Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Electronic Supplementary Information

Supporting Information

Supporting Information for

The Free Internet Journal for Organic Chemistry

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Supporting Information. Experimental section

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information. Experimental section

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Aminofluorination of Fluorinated Alkenes

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

gem-dichloroalkenes for the Construction of 3-Arylchromones

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information for

Selective mono reduction of bisphosphine

Supporting Information

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Supplementary Material

Supporting Information

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

phase: synthesis of biaryls, terphenyls and polyaryls

Electronic Supplementary Information (ESI)

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

Supporting Materials

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information for

Supplementary information

Supporting information

SUPPORTING INFORMATION

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supplementary Information for

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information

Experimental procedure

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

multicomponent synthesis of 5-amino-4-

Supporting Information. Direct Heptafluoroisopropylation of Arylboronic Acids via. Hexafluoropropene (HFP)

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Transcript:

Free Radical Initiated Coupling Reaction of Alcohols and Alkynes: not C-O but C-C Bond Formation Zhongquan Liu,* Liang Sun, Jianguo Wang, Jie Han, Yankai Zhao, Bo Zhou Institute of Organic Chemistry, Gannan Normal University, 341000, Ganzhou, Jiangxi, State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou 730000, P. R. China. Phone: (+86)-931-8912280, fax: (+86)-931-8625657, e-mail: liuzhongquan@yahoo.cn Context General information 2 Typical procedure 2 Physical data for the following products 3-9 Copies of the 1 H NMR and 13 C NMR 10-35 1

Experimental Section General information: 1 H and 13 C NMR spectra were recorded on a Bruker advance Ⅲ 400 spectrometer in CDCl 3 with TMS as internal standard. Mass spectra were determined on a Hewlett Packard 5988A spectrometer by direct inlet at 70 ev. High-resolution mass spectral analysis (HRMS) data were measured on a Bruker Apex Ⅱ. All products were identified by 1 H and 13 C NMR, MS and/or HRMS. Chemicals and solvents were purchased from commercial sources. Typical procedure: TBHP (5.0-6.0 M in decane, 1.0 mmol) was added to a solution of phenyl ethyne (0.5 mmol) in 10mL of ethanol, the system was heated to 120 and stirred for 15 hours. The solvent was removed under reduced pressure and column chromatographic separation gave the product of the E/Z isomer, further purification by column chromatography gave pure (E)-3a and (Z)-3a (E/Z=1:1). 2

Physical data for the following products All products ( 3a 3m) except for 3g are known compounds cited in the following references, and the compound 3g was confirmed by 1 H NMR, 13 C NMR, MS and HRMS analysis. References: 1. Kraus, G. A.; Watson, B. M. Tetrahedron Lett. 1996, 37, 5287-5288. 2. Wang, D.; Chen, D.; Haberman, J. X.; Li, C. Tetrahedron 1998, 54, 5129-5142. 3. Braude, E. A.; Stern, E. S. J. Chem. Soc. 1947, 1096-1104. 4. Nakano, T.; Umano, S.; Kino, Y.; Ishii, Y.; Ogawa, M. J. Org. Chem. 1988, 53, 3752-3757. 5. Li, C.; Wang, D.; Chen, D. J. Am. Chem. Soc. 1995, 117, 12867-12868. 6. Zimmerman, H. E.; Singer, L.; Thyagarajan, B. S. J. Am. Chem. Soc. 1959, 81, 108-116. 7. Nagashima, H.; Nakaoka, A.; Tajima, S.; Saito, Y.; Itoh, K. Chem. Lett. 1992, 1361-1364. 8. Masnyk, M.; Wicha, J. Tetrahedron Lett. 1988, 29, 2497-2500. 9. Fehr, C.; Galindo, J. Angew. Chem. Int. Ed. 2000, 39, 569-573. 10. Maleczka, R. E.; Lavis, J. M.; Clark, D. H.; Gallagher, W. P. Org. Lett. 2000, 2, 3655-3658. 11. Jang, Y.; Shih, Y.; Liu, J.; Kuo, W.; Yao, C. Chem. Eur. J. 2003, 9, 2123-2128. 12. Zhang, Y.; Li, C. Tetrahedron Lett. 2004, 45, 7581-7584. 3

