.3, 130.2, 128.9, 128.6 (q, J = 311.0 Hz, SCF 3 ), 128.2, 126.9, 126.2, 124.8, 124.7, 115.6, 85.0, 59.5, 28.0, 21.5; 19 F NMR (376 MHz, CDCl 3 ): δ 38.9 (s, SCF 3 ); s7

IR (ATR): ~ = 2982, 2931, 2326, 2092, 1776, 1738, 1602, 1471, 1338, 1289, 1250, 1111, 1033, 841, 748, 693 cm -1 ; MS (ESI): m/z (%) = 446 ([M+Na] +, 25), 369 (14), 368 (72), 346 (13), 324 (26), 222 (50) ; HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 5.99 min; major enantiomer: t R = 8.77 min (92% ee). (S)-tert-Butyl 3-(3-methoxyphenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate OMe Isolated as a white solid, mp: 71 73 C, = +61.7 (c=1.69 in CHCl 3 ); 1 H N Boc SCF 3 O NMR (400 MHz, CDCl 3 ): δ = 7.96 (d, J = 8.2 Hz, 1H), 7.56 (dd, J = 7.6, 1.1 Hz, 1H), 7.45 (td, J = 8.0, 1.4 Hz, 1H), 7.32 (td, J = 7.6, 1.0 Hz, 1H), 7.26 (dd, J = 8.6, 7.6 Hz, 1H), 7.09 (t, J = 2.2, 1H), 7.05 (ddd, J = 7.9, 1.9, 0.8 Hz, 1H), 6.89 (ddd, J = 8.3, 2.5, 0.8 Hz, 1H), 3.78 (s, 3H), 1.62 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.2, 160.0, 148.9, 139.2, 135.5, 130.4, 130.0, 128.5 (q, J = 310.8 Hz, SCF 3 ), 126.9, 126.0, 124.8, 119.8, 115.7, 114.8, 113.7, 85.0, 59.4, 55.3, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ = 2982, 2844, 2344, 2110, 2011, 1792, 1730, 1597, 1469, 1369, 1250, 1109, 1045, 939, 841, 763, 687 cm -1 ; MS (ESI): m/z (%) = 462 ([M+Na] +, 14), 457 ([M+H 2 O] +, 5), 385 (5), 384 (27), 340 (14), 238 (11); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 10.26 min; major enantiomer: t R = 12.90 min (90% ee). (S)-tert-Butyl 3-(3-bromophenyl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a white solid, mp: 111 113 C, = +51.4 (c=1.50 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.98 (d, J = 8.3 Hz, 1H), 7.62 (t, J = 1.9 Hz, 1H), 7.54 (dd, J = 7.6, 1.0 Hz, 1H), 7.52 7.45 (m, 3H), 7.34 (td, J = 7.6, 1.0 Hz, 1H), 7.25 (t, J = 8.0 Hz, 1H), 1.62 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 171.8, 148.7, 139.2, 136.2, 132.6, 130.7, 130.5, 128.4 (q, J = 311.0 Hz, SCF 3 ), 126.8, 126.5, 125.3, 125.1, 123.2, 115.9, 85.3, 58.9, 28.0; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.7 (s, SCF 3 ); IR (ATR): ~ = 2983, 2289, 2103, 1774, 1739, 1600, 1470, 1338, 1289, 1250, 1105, 1024, 939, 841, 753, s8

