i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Τέλος_επανάληψης

Σχετικά έγγραφα
μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ - ΕΣΠΕΡΙΝΩΝ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α

ΘΕΜΑ Α. Α1. Να γράψετε στο. 2. Τα του. τις. αριθμητικές. πρώτες. β. Να. Σελίδα 1 από 5. 2) χ 2. χ Τ_Ρ(α) ΓΡΑΨΕ. ΓΡΑΨΕ χ χ χ+2

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ Λυκείου Φεβρουάριος Ανάπτυξη Εφαρμογών ΘΕΜΑ Α

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΘΕΜΑ 1ο Α. 1. Ποια είναι τα κυριότερα χρησιμοποιούμενα γεωμετρικά σχήματα σε ένα διάγραμμα ροής και τι ενέργεια ή λειτουργία δηλώνει το καθένα;

Ανάπτυξη Εφαρμογών. ΑΝ Β[i] > 0 ΚΑΙ Β[i] > Α[i] ΤΟΤΕ ΜΑΧ Β[i] ΑΛΛΙΩΣ_ΑΝ Β[i] > 0 ΚΑΙ Β[i] < = Α[i] ΤΟΤΕ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΚΥΡΙΑΚΗ 13 ΝΟΕΜΒΡΙΟΥ 2016 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΠΕΝΤΕ (5)

Τ και τιµή του Β θετική µετατρέπεται ισοδύναµα στην εντολή Όσο ως εξής:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ

περισσότερα από ένα παραδείγµατα εντολών της Στήλης Β).

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

Α1. Να γράψετε τα τμήματα αλγορίθμου, που αντιστοιχούν στα τμήματα των διαγραμμάτων ροής που ακολουθούν.

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

ΘΕΜΑ 1ο. Μονάδες 10. Β. ίνεται το παρακάτω τμήμα αλγορίθμου: Όσο Ι < 10 επανάλαβε Εμφάνισε Ι Ι Ι + 3 Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

Ενδεικτικές Απαντήσεις στο μάθημα Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Δ ΕΣΠΕΡΙΝΩΝ

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Α4. Όσο επανάλαβε Τέλος_επανάληψης Εμφάνισε Για από μέχρι με_βήμα. Όσο επανάλαβε (Μονάδες 5) Α5. Α[10, 5] Π, Για από μέχρι (1) Για από μέχρι (2) Αν

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΜΟΝΟ ΝΕΟ ΣΥΣΤΗΜΑ ΕΣΠΕΡΙΝΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΑΞΗ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΕΣΠΕΡΙΝΩΝ

ΚΥΡΙΑΚΗ 26 ΝΟΕΜΒΡΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΞΙ (6)

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

ΠΡΟΣΟΜΟΙΩΣΗ ΠΑΝΕΛΛΑΔΙΚΩΝ ΕΞΕΤΑΣΕΩΝ Γʹ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΕΠΠ ΤΡΙΤΗ 18 ΑΠΡΙΛΙΟΥ 2017 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

(1) Σ 0 (2) Κ 0 (3) Αρχή_Επανάληψης (4) ιάβασε Χ (5) Σ Σ+Χ (6) Αν Χ>0 τότε (7) Κ Κ+1 (8) Τέλος_Αν (9) Μέχρις_ότου Σ>1000 (10) Εμφάνισε Χ

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΤΑΞΗ : Γ ΛΥΚΕΙΟΥ ΣΠΟΥΔΕΣ ΟΙΚΟΝΟΜΙΑΣ & ΠΛΗΡΟΦΟΡΙΚΗΣ

1. Δεν μπορεί να γίνει κλήση μίας διαδικασίας μέσα από μία συνάρτηση.

Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ ΘΕΜΑ Α

Για Ι από 2 μέχρι 10 με_βήμα 0 S S+I Τέλος_επανάληψης Εμφάνισε S Μονάδες 5

μεταβλητής Χ Χ ΑΛΗΘΗΣ Χ Χ 7 > 4 Χ ΨΕΥ ΗΣ Μονάδες 10

ΘΕΜΑ 1ο ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΤΕΛΟΣ 1ΗΣ ΑΠΟ 5 ΣΕΛΙ ΕΣ

ΤΕΛΟΣ 1ΗΣ ΣΕΛΙΔΑΣ ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ_ΕΠΑΝΑΛΗΨΗΣ... ΜΕΧΡΙΣ_ΟΤΟΥ