3a-(Z). OH 1 HNMR(400MHz, CDCl 3 ) δ= 7.38 7.24 (m, 5H), 6.52 (d, J = 11.6Hz, 1H), 5.71 (dd, J = 11.6Hz, 9.1Hz, 1H), 4.80 (dq, J = 12.5Hz, 6.3Hz, 1H), 1.73 (s, 1H), 1.38 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.61, 135.66, 130.04, 128.76, 128.29, 127.22, 64.15, 23.59. MS(EI): m/z (%): 148 (M +, 41), 133 (24), 115 (16), 105 (65), 91 (40), 77 (30), 43 (100). 3a-(E). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.44 7.29 (m, 5H), 6.58 (d, J = 15.9Hz, 1H), 6.28 (dd, J = 15.9Hz, 6.4Hz, 1H), 4.58 4.42 (m, 1H), 2.04 (s, 1H), 1.38 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.69, 133.55, 129.38, 128.57, 127.62, 126.45, 68.92, 23.40. MS(EI): m/z (%): 148 (M +, 14), 133 (11), 115 (19), 105 (52), 91 (41), 77 (40), 43 (100). 3b-(Z). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.23 7.13 (m, 4H), 6.48 (d, J = 11.6Hz, 1H), 5.67 (dd, J = 11.6Hz, 9.1Hz, 1H), 4.90 4.73 (m, 1H), 2.37 (s, 3H), 1.96 (s, 1H), 1.38 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 137.01, 135.08, 133.75, 129.89, 129.00, 128.72, 64.18, 23.59, 21.18. MS(EI): m/z (%): 162 (M +, 45), 147 (36), 129 (30), 115 (36), 105 (100), 91 (59), 77 (29), 43 (100). 3b-(E). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.33 7.08 (m, 4H), 6.55 (d, J = 15.9Hz, 1H), 6.23 (dd, J = 15.9Hz, 6.5Hz, 1H), 4.49 (m, 1H), 2.35 (s, 3H), 1.86 (s, 1H), 1.40 1.36 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 137.47, 133.87, 132.51, 129.35, 129.27, 126.35, 69.04, 23.42, 21.19. MS(EI): m/z (%): 162 (M +, 71), 147 (42), 129 (27), 115 (40), 105 (100), 91 (48), 77 (20), 43 (68). 3c-(Z). F OH 1 HNMR(400MHz, CDCl 3 ) δ=7.29 7.04 (m, 4H), 6.46 (d, J = 11.6Hz, 1H), 5.69 (dd, J = 11.6Hz, 9.1Hz, 1H), 4.73 (dq, J = 12.6Hz, 6.3Hz, 1H), 1.68 (s, 1H), 1.37 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 135.48, 132.62, 130.45, 129.09, 115.31, 115.10, 64.04, 23.69. MS(EI): m/z (%): 166 (M +, 52), 151 (42), 133 (47), 109 (100), 96 (31), 43 (63). 4

OH 3c-(E). F 1 HNMR(400MHz, CDCl 3 ) δ=7.36-7.32 (m, 2H), 7.02-6.98 (m, 2H), 6.55-6.51 (d, J = 16.0Hz, 1H), 6.20-6.15 (dd, J = 16.0Hz, 6.4Hz, 1H), 4.51-4.45 (m, 1H), 1.77 (s, 1H), 1.38-1.36 (d, J = 6.4Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ=163.53, 161.07, 133.26, 128.22, 127.88, 115.56, 68.83, 23.42. MS(EI): m/z (%): 166 (M +, 22), 151 (35), 133 (47), 109 (100), 96 (45), 43 (53). 3d-(Z). MeO OH 1 HNMR(400MHz, CDCl 3 ) δ=7.29 6.85 (m, 4H), 6.44 (d, J = 11.6Hz, 1H), 5.61 (dd, J = 11.6Hz, 9.0Hz, 1H), 4.88 4.71 (m, 1H), 3.82 (s, 3H), 1.71 (s, 1H), 1.38 (d, J = 6.3Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 158.79, 134.17, 130.08, 129.66, 129.21, 113.71, 64.19, 55.26, 23.66. MS(EI): m/z (%): 178 (M +, 50), 163 (15), 148 (18), 135 (25), 121 (100), 108 (16), 91 (12), 77 (3), 43 (43). OH 3d-(E). MeO 1 HNMR(400MHz, CDCl 3 ) δ=7.35 6.88 (m, 4H), 6.52 (d, J = 15.9 Hz, 1H), 6.14 (dd, J = 15.9Hz, 6.6Hz, 1H), 4.48 (m, 1H), 3.82 (s, 3H), 1.67 (s, 1H), 1.38 (d, J = 6.4 Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 131.40, 129.41, 128.99, 127.61, 113.99, 113.71, 69.10, 55.28, 23.46. MS(EI): m/z (%): 178 (M +, 33), 163 (9), 148 (3), 135 (18), 121 (100), 108 (16), 91 (17), 77 (16), 43 (31). 3e-(Z). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.38 7.15 (m, 5H), 6.38 (s, 1H), 4.89 (q, J = 6.5Hz, 1H), 1.93 (s, 3H), 1.65 (s, 1H), 1.35 (d, J = 6.5Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 141.07, 137.26, 128.66, 128.14, 126.90, 126.46, 65.55, 21.30, 17.17. MS(EI): m/z (%): 162 (M +, 14), 147 (26), 129 (23), 115 (24), 105 (6), 91 (100), 77 (15), 43 (63). 3e-(E). OH 5