681 cm -1 ; MS (ESI): m/z (%) = 512 ([M+Na] + +2, 30), 510 ([M+Na] +, 28), 507 ([M+H 2 O] + +2, 18), 505 ([M+H 2 O] +, 18), 435 (14), 434 (79), 433 (13), 432 (78), 390 (15), 388 (15), 288 (19), 286 (19); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 5.38 min; major enantiomer: t R = 7.53 min (88% ee). (S)-tert-Butyl 3-(naphthalen-2-yl)-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +30.3 (c=1.91 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 8.01 (d, J = 8.2 Hz, 1H), 7.88 7.76 (m, 4H), 7.73 (dd, J = 8.8, 2.0 Hz, 1H), 7.64 (dd, J = 7.6, 1.1 Hz, 1H), 7.56 7.45 (m, 3H), 7.37 (td, J = 7.6, 1.0 Hz, 1H), 1.61 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.3, 148.9, 139.3, 133.2, 132.9, 130.5, 130.1, 129.2, 128.6 (q, J = 311.0 Hz, SCF 3 ), 128.5, 127.6, 127.5, 127.3, 127.0, 126.8, 126.1, 124.9, 124.4, 115.8, 85.1, 59.8, 28.0; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.6 (s, SCF 3 ); IR (ATR): ~ = 2983, 2309, 1738, 1602, 1470, 1339, 1288, 1249, 1106, 1025, 905, 820, 747, 677 cm -1 ; MS (EI) m/z (%) = 459 ([M] +, 5), 359 (11), 358 (30), 259 (21), 258 (100), 230 (6), 229 (4), 57 (23), 45 (11); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1 ml min -1, minor enantiomer: t R = 9.49 min; major enantiomer: t R = 27.82 min (88% ee). (S)-tert-Butyl 5-methyl-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +76.8 (c=1.60 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.83 (d, J = 8.4 Hz, 1H), 7.55 7.48 (m, 2H), 7.40 7.32 (m, 4H), 7.25 (d, J = 8.0, 1H), 2.42 (s, 3H), 1.61 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.5, 149.0, 136.9, 134.6, 134.2, 131.0, 129.3, 129.1, 128.6 (q, J = 310.9 Hz, SCF 3 ), 127.7, 127.2, 126.0, 115.5, 84.9, 59.7, 28.0, 21.1; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ = 2981, 2328, 2104, 1773, 1738, 1603, 1468, 1340, 1292, 1249, 1142, 1096, 845, 751 cm -1 ; MS (ESI): m/z (%) = 446 ([M+Na] +, 22), 441 ([M+H 2 O] +, 10), 369 (5), 368 (29), 346 (10), 324 (8), 222 (10); HPLC conditions: IA column, s9

n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 6.21 min; major enantiomer: t R = 9.76 min (94% ee). (S)-tert-Butyl 5-tert-butyl-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +61.0 (c=1.21 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.85 (d, J = 8.7 Hz, 1H), 7.58 (d, J = 2.0 Hz, 1H), 7.54 7.49 (m, 2H), 7.47 (dd, J = 8.6, 2.1 Hz, 1H), 7.39 7.34 (m, 3H), 1.61 (s, 9H), 1.36 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 172.8, 148.9, 148.1, 136.8, 134.3, 129.3, 129.1, 128.6 (q, J = 310.7 Hz, SCF 3 ), 127.7, 127.1, 125.3, 124.2, 115.2, 84.8, 59.9, 34.7, 31.3, 28.0; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.9 (s, SCF 3 ); IR (ATR): ~ = 2967, 2290, 1777, 1739, 1601, 1489, 1369, 1334, 1303, 1252, 1148, 1031, 925, 836, 757, 699, 576, 465 cm -1 ; MS (ESI): m/z (%) = 488 ([M+Na] +, 15), 411 (14), 410 (63), 366 (15), 309 (27), 264 (26), 254 (12); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 2 ml min -1, 231 nm; major enantiomer: t R = 5.72 min, minor enantiomer: t R = 9.21 min (92% ee). (S)-tert-Butyl 5-methoxy-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +71.2 (c=1.00 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.89 (d, J = 9.0 Hz, 1H), 7.55 7.48 (m, 2H), 7.36 (dd, J = 5.2, 2.0 Hz, 3H), 7.10 (d, J = 2.6 Hz, 1H), 6.99 (dd, J = 9.0, 2.7 Hz, 1H), 3.85 (s, 3H), 1.61 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = 172.4, 157.0, 149.0, 134.1, 132.6, 129.4, 129.1, 128.5 (q, J = 311.0 Hz, SCF 3 ), 127.7, 127.3, 116.8, 115.8, 112.4, 84.8, 59.8, 55.8, 28.0; 19 F NMR (282 MHz, CDCl 3 ): δ 38.8 (s, SCF 3 ); IR (ATR): ~ = 2980, 2841, 2424, 2288, 1775, 1736, 1602, 1488, 1334, 1280, 1152, 1036, 840, 756, 607, 567, 466 cm -1 ; MS (ESI): m/z (%) = 462 ([M+Na] +, 18), 385 (6), 384 (37), 362 (7), 340 (14), 238 (12); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 9.09 min; major enantiomer: t R = 14.18 min (94% ee). s10