Ανακτήθηκε από την ΕΚΠΑΙΔΕΥΤΙΚΗ ΚΛΙΜΑΚΑ edu.klimaka.gr ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Ένα περιοδικό για το ΑΕΠΠ Τεύχος Πανελλαδικών ΙΙ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

Α2. ίνεται το παρακάτω τμήμα αλγορίθμου: Για i από 3 μέχρι Α με_βήμα Β Εμφάνισε i Τέλος_επανάληψης ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ ΤΕΛΟΣ 1ΗΣ ΑΠΟ 6 ΣΕΛΙ ΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Μονάδες 8 ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ Α ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΘΕΜΑ 1ο Α. ίνεται η παρακάτω αλληλουχία εντολών: ιάβασε α, β Αν α > β τότε c α / (β - 2) Τέλος_αν Εκτύπωσε c

Β. Να γράψετε στο τετράδιό σας τους αριθμούς της Στήλης Α, που αντιστοιχούν σωστά με το γράμμα της Στήλης Β. ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΤΑΞΗ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. Για i από 1 μέχρι Μ Εμφάνισε A[4,i] Τέλος_επανάληψης. (μονάδες 6) ΤΕΛΟΣ 1ης ΑΠΟ 7 ΣΕΛΙΔΕΣ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

3. Αλγόριθμοι + ομές εδομένων = Προγράμματα.

Ανάπτυξη Εφαρμογών σε Προγραμματιστικό Περιβάλλον

ΘΕΜΑ 1ο Α. 1. Τι είναι οι τελεστές και ποιες είναι οι κατηγορίες των τελεστών; 2. Να δώσετε τον ορισμό της δομής δεδομένων.

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ. i. Η συνθήκη α > β ή α <= β α) είναι πάντα Αληθής β) είναι πάντα Ψευδής γ) δεν υπολογίζεται δ) τίποτα από τα προηγούμενα

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Α2. Να γράψετε στο τετράδιο σας τον αριθμό 1-4 κάθε πρότασης και δίπλα το γράμμα που δίνει τη σωστή επιλογή.

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Α. α) Πότε ένα πρόβλημα χαρακτηρίζεται 1) ημιδομημένο 2) ανοικτό 3) δομημένο Μονάδες 6

Β. ίνεται το παρακάτω τμήμα δηλώσεων ενός προγράμματος σε «ΓΛΩΣΣΑ»: ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Χ, Ζ[15] ΠΡΑΓΜΑΤΙΚΕΣ: Ω

ΑΡΧΗ 1ης ΣΕΛΙΔΑΣ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΑΕΠΠ ΤΑΞΗ / ΤΜΗΜΑ : Γ ΛΥΚΕΙΟΥ / Γ3 Γ4 ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΝΟΕΜΒΡΙΟΣ 2018 ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ : ΕΞΙ (6)

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΠΡΟΓΡΑΜΜΑ Κύριο ΜΕΤΑΒΛΗΤΕΣ ΑΚΕΡΑΙΕΣ: Α, Β, Γ ΑΡΧΗ ΙΑΒΑΣΕ Α, Β, Γ ΚΑΛΕΣΕ ιαδ1(α, Β, Γ) ΓΡΑΨΕ Α, Β, Γ ΤΕΛΟΣ_ΠΡΟΓΡΑΜΜΑΤΟΣ

Γ ΚΥΚΛΟΣ ΠΡΟΣΟΜΟΙΩΤΙΚΩΝ ΔΙΑΓΩΝΙΣΜΑΤΩΝ ΣΥΓΧΡΟΝΟ Προτεινόμενα Θέματα Γ ΓΕ.Λ. Ιανουάριος Ανάπτυξη Εφαρμογών ΘΕΜΑ Α

ΠΑΝΕΛΛΑΔΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Δ' ΤΑΞΗΣ ΕΣΠΕΡΙΝΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΑΝΑΠΤΥΞΗ ΕΦΑΡΜΟΓΩΝ ΣΕ ΠΡΟΓΡΑΜΜΑΤΙΣΤΙΚΟ ΠΕΡΙΒΑΛΛΟΝ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

ΑΡΧΗ 1ΗΣ ΣΕΛΙ ΑΣ Γ ΗΜΕΡΗΣΙΩΝ

Transcript:

ΘΕΜΑ Α A1 Να γράψετε στο τετράδιό σας τον αριθμό καθεμιάς από τις παρακάτω προτάσεις α-δ και δίπλα τη λέξη ΣΩΣΤΟ, αν είναι σωστή, ή τη λέξη ΛΑΘΟΣ, αν είναι λανθασμένη. a. Σε μία εντολή εκχώρησης του αποτελέσματος μίας έκφρασης σε μία μεταβλητή, η μεταβλητή και η έκφραση πρέπει να είναι του ίδιου τύπου. b. Όταν ένας βρόχος είναι εμφωλευμένος σε άλλο, ο βρόχος που ξεκινάει τελευταίος πρέπει να ολοκληρώνεται πρώτος. c. Στην επαναληπτική εντολή «Για..» η τελική τιμή του μετρητή είναι πάντα μεγαλύτερη ή ίση από την αρχική d. Τα δεδομένα που αποθηκεύονται σε έναν πίνακα δεν μπορούν να είναι διαφορετικού τύπου. e. Για να προσπελάσουμε έναν πίνακα δεν μπορούμε να χρησιμοποιήσουμε τη δομή επανάληψης Όσο Επανέλαβε Μονάδες10 A2 Δίνεται ότι ο πίνακας A είναι πίνακας 100 ακέραιων αριθμών και τα στοιχεία έχουν πάρει όλα τιμές από προηγούμενη είσοδο. Η παρακάτω ακολουθία εντολών είναι τμήμα αλγορίθμου; Αν όχι τότε ποια κριτήρια παραβιάζει; Μονάδες 2 i 1 Όσο i <> 100 επανάλαβε i i + 2 Γράψε A[i] Να κάνετε τις απαραίτητες μετατροπές έτσι ώστε να μετατραπεί σε αλγόριθμο ώστε να εμφανίζει α) όλα τα στοιχεία του πίνακα β) τα στοιχεία του πίνακα που βρίσκονται σε περιττή θέση γ) τα στοιχεία του πίνακα που είναι περιττοί αριθμοί. Μονάδες 3+3+3=12 Οι τροποποιήσεις μπορεί να είναι αλλαγές, διαγραφές και προσθήκες γραμμών εντολών. Δεν θα αλλάξετε καθόλου τις γραμμές 2 και 5.

A3 κ 5 Αρχή_επανάληψης Για λ από 3 μέχρι 5 Εμφάνισε * κ κ - 1 Μέχρις_ότου κ <3 Για το διπλανό τμήμα αλγορίθμου να υπολογίσετε πόσα αστεράκια (*) θα εμφανιστούν. Μονάδες 6 Α4. Δίνεται ο παρακάτω αλγόριθμος αναζήτησης σε πίνακες. ΑΛΓΟΡΙΘΜΟΣ ΑΝΑΖΗΤΗΣΗ ΔΕΔΟΜΕΝΑ //Α, Ν, Key // done Ψευδής Κ 0 ΓΙΑ Ι ΑΠΟ 1 ΜΕΧΡΙ Ν ΑΝ Α[Ι] = Key ΤΟΤΕ Κ Κ+1 Β[Κ] Ι done Αληθής ΤΕΛΟΣ_ΑΝ ΤΕΛΟΣ_ΕΠΑΝΑΛΗΨΗΣ ΑΠΟΤΕΛΕΣΜΑΤΑ //Β, Κ, done // ΤΕΛΟΣ ΑΝΑΖΗΤΗΣΗ Να εκτελεστεί ο αλγόριθμος και να γράψετε τα περιεχόμενα του πίνακα Β στο τέλος του αλγορίθμου για τα ακόλουθα δεδομένα: α) Α= [1, 11, 1, 9, 14, 1], Ν=6, Key = 1. β) Α= [1, 11, 1, 9, 14, 1], Ν=6, Key = 9. 2) Ο συγκεκριμένος αλγόριθμος αναζήτησης σε ποιες περιπτώσεις θεωρείτε ότι είναι προτιμότερος; Μονάδες2+2+1 A5 Δίνονται οι πίνακες Α= 111 28 4 12 51 Β= α δ κ λ α Να γίνει αλγόριθμος όπου θα συγκρίνει τα στοιχεία του Α με τη σειρά 1 ο με 2 ο, 2 ο με 3 ο κλπ και κάθε φορά θα εκτυπώνει το στοιχείο του Β που αντιστοιχεί στη θέση του μεγαλύτερου της σύγκρισης. Στο παραπάνω πχ πρέπει να εμφανίζονται α,δ,λ, α Μονάδες 5