1 HNMR(400MHz, CDCl 3 ) δ=7.32 (m, 5H), 6.52 (s, 1H), 4.40 (q, J = 6.4Hz, 1H), 1.92 (s, 3H), 1.71 (s, 1H), 1.38 (d, J = 6.5 Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 141.59, 137.63, 128.95, 128.10, 126.38, 124.38, 73.65, 21.79, 13.40. MS(EI): m/z (%): 162 (M +, 38), 147 (34), 129 (23), 115 (50), 105 (14), 91 (68), 77 (27), 43 (100). 3f-(Z). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.63 7.32 (m, 10H), 6.68 (s, 1H), 5.16 (q, J = 6.5Hz, 1H), 1.61 (s, 1H), 1.33 (d, J = 6.5Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 145.21, 140.35, 136.80, 130.88, 128.91, 128.75, 128.32, 128.02, 127.30, 127.11, 66.05, 22.40. MS(EI): m/z (%): 224 (M +, 16), 209 (4), 191 (8), 181 (100), 165 (18), 152 (10), 105 (21), 91 (29), 77 (28), 43 (46). OH 3f-(E). 1 HNMR(400MHz, CDCl 3 ) δ=7.37 6.92 (m, 10H), 6.71 (s, 1H), 4.68 (q, J = 6.4Hz, 1H), 1.77 (s, 1H), 1.32 (d, J = 6.4Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 146.11, 138.50, 136.52, 129.21, 129.18, 128.70, 127.89, 127.36, 126.69, 125.64, 73.02, 22.19. MS(EI): m/z (%): 224 (M +, 40), 191 (7), 181 (100), 166 (14), 152 (11), 105 (12), 91 (20), 77 (19), 43 (79). OH OH 3g-(E). 1 HNMR(400MHz, CDCl 3 ) δ=7.48 7.24 (m, 5H), 5.98 (d, J = 16.1Hz, 1H), 5.78 (dd, J = 16.1Hz, 6.1Hz, 1H), 4.34 (m, 1H), 2.19 (s, 2H), 1.66 (s, 3H), 1.28 (d, J = 6.4Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 146.64, 136.61, 132.14, 128.23, 126.96, 125.13, 74.08, 68.20, 29.77, 23.35. MS(EI): m/z (%): 192 (M +, 0.2), 175 (7), 147 (28), 131 (47), 115 (16), 105 (18), 91 (30), 77 (23), 43 (100). HRMS (ESI): calculated for C 12 H 15 O 2 [M-H 2 O+H] + : 175.1117; found: 175.1118. 3h-(Z). HO 6