(S)-tert-Butyl 5-fluoro-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +59.2 (c=1.43 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ = 7.98 (dd, J = 9.0, 4.5 Hz, 1H), 7.53 7.47 (m, 2H), 7.42 7.35 (m, 3H), 7.29 (dd, J = 7.6, 2.7 Hz, 1H), 7.17 (td, J = 8.9, 2.7 Hz, 1H), 1.61 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 171.9, 159.9 (d, J = 245.1 Hz), 148.9, 135.2 (d, J = 2.4 Hz), 133.5, 129.6, 129.3, 128.4 (q, J = 311.0 Hz, SCF 3 ), 128.0 (d, J = 8.3 Hz), 127.5, 117.3 (d, J = 22.9 Hz), 117.3 (d, J = 7.8 Hz), 114.0 (d, J = 25.1 Hz), 85.3, 59.4, 28.0; 19 F NMR (564 MHz, CDCl 3 ): δ = 38.8 (s, SCF 3 ), 116.42 116.48 (m, F); IR (ATR): ~ = 2982, 2931, 2263, 1774, 1737, 1597, 1488, 1330, 1253, 1110, 1033, 910, 826, 729 cm -1 ; MS (ESI): m/z (%) = 450 ([M+Na] +, 17), 445 ([M+H 2 O] +, 12), 410 (7), 373 (10), 372 (56), 350 (6), 209 (22), 226 (12); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 5.23 min; major enantiomer: t R = 8.95 min (90% ee). (S)-tert-Butyl 5-chloro-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +75.0 (c=1.50 in CHCl 3 ); 1 H NMR (600 MHz, CDCl 3 ): δ = 7.94 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 2.2 Hz, 1H), 7.53 7.47 (m, 2H), 7.43 (dd, J = 8.8, 2.3 Hz, 1H), 7.42 7.35 (m, 3H), 1.61 (s, 9H); 13 C NMR (151 MHz, CDCl 3 ): δ = 171.6, 148.7, 137.7, 133.4, 130.5, 130.4, 129.7, 129.3, 128.4 (q, J = 311.1 Hz, SCF 3 ), 128.0, 127.5, 126.8, 117.0, 85.5, 59.2, 28.0; 19 F NMR (282 MHz, CDCl 3 ): δ = 38.7 (s, SCF 3 ); IR (ATR): ~ = 3460, 2984, 2934, 2271, 1780, 1740, 1595, 1474, 1372, 1331, 1290, 1256, 1150, 1028, 959, 863, 830, 757, 700, 553, 471 cm -1 ; MS (ESI): m/z (%) = 468 ([M+Na] + +2, 14), 466 ([M+Na] +, 38), 463 ([M+H 2 O] + +2, 11), 461 ([M+H 2 O] +, 33), 391 (6), 390 (37), 389 (17), 388 (100), 368 (4), 366 (13), 344 (7), 244 (8), 242 (25); HPLC conditions: IA column, n-hexane/2-propanol = 99/1, flow rate = 1.0 ml min -1, minor enantiomer: t R = 4.90 min; major enantiomer: t R = 8.08 min (86% ee). s11