ΘΕΜΑ Β Α Δίνεται το παρακάτω τμήμα αλγορίθμου με αριθμημένες εντολές για εύκολη αναφορά σε αυτές. Κάθε εντολή περιέχει ένα ή δύο κενά (σημειωμένα με ), που το καθένα αντιστοιχεί σε μία σταθερά ή μία μεταβλητή ή έναν τελεστή. Επίσης δίνεται πίνακας όπου κάθε γραμμή αντιστοιχεί στη διπλανή εντολή του τμήματος αλγορίθμου και κάθε στήλη σε μία θέση μνήμης (μεταβλητή). Η κάθε γραμμή του πίνακα παρουσιάζει το αποτέλεσμα που έχει η εκτέλεση της αντίστοιχης εντολής στη μνήμη: συγκεκριμένα, δείχνει την τιμή της μεταβλητής την οποία επηρεάζει η εντολή. Να γράψετε στο τετράδιό σας τον αριθμό της καθεμιάς εντολής και δίπλα να σημειώσετε τη σταθερά, τη μεταβλητή, ή τον τελεστή που πρέπει να αντικαταστήσει το κάθε κενό της εντολής ώστε να έχει το αποτέλεσμα που δίνεται στον πίνακα, ως εξής: α. Για τις εντολές 1 και 2, να σημειώσετε σταθερές τιμές. β. Για τις εντολές 3,7,10 και 11, να σημειώσετε τελεστές, και για τις υπόλοιπες, να σημειώσετε μεταβλητές Μονάδες 10 Β Δίνεται μονοδιάστατος πίνακας Α, 10 θέσεων, ο οποίος στις θέσεις 1 έως 10 περιέχει αντίστοιχα τους αριθμούς:15, 3, 0, 5, 16, 2, 17, 8, 19, 1 και τμήμα αλγορίθμου: Για i από 1 μέχρι 9 με_βήμα 2 k ((i + 10) mod 10) + 1 Α[i] Α[k] Εκτύπωσε i, k, A[i], A[k] Ποιες τιμές τυπώνονται με την εντολή Εκτύπωσε i, k, A[i], A[k] καθώς εκτελείται το παραπάνω τμήμα αλγορίθμου; Μονάδες 10

ΘΕΜΑ Γ 1. Να δημιουργήσετε ένα πίνακα Α 100 αριθμών ως εξής : τα πρώτα 20 στοιχεία του να είναι οι αντίστοιχες τάξεις του δηλαδή 1,2,3,,20 και τα υπόλοιπα στοιχεία του να διαβάζονται αλλά να είναι μη μηδενικά. 2. Με δεδομένο τον πίνακα Α α) Να γραφεί αλγόριθμος ο οποίος δημιουργεί δύο πίνακες Β, Γ όπου θα περιέχουν αντίστοιχα τα θετικά και αρνητικά στοιχεία του Α. β) Να γραφεί αλγόριθμος ο οποίος δημιουργεί ένα πίνακα Δ που περιέχει πρώτα τα θετικά και μετά τα αρνητικά στοιχεία του Α. Μονάδες 10+5+5=20 ΘΕΜΑ Δ Να γράψετε πρόγραμμα που α) να διαβάζει το βαθμό (αποκλειστικά 0 μέχρι 20) 80 μαθητών μιας τάξης και τα ονόματά τους σε πίνακες Β, Ο, στη συνέχεια β) να εμφανίζει πόσες φορές υπάρχει ο βαθμός του 16ου μαθητή. γ) να εμφανίζει πόσες φορές υπάρχει ο βαθμός του καλύτερου μαθητή και τα ονόματα τους δ) Να δέχεται το όνομα ενός τυχαίου μαθητή και αν αυτό υπάρχει στον Ο τότε να εμφανίζει το βαθμό του, διαφορετικά το μήνυμα «δε βρέθηκε» Μονάδες 5+5+5+5=20 ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

1. Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο. 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Δεν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα. 3. Να απαντήσετε στο τετράδιό σας σε όλα τα θέματα. 4. Να γράψετε τις απαντήσεις σας μόνο με μπλε ή μόνο με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες. 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ. 6. Κάθε απάντηση τεκμηριωμένη είναι αποδεκτή. 7. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.