1 HNMR(400MHz, CDCl 3 ) δ=7.33 (m, 5H), 6.59 (d, J = 11.7Hz, 1H), 5.68 (dd, J = 11.7Hz, 9.3Hz, 1H), 4.52 (m, 1H), 1.65 (m, 3H), 0.98 (t, J = 7.5Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ=136.66, 134.36, 131.31, 128.75, 128.28, 127.21, 69.16, 30.54, 9.72. MS(EI): m/z (%): 162 (M +, 28), 133 (100), 115 (43), 105 (77), 91 (84), 77 (58), 43 (29). OH 3h-(E). 1 HNMR(400MHz, CDCl 3 ) δ=7.38 7.25 (m, 5H), 6.65 6.54 (d, J =15.9 Hz, 1H), 6.24 (dd, J = 15.9Hz, 6.8Hz, 1H), 4.23 (m, 1H), 1.76 1.56 (m, 3H), 1.01 0.95 (t, J = 7.5, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.74, 132.26, 130.43, 128.56, 127.61, 126.44, 74.41, 30.22, 9.74. MS(EI): m/z 162 (M +, 29), 133 (100), 115 (35), 105 (73), 91 (78), 77 (56), 43 (39). 3i-(Z). HO 1 HNMR(400MHz, CDCl 3 ) δ=7.41 7.28 (m, 5H), 6.58 (d, J = 11.6Hz, 1H), 5.68 (dd, J = 11.6, 9.3Hz, 1H), 4.68-4.60 (dd, J = 15.5, 6.5Hz, 1H), 1.73 1.58 (m, 2H), 1.46 1.38 (m, 2H), 0.99 0.85 (t, 3H, J =7.5). 13 CNMR(100MHz, CDCl 3 ) δ= 136.67, 134.71, 130.94, 128.74, 128.27, 126.43, 67.64, 39.78, 18.62, 14.03. MS(EI): m/z (%): 176 (M +, 21), 133 (100), 115 (46), 105 (65), 91 (51), 77 (55), 55 (100), 43 (59). OH 3i-(E). 1 HNMR(400MHz, CDCl 3 ) δ= 7.38-7.26 (m, 5H), 6.59-6.55 (d, J=16.0Hz, 1H), 6.25-6.20 (dd, J=6.8, 15.6Hz, 1H), 4.30-4.29 (m, 1H), 1.63-1.57 (m, 3H), 1.48-1.26 (m, 2H), 0.89-0.99 (m, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.75, 134.70, 132.60, 128.72, 128.25, 127.17, 72.82, 39.77, 18.65, 13.99. MS(EI): m/z (%): 176 (M +, 11), 133 (100), 115 (32), 105 (56), 91 (42), 77 (44), 43 (39). 3j-(Z). HO 1 HNMR(400MHz, CDCl 3 ) δ= 7.40 7.29 (m, 5H), 6.64 6.61 (d, J = 11.6Hz, 1H), 5.74-5.68 (dd, J = 11.6, 9.6Hz, 1H), 4.29 4.25 (dd, J=9.6, 6.8Hz, 1H), 1.80 1.75 (m, 1H), 1.48 (s, 1H), 1.00 0.98 (d, J = 6.8Hz, 3H), 0.93-0.91 (d, J= 6.8Hz, 3H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.74, 132.10, 128.77, 128.56, 128.28, 126.44, 72.55, 34.41, 18.52. 7

MS(EI): m/z (%): 176 (M +, 10), 133 (100), 115 (45), 105 (26), 91 (35), 77 (28), 43 (23). OH 3j-(E). 1 HNMR(400MHz, CDCl 3 ) δ= 7.43 7.31 (m, 5H), 6.69 6.54 (d, J = 16.3, 1H), 6.26-6.16 (dd, J = 16.3, 6.8, 1H), 5.54-5.58 (m, 1H), 1.60 (m, 1H), 0.98 (d, J = 5.7, 6H). 13 CNMR(100MHz, CDCl 3 ) δ= 138.33, 136.77, 128.57, 128.53, 127.79, 126.14, 72.00, 38.87, 25.77. MS(EI): m/z176 (M +, 7), 145 (100), 128 (24), 115 (24), 105 (17), 91 (62), 77 (40), 43 (62). 3k-(Z). OH 1 HNMR(400MHz, CDCl 3 ) δ=7.41 7.29 (m, 5H), 6.48 (d, J = 12.7Hz, 1H), 5.78 (d, J = 12.7Hz, 1H), 1.73 (s, 1H), 1.38 1.18 (s, 6H). 13 CNMR(100MHz, CDCl 3 ) δ= 139.28, 133.92, 128.98, 128.84, 128.06, 126.95, 72.11, 31.16. MS(EI): m/z 162 (M +, 22), 147 (39), 129 (18), 115 (11), 103 (16), 91 (66), 77 (23), 43 (100). OH 3k-(E). 1 HNMR(400MHz, CDCl 3 ) δ=7.33 7.21 (m, 5H), 6.61-6.57 (d, J = 16.0Hz, 1H), 6.38-6.34 (d, J = 16.0Hz, 1H), 1.54 (s, 1H), 1.43 (s, 6H). 13 CNMR(100MHz, CDCl 3 ) δ= 137.48, 136.88, 128.54, 127.40, 126.37, 126.35, 71.04, 29.87. MS(EI): m/z 162 (M +, 12), 147 (49), 129 (29), 115 (8), 103 (11), 91 (56), 77 (28), 43 (100). 3l-(Z) O 1 HNMR(400MHz, CDCl 3 ) δ= 7.36-7.25 (m, 5H), 6.61-6.58 (d, J=11.6Hz, 1H), 5.73-5.68 (dd, J= 11.6, 8.4Hz, 1H), 4.69-4.65 (m, 1H), 3.99-3.93 (m, 1H), 2.15-1.67 (m, 4H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.69, 132.85, 131.46, 128.81, 128.14, 127.09, 75.05, 68.06, 32.91, 26.37. MS(EI): m/z (%): 174 (M +, 76), 145 (20), 131 (57), 115 (42), 104 (51), 91 (38), 77 (44), 42 (100). 3l-(E) O 1 HNMR(400MHz, CDCl 3 ) δ= 7.39-7.22 (m, 5H), 6.60-6.56 (d, J= 15.6Hz, 1H), 6.24-6.18 (dd, 8