(S)-tert-Butyl 5-bromo-3-phenyl-3-(trifluoromethanesulfenyl)-2-oxoindoline-1 -carboxylate Isolated as a colorless oil, = +76.3 (c=1.97 in CHCl 3 ); 1 H NMR (400 MHz, CDCl 3 ): δ 7.89 (d, J = 8.8 Hz, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.58 (dd, J = 8.8, 2.1 Hz, 1H), 7.53 7.46 (m, 2H), 7.43 7.35 (m, 3H), 1.61 (s, 9H); 13 C NMR (101 MHz, CDCl 3 ): δ = 171.5, 148.7, 138.3, 133.4, 129.6, 129.3, 128.4 (q, J = 311.1 Hz, SCF 3 ), 128.3, 127.5, 117.8, 117.4, 85.5, 59.1, 28.0; 19 F NMR (376 MHz, CDCl 3 ): δ = 38.7 (s, SCF 3 ); IR (ATR): ~ = 3460, 2984, 2934, 2268, 1778, 1739, 1599, 1471, 1371, 1331, 1291, 1255, 1149, 1114, 1025, 951, 863, 829, 758, 693, 613, 541, 468 cm -1 ; MS (ESI): m/z (%) = 512 ([M+Na] + +2, 11), 510 ([M+Na] +, 12), 507 ([M+H 2 O] + +2, 16), 505 ([M+H 2 O] +, 17), 435 (16), 434 (91), 433 (15), 432 (89), 427 (36), 355 (17), 354 (100), 288 (10), 286 (10); The enantiomeric excess was determined by chiral SFC using a (S,S) Whelk-01 column, 2% MeOH/CO 2, 4 ml min -1, 231 nm; major enantiomer: t R = 5.08 min, minor enantiomer: t R = 7.06 min (85% ee). X-Ray Crystallographic Analysis of 7k: Suitable crystals for single crystal analysis were obtained by recrystallization from a DCM/hexane mixture and slow evaporation of the solvent at ambient temperature. Intensity data were collected at 100 K with a Bruker APEX area detector equipped with an Incoatec microsource (Mo-K α, λ = 0.71073 Å, multilayer optics). Temperature was controlled with an Oxford Cryostream 700 instrument. Intensities were processed with SAINT+ 4 and corrected for absorption by multi-scan methods using SADABS 5. The crystal structure of 6k was solved by direct methods (SHELXS-97) 6 and refined by full matrix least squares procedures based on F 2 as implemented in SHELXL-13 6. Non-hydrogen atoms were assigned anisotropic displacement parameters and hydrogen atoms were placed in idealized positions. The crystal data and refinement results are summarized in Table 1. After the assignment of the well ordered electron density maxima, residual density close to s12

C3 indicated minor positional disorder of the bromine atom. The introduction of a split model with two alternative bromine positions converged with a 90/10 ration. Table 1: Crystal data and refinement results of 6k Parameter Empirical formula 6K C 20 H 17 BrF 3 NO 3 S M/g mol -1 488.32 Crystal dimensions/mm 0.09 x 0.09 x 0.12 Crystal shape Crystal color Crystal system Plate Colorless Orthorhombic Space group (no.) P2 1 2 1 2 1 a/å 9.7850(8) b/å 14.3183(11) c/å 14.4323(11) α/ 90 β/ 90 γ/ 90 V/Å 3 2022.0(3) Z 4 µ(mo K α )/mm -1 2.185 Total reflections 29388 Unique reflections 5385 Flack parameter 0.020(4) Variables refined 275 R int 0.0536 wr 2 (all reflections) 0.0653 R 1 (all/obs.) 0.0335/0.0301 GOF on F 2 1.073 Diff. peak/hole [e/ Å -3 ] 0.361/-0.216 s13

References: 1. Y. Hamashima, T. Suzuki, H. Takano, Y. Shimura and M. Sodeoka, M. J. Am. Chem. Soc. 2005, 127, 10164. 2. M. J. Durbin and M. C. Willis, Org. Lett., 2008, 10, 1413. 3. S. -W. Duan, J. An, J. -R. Chen and W. -J. Xiao, Org. Lett., 2011, 13, 2290. 4. SAINT, Bruker AXS, Program for Reduction of Data collected on Bruker CCD Area Detector Diffractometer V.6.02, Bruker AXS Inc., Madison, WI, USA, 1999. 5. SADABS, Program for Empirical Absorption Correction of Area Detector Data V 2004/1, Bruker AXS Inc., Madison, WI, USA, 2004. 6. (a) G. M. Sheldrick, SHELXL-13 Program for Crystal Structure Refinement, Universität Göttingen, 2013; (b) G. Sheldrick, Acta Crystallogr., Sect. A 2008, 64, 112. s14

