Supporting Information

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Divergent synthesis of various iminocyclitols from D-ribose

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information. Experimental section

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

The Free Internet Journal for Organic Chemistry

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supplementary information

SUPPORTING INFORMATION

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Experimental section

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Electronic Supplementary Information (ESI)

Electronic Supplementary Information

Supporting Information

Supporting Information

Aminofluorination of Fluorinated Alkenes

Electronic Supplementary Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Selective mono reduction of bisphosphine

Electronic Supplementary Information

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supporting information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007

Supporting Information for

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

multicomponent synthesis of 5-amino-4-

SUPPLEMENTARY MATERIAL

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information To: Synthesis of a xylo-puromycin Analogue

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information for

Supporting Information

Comparison of carbon-sulfur and carbon-amine bond in therapeutic drug: -S-aromatic heterocyclic podophyllum derivatives display antitumor activity

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Available online at

Supporting Information

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

SUPPORTING INFORMATION

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Supporting Information

Supporting Information for

Supporting Information. for

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting information

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 2017 Modular Synthesis of Propargylamine Modified Cyclodextrins by a Gold(III)-catalyzed Three Component Coupling Reaction Tsz-Wai Hui a,b, Jian-Fang Cui a,b and Man Kin Wong* a,b a. The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, PR China. b. State Key Laboratory of Chirosciences and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, PR China. These authors contributed equally to this work E-mail: mankin.wong@polyu.edu.hk Fax: +852 2364 9932 Supporting Information S1

Literature references of modified β-cyclodextrins H.-S. Byun, N. Zhong, R. Bittman, rg. Synth. 2000, 77, 225-230. 6-Ts-β-CD C. Wang, F. Chen, X.-W. He, S.-Z. Kang, C.-C. You, Y. Liu. Analyst. 2001, 126, 1716-1720. 1a S2

General Method: Chemicals were purchased from commercial sources and were used without further purification. 1-(p-Toluenesulfonyl)imidazole and 6--p-toluenesulfonyl-β-cyclodextrin (6-Ts-β-CD) were synthesized by following the literature procedure (rg. Synth. 2000, 77, 225-230). 1 H, 13 C and 2D NMR spectra were performed at 600 MHz and 150 MHz on Bruker DPX-600 spectrometer. Chemical shifts (ppm) were referenced to residual solvent or TMS signals and coupling constants are given in Hz. Data for 1 H NMR were recorded as follows: chemical shift (δ, ppm), multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, double doublet; t, triplet; td, triple doublet; tt, triple triplet; q, quartet; qd, quadruple doublet, m, multiplet), coupling constant (Hz), integration. Data for 13 C NMR are reported in terms of chemical shift (δ, ppm). Low resolution and high resolution mass spectra were measured on LCQ Advantage Mass, Waters 7890A and Waters Q-TF 2TM spectrometer. Infrared spectroscopy was conducted using Nicolet 380 FT- IR. General Procedure for Synthesis of Mono-(6-benzylamino-6-deoxy)-β-cyclodextrin 1 H H H H H Ts H 6-Ts- -CD R 1 70 o C, 16 h NH 2 R 1 NH H H H H 1a: (83%), R 1 =H 1b: (60%), R 1 =CH 3 H 1c: (50%), R 1 =CH 3 1d: (36%), R 1 =Cl H 1 Scheme S1. Synthesis of mono-(6-benzylamino-6-deoxy)-β-cyclodextrin 1 6--p-Toluenesulfonyl-β-cyclodextrin (3.0 g, 2.33 mmol) was heated in benzyl amine (20 ml) at 70 o C with stirring overnight. The resulting solution was added dropwise into excess acetone (150 ml). The resulting suspension was filtered to collect yellow solid. The yellow solid was then dissolved in water and heated up until all solid was dissolved. The solution was standed for overnight to allow precipitation of solid. The suspension was filtered to collect white solid. The S3

white solid was dried to constant weight under reduced pressure to give the corresponding mono- (6-benzylamino-6-deoxy)-β-cyclodextrins 1a-1d with moderate to good yield (36-83%). General Procedure for Synthesis of Mono-(6-(benzylpropargyl)amino-6-deoxy)-βcyclodextrin 2 Scheme S2. Synthesis of mono-(6-(benzylpropargyl)amino-6-deoxy)-β-cyclodextrin 2 Mono-(6-benzylamino-6-deoxy)-β-cyclodextrin 1 (1.0 equiv.), formaldehyde (10.0 equiv.), alkyne (10.0 equiv.) and potassium gold(iii) chloride KAuCl4 (2.5 mol%) were heated in water (10 ml) at 40 o C for 24 h. The resulting suspension was filtered to collect the solid. The solid was then dissolved in water and heated at 80 o C for 20 min. The insoluble solid was removed by filtration. The solution was allowed to stand in air and precipitate for few days. The suspension was filtered to collect the white solid. The white solid was dried to constant weight under reduced pressure to give the corresponding mono-(6-benzylpropargylamino-6-deoxy)-βcyclodextrin 2a-2h with moderate to good yield (26-67%). S4