J=6.4, 15.6Hz, 1H), 4.50-4.45 (m, 1H), 4.00-3.94 (m, 1H), 3.87-3.81 (m, 1H), 2.15-1.26 (m, 4H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.83, 130.47, 130.43, 128.48, 127.47, 126.44, 79.66, 68.16, 32.37, 25.89. MS(EI): m/z (%): 174 (M +, 93), 145 (15), 131 (70), 115 (52), 104 (61), 91 (46), 77 (63), 42 (100). O O 3m-(Z) 1 HNMR(400MHz, CDCl 3 ) δ= 7.38-7.26 (m, 5H), 6.70-6.67(d, J=12.0Hz, 1H), 5.57-5.52 (dd, J= 12.0, 7.2Hz, 1H), 4.53-4.48 (m, 1H), 3.81-3.69 (m, 5H), 3.50-3.44 (m, 1H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.26, 134.40, 128.64, 127.59, 127.18, 72.17, 70.15, 66.23, 66.08. MS(EI): m/z (%): 190 (M +, 11), 131 (42), 115 (14), 86 (100), 77 (22). O O 3m-(E/Z) 1 HNMR(400MHz, CDCl 3 ) δ= 7.38-7.24 (m, 5H), 6.70-6.66 (d, J=16.0Hz, 1H), 6.11-6.05 (dd, J=6.0, 16.0Hz, 1H), 4.27-4.22 (m, 1H), 3.88-3.62 (m, 5H), 3.44-3.39 (m, 1H). 13 CNMR(100MHz, CDCl 3 ) δ= 136.35, 132.62, 128.53, 127.88, 126.47, 125.08, 76.03, 70.91, 66.51, 66.26. MS(EI): m/z (%): 190 (M +, 17), 131 (62), 115 (19), 86 (100), 77 (26). 9

Copies of the 1 H NMR and 13 C NMR 1 H NMR and 13 C NMR spectra of 3a-(Z): 10

1 H NMR and 13 C NMR spectra of 3a-(E): 11

1 H NMR and 13 C NMR spectra of 3b-(Z): 12

1 H NMR and 13 C NMR spectra of 3b-(E): 13

1 H NMR and 13 C NMR spectra of 3c-(Z): 14

1 H NMR and 13 C NMR spectra of 3c-(E): 15

1 H NMR and 13 C NMR spectra of 3d-(Z): 16

1 H NMR and 13 C NMR spectra of 3d-(E): 17

1 H NMR and 13 C NMR spectra of 3e-(Z): 18

1 H NMR and 13 C NMR spectra of 3e-(E): 19

1 H NMR and 13 C NMR spectra of 3f-(Z): 20

1 H NMR and 13 C NMR spectra of 3f-(E): 21

1 H NMR, 13 C NMR and HRMS spectra of 3g-(E): 22

23

1 H NMR and 13 C NMR spectra of 3h-(Z): 24

1 H NMR and 13 C NMR spectra of 3h-(E): 25

1 H NMR and 13 C NMR spectra of 3i-(Z): 26

1 H NMR and 13 C NMR spectra of 3i-(E): 27

1 H NMR and 13 C NMR spectra of 3j-(Z): 28

1 H NMR and 13 C NMR spectra of 3j-(E): 29

1 H NMR and 13 C NMR spectra of 3k-(Z): 30

1 H NMR and 13 C NMR spectra of 3k-(E): 31

1 H NMR and 13 C NMR spectra of 3l-(Z): 32

1 H NMR and 13 C NMR spectra of 3l-(E): 33

1 H NMR and 13 C NMR spectra of 3m-(Z): 34

1 H NMR and 13 C NMR spectra of 3m-(E): 35