1.00 1.01 2.00 1.10 4.21 9.36

172.33 148.88 139.22 115.67 123.90 124.79 126.03 126.90 126.99 127.66 129.10 129.37 130.08 130.36 133.17 134.04 85.03 59.50 27.98 Electronic Supplementary Material (ESI) for Chemical Communications

-38.81

1.00 1.02 1.08 2.03 1.11 2.10 3.18 9.28

172.44 148.94 139.20 139.55 115.63 123.90 124.74 126.21 126.87 126.99 127.55 129.80 130.08 130.27 130.98 133.17 84.96 59.33 21.04 27.99 Electronic Supplementary Material (ESI) for Chemical Communications

-38.92

1.00 1.02 3.12 2.14 1.12 9.36 9.36

172.50 152.57 148.94 139.22 115.63 124.72 125.48 126.12 126.24 126.91 127.36 127.54 129.60 130.26 130.86 131.66 84.96 59.28 28.01 31.12 34.61 Electronic Supplementary Material (ESI) for Chemical Communications

-38.93

1.00 1.05 1.11 2.01 1.09 2.09 2.24 9.52 2.31 2.16 3.15

172.48 148.94 144.47 139.20 115.63 124.72 125.46 126.23 126.91 127.52 127.55 129.15 129.58 130.25 131.07 131.64 84.95 59.35 22.29 13.87 33.30 35.15 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.94

1.00 1.18 4.04 2.08 1.11 2.07 2.02 9.26

172.32 148.90 139.26 139.85 142.33 115.74 124.86 125.44 126.03 126.92 127.11 127.50 127.77 127.84 128.13 128.87 129.56 130.43 131.62 132.80 85.09 59.35 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.78

1.00 1.03 3.08 1.07 2.09 2.15 9.39 3.21

172.55 148.95 159.71 139.15 124.71 125.20 125.37 126.22 126.90 127.43 129.11 129.50 130.25 131.56 114.90 115.65 84.95 63.57 59.04 14.69 27.99 Electronic Supplementary Material (ESI) for Chemical Communications

-39.09

1.00 1.01 2.03 1.09 1.07 2.06 9.37

172.22 162.37 164.03 148.80 139.21 124.91 125.28 125.78 126.83 127.34 129.40 129.68 129.70 129.82 129.88 130.56 131.47 115.81 116.03 116.18 85.20 58.82 27.99 Electronic Supplementary Material (ESI) for Chemical Communications

-38.91-111.56-111.56-111.57-111.58-111.59-111.59

1.00 1.03 3.11 3.07 9.60

171.99 148.77 115.83 124.96 125.28 125.56 126.79 127.34 129.18 129.28 129.40 130.63 131.46 132.47 135.81 139.22 85.25 58.94 27.98 Electronic Supplementary Material (ESI) for Chemical Communications

-38.76

1.00 1.01 1.08 2.02 2.31 1.04 3.02 9.20

172.42 148.93 139.05 139.21 123.92 124.65 124.77 126.19 126.92 127.01 128.22 128.90 130.11 130.19 130.29 133.20 133.97 115.62 85.00 59.50 21.52 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.87

1.00 1.00 1.06 1.04 1.37 0.93 1.03 1.02 3.14 9.29

172.23 148.87 159.95 113.72 114.76 115.65 119.84 123.88 124.78 126.01 126.91 126.98 130.04 130.07 130.38 133.16 135.45 139.22 85.04 59.43 55.34 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.85

1.00 0.87 1.03 3.01 1.11 1.53 9.06

171.82 148.73 115.85 123.17 123.73 125.05 125.34 126.51 126.81 129.91 130.54 130.72 132.63 133.00 136.21 139.23 85.30 58.90 27.99 Electronic Supplementary Material (ESI) for Chemical Communications

-38.69

1.02 4.38 1.01 1.00 3.43 1.14 8.93

172.28 148.92 139.29 123.93 124.42 124.89 126.13 126.75 126.99 127.02 127.33 127.54 127.64 128.49 129.15 130.11 130.46 131.23 132.86 133.21 133.24 115.75 85.07 59.79 27.99 Electronic Supplementary Material (ESI) for Chemical Communications

-38.63

1.00 2.00 4.01 1.36 3.14 9.22

172.47 148.95 115.45 123.91 126.00 127.01 127.17 127.69 129.06 129.29 130.10 130.96 133.19 134.24 134.60 136.85 84.85 59.65 21.12 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.78

1.00 1.03 2.09 1.29 3.43 9.07 8.99

172.78 148.13 148.88 115.16 123.92 124.15 125.31 127.01 127.12 127.67 129.10 129.30 130.10 133.19 134.29 136.79 84.84 59.87 28.00 31.32 34.70 Electronic Supplementary Material (ESI) for Chemical Communications

-38.91

1.00 2.00 3.05 0.99 1.04 3.16 9.14

172.37 148.97 156.97 112.35 115.77 116.75 125.42 127.28 127.49 127.65 129.12 129.37 129.55 131.61 132.55 134.07 84.83 59.81 55.78 28.00 Electronic Supplementary Material (ESI) for Chemical Communications

-38.75

1.00 1.97 3.05 0.98 1.12 9.29

171.91 158.65 161.08 148.85 113.92 114.16 117.17 117.22 117.29 117.40 123.79 126.88 127.50 127.95 128.03 129.27 129.62 129.98 133.07 133.50 135.21 135.23 85.29 59.38 27.97 Electronic Supplementary Material (ESI) for Chemical Communications

-38.76-116.44-116.44-116.45-116.46-116.46-116.47

1.00 0.97 2.02 1.01 3.08 9.21

171.63 148.70 117.04 125.31 126.79 127.37 127.50 127.98 129.29 129.43 129.65 130.41 130.51 131.49 133.38 137.74 85.45 59.18 27.95 Electronic Supplementary Material (ESI) for Chemical Communications

-38.70

1.00 0.96 1.04 2.05 3.13 9.27

171.49 148.68 138.26 117.38 117.75 123.76 126.86 127.50 128.32 129.30 129.64 129.95 133.04 133.40 85.46 59.11 27.95 Electronic Supplementary Material (ESI) for Chemical Communications

-38.68

Chromatogram : XL380Ra_IA_991_flow1_40999913 Data file: XL380Ra_IA_991_flow1_40999913.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 2:13:58 90,000 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0-5,000-10,000 XL380Ra_IA_991_flow 1_40999913.DATA [Jasco UV 1] RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 XL380Ra_IA_991_flow1_40999913.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 5.702 9.331 6.067 9.883 7.107 10.765 50.015 49.985 Total 100.000 Chromatogram : XL380_IA_991_flow1_40999914 Data file: XL380_IA_991_flow1_40999914.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 2:56:38 160,000 150,000 140,000 130,000 120,000 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000-20,000 XL380_IA_991_flow 1_40999914.DATA [Jasco UV 1] RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 XL380_IA_991_flow1_40999914.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 5.859 8.926 6.100 9.800 6.329 10.950 2.631 97.369 Total 100.000

Chromatogram : XL402Ra_IA_991_flow1_40999905 Data file: XL402Ra_IA_991_flow1_40999905.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/12 20:43:55 130,000 120,000 XL402Ra_IA_991_flow 1_40999905.DATA [Jasco UV 1] 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000 RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XL402Ra_IA_991_flow1_40999905.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 5.620 8.264 5.975 8.842 6.777 10.000 50.911 49.089 Total 100.000 Chromatogram : XL402_IA_991_flow1_40999906 Data file: XL402_IA_991_flow1_40999906.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/12 21:26:34 170,000 160,000 150,000 140,000 130,000 120,000 110,000 XL402_IA_991_flow 1_40999906.DATA [Jasco UV 1] 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 SPW 0.20 STH 10.00 TI OFF TI OFF 0-10,000-20,000 RT [min] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XL402_IA_991_flow1_40999906.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 5.724 8.140 5.992 8.767 6.278 10.279 4.031 95.969 Total 100.000

Chromatogram : XL403Ra_IA_991_flow1_40999907 Data file: XL403Ra_IA_991_flow1_40999907.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/12 22:06:10 95,000 90,000 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0-5,000-10,000 XL403Ra_IA_991_flow 1_40999907.DATA [Jasco UV 1] RT [min] 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XL403Ra_IA_991_flow1_40999907.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 9.545 12.479 10.225 13.008 11.322 14.752 49.933 50.067 Total 100.000 Chromatogram : XL403_IA_991_flow1_40999908 Data file: XL403_IA_991_flow1_40999908.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/12 22:48:48 140,000 130,000 120,000 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000 XL403_IA_991_flow 1_40999908.DATA [Jasco UV 1] -20,000 RT [min] 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XL403_IA_991_flow1_40999908.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 9.917 11.902 10.258 12.900 10.772 15.734 5.069 94.931 Total 100.000

Chromatogram : XL404Ra_IA_991_flow1_40999909 Data file: XL404Ra_IA_991_flow1_40999909.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/12 23:23:24 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0-5,000-10,000 XL404Ra_IA_991_flow 1_40999909.DATA [Jasco UV 1] RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 XL404Ra_IA_991_flow1_40999909.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 5.043 7.102 5.300 7.517 5.895 8.237 50.506 49.494 Total 100.000 Chromatogram : XL404_IA_991_flow1_40999910 Data file: XL404_IA_991_flow1_40999910.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 0:06:03 105,000 100,000 95,000 90,000 85,000 80,000 75,000 70,000 65,000 60,000 55,000 50,000 45,000 40,000 35,000 30,000 25,000 20,000 15,000 10,000 5,000 0-5,000-10,000 XL404_IA_991_flow 1_40999910.DATA [Jasco UV 1] RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 XL404_IA_991_flow1_40999910.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 5.120 6.735 5.375 7.525 5.615 8.394 6.182 93.818 Total 100.000

Chromatogram : XL379Ra_IA_982_flow1_60999902 Data file: XL379Ra_IA_982_flow1_60999902.DATA Method: HPLC1_IA_982_flow1_acq_60 Date: 2013/8/12 18:06:00 XL379Ra_IA_982_flow 1_60999902.DATA [Jasco UV 1] 280,000 260,000 240,000 220,000 200,000 180,000 160,000 140,000 120,000 100,000 80,000 60,000 40,000 20,000 SPW 0.20 STH 10.00 TI OFF 0-20,000-40,000 RT [min] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 XL379Ra_IA_982_flow1_60999902.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 8.831 26.901 9.467 28.375 10.403 32.851 51.479 48.521 Total 100.000 Chromatogram : XL379_IA_982_flow1_60999903 Data file: XL379_IA_982_flow1_60999903.DATA Method: HPLC1_IA_982_flow1_acq_60 Date: 2013/8/12 19:08:39 210,000 200,000 190,000 180,000 170,000 160,000 150,000 140,000 130,000 120,000 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000-20,000 XL379_IA_982_flow 1_60999903.DATA [Jasco UV 1] RT [min] 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 SPW 0.20 STH 10.00 TI OFF TI OFF XL379_IA_982_flow1_60999903.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 9.153 24.819 9.492 27.817 10.150 32.479 6.198 93.802 Total 100.000

Chromatogram : XL407Ra_IA_991_flow1_40999911 Data file: XL407Ra_IA_991_flow1_40999911.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 0:48:42 150,000 140,000 130,000 120,000 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000-20,000 XL407Ra_IA_991_flow 1_40999911.DATA [Jasco UV 1] RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XL407Ra_IA_991_flow1_40999911.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 5.731 9.091 6.133 9.758 6.983 10.950 50.708 49.292 Total 100.000 Chromatogram : XL407_IA_991_flow1_40999912 Data file: XL407_IA_991_flow1_40999912.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 1:31:20 240,000 XL407_IA_991_flow 1_40999912.DATA [Jasco UV 1] 220,000 200,000 180,000 160,000 140,000 120,000 100,000 80,000 60,000 40,000 20,000 0-20,000 RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XL407_IA_991_flow1_40999912.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 6.005 8.657 6.208 9.758 6.486 11.268 3.166 96.834 Total 100.000

Chromatogram : XL423Ra_IA_991_flow1_40999917 Data file: XL423Ra_IA_991_flow1_40999917.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/13 5:04:28 130,000 120,000 110,000 100,000 90,000 XL423Ra_IA_991_flow 1_40999917.DATA [Jasco UV 1] 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000-20,000 RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XL423Ra_IA_991_flow1_40999917.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 7.863 12.066 8.308 13.042 9.657 15.289 49.539 50.461 Total 100.000 Chromatogram : XL423_IA_991_flow1_4075304 Data file: XL423_IA_991_flow1_4075304.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/15 21:49:15 130,000 120,000 XL423_IA_991_flow 1_4075304.DATA [Jasco UV 1] 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000-20,000 RT [min] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 XL423_IA_991_flow1_4075304.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 8.793 13.238 9.092 14.183 9.431 16.922 2.937 97.063 Total 100.000

Chromatogram : XL406Ra_IA_991_flow1_4074102 Data file: XL406Ra_IA_991_flow1_4074102.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/14 10:04:16 100,000 XL406Ra_IA_991_flow 1_4074102.DATA [Jasco UV 1] 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000 RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XL406Ra_IA_991_flow1_4074102.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 4.927 7.932 5.267 8.692 6.019 9.932 50.600 49.400 Total 100.000 Chromatogram : XL432_IA_991_flow1_40157003 Data file: XL432_IA_991_flow1_40157003.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/18 23:06:55 240,000 220,000 XL432_IA_991_flow 1_40157003.DATA [Jasco UV 1] 200,000 180,000 160,000 140,000 120,000 100,000 80,000 60,000 40,000 20,000 0-20,000-40,000 1 2 3 4 5 6 7 8 9 10 11 12 13 14 RT [min] 15 XL432_IA_991_flow1_40157003.DATA [Jasco UV 1] Index Start Time End Area % [%] 2 1 4.914 8.140 5.225 8.950 5.750 12.231 5.119 94.881 Total 100.000

Chromatogram : XL421Rac_IA_991_flow1_4015908 Data file: XL421Rac_IA_991_flow1_4015908.DATA Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/15 1:04:20 160,000 150,000 140,000 130,000 120,000 110,000 100,000 90,000 80,000 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0-10,000 XL421Rac_IA_991_flow 1_4015908.DATA [Jasco UV 1] RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 XL421Rac_IA_991_flow1_4015908.DATA [Jasco UV 1] Index Start Time End Area % [%] 1 2 4.362 7.215 4.842 7.725 5.633 8.721 50.202 49.798 Total 100.000 Chromatogram : XL421_o degree_ia_991_flow1_40157002 Data file: XL421_o degree_ia_991_flow1_40157002.data Method: HPLC1_IA_991_flow1_acq_40 Date: 2013/8/18 22:24:16 550,000 XL421_o degree_ia_991_flow 1_40157002.DATA [Jasco UV 1] 500,000 450,000 400,000 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0-50,000-100,000 RT [min] 1 2 3 4 5 6 7 8 9 10 11 12 13 XL421_o degree_ia_991_flow1_40157002.data [Jasco UV 1] Index Start Time End Area % [%] 2 1 4.614 7.298 4.900 8.075 5.319 9.736 6.947 93.053 Total 100.000