Table S1 Attempt of gold(iii) catalyzed three component coupling reaction of primary amine modified β-cyclodextrin, phenylacetylene and various aldehydes. [a] Entry R Catalyst Solvent Yield of 2aa (%) [b] 1 H KAuCl4 H2 0 2 Ph KAuCl4 H2 0 3 4-MeC6H4 KAuCl4 H2 0 4 4-N2C6H4 KAuCl4 H2 0 5 PhCH2CH2 KAuCl4 H2 0 6 CH3 KAuCl4 H2 0 7 n-c3h7 KAuCl4 H2 0 8 n-c6h13 KAuCl4 H2 0 [a] Reaction conditions: 1aa (0.1 mmol), aldehyde (1.0 mmol), phenylacetylene (1.0 mmol), 40 o C, 24 h. [b] Detected by ESI-MS and TLC analysis. Scheme S3. Proposed reaction mechanism S5

Characterization Data of Mono-(6-benzylamino-6-deoxy)-β-cyclodextrin 1 and Mono-(6- benzylpropargylamino-6-deoxy)-β-cyclodextrin 2 White solid; 60% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.19 (d, J = 7.8 Hz, 2H, Ar-H), 7.10 (d, J = 7.9 Hz, 2H, Ar- H), 5.87 5.67 (m, 15H, -2, -3, NH), 4.83-4.83 (m, 7H, H-1), 4.63 4.46 (m, 6H, -6), 3.77 3.26 (m, 42H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1 ), 2.90 (d, J = 11.7 Hz, 1H, H-6a ), 2.72 (dd, J = 12.2, 6.8 Hz, 1H, H-6b ), 2.28 (s, 3H, CH3); 13 C NMR (150 MHz, d 6 -DMS): δ 138.4, 135.8, 129.1, 128.2, 102.8, 102.4, 102.3, 102.2, 84.2, 82.00, 81.96, 81.93, 81.8, 73.5 72.5, 71.0, 60.3 60.2, 53.3, 49.5, 21.2; IR (cm -1, KBr): 3414, 2927, 1653, 1636, 1560, 1541, 1502, 1458, 1419, 1374, 1157, 1079, 1031, 948, 756, 706, 582; MS (ESI): m/z 1238.5 ([M+H] + ); HRMS (ESI): Calcd. For C50H80N35 + 1238.4483, found 1238.4552. White solid; 50% yield; S6

1 H NMR (600 MHz, d 6 -DMS): δ 7.22 (d, J = 8.1 Hz, 2H, Ar-H), 6.86 (d, J = 8.2 Hz, 2H, Ar- H), 5.84-5.71 (m, 15H, -2, -3, NH), 4.84 (s, 7H, H-1), 4.54 (m, 6H, -6), 3.73 (s, 3H, Me), 3.72 3.26 (m, 42H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1 ), 2.90 (d, J = 11.4 Hz, 1H, H- 6a ), 2.72 (s, 1H, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 158.4, 133.4, 129.4, 113.9, 102.8, 102.4, 102.34, 102.29, 84.2, 82.0, 81.9, 81.83, 81.82, 73.5 72.5, 71.0, 60.4 60.2, 55.5, 52.9, 49.3; IR (cm -1, KBr): 3366, 2929, 1637, 1514, 1420, 1368, 1302, 1247, 1156, 1079, 1031, 947, 757, 707, 582; MS (ESI): m/z 1254.4 ([M+H] + ); HRMS (ESI): Calcd. For C50H80N35 + 1254.4433, found 1254.4523. White solid; 36% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.35 (s, 4H, Ar-H), (5.85 (d, J = 6.5 Hz, 1H), 5.81 5.68 (m, 13H), -2, -3), 4.92 4.74 (m, 7H, H-1), 4.62 4.39 (m, 6H, -6), 3.83 3.20 (m, 42H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1 ), 2.90 (d, J = 11.4 Hz, 1H, H-6a ), 2.73 (dd, J = 11.8, 6.7 Hz, 1H, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 140.6, 131.4, 130.0, 128.4, 102.8, 102.43, 102.40, 102.38, 102.3, 84.2, 82.02, 81.97, 81.93, 81.85, 73.5 72.5, 71.0, 60.4 60.2, 52.6, 49.3; IR (cm -1, KBr): 3373, 2928, 1637, 1492, 1410, 1368, 1300, 1244, 1205, 1156, 1079, 1031, 947, 858, 757, 706, 581, 531; MS (ESI): m/z 1258.4 ([M+H] + ); HRMS (ESI): Calcd. For C49H77ClN34 + 1258.3937, found 1258.4048. S7

White solid; 50% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.47 (dd, J = 6.5, 2.8 Hz, 2H, Ar-H), 7.43 7.38 (m, 3H, Ar- H), 7.34 (dt, J = 15.1, 7.4 Hz, 4H, Ar-H), 7.24 (t, J = 7.0 Hz, 1H, Ar-H), 5.98 (d, J = 6.4 Hz, 1H, -2 or -3), 5.83-5.72 (m, 13H, -2, -3), 4.96 (d, J = 3.1 Hz, 1H, H-1), 4.86 4.84 (m, 6H, H-1), 4.53 4.48 (m, 6H, -6), 3.93 3.24 (m, 44H, H-2, H-3, H-4, H-5, H-6a, H-6b, H- 1, H-2 ), 3.04 2.85 (m, 2H, H-6a, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 139.5, 131.9, 129.1, 128.73, 128.70, 127.4, 123.2, 102.8, 102.6, 102.5, 102.4, 102.1, 86.1, 85.4, 84.2, 82.1, 81.94, 81.88, 81.8, 81.6, 73.7 72.5, 60.4 60.2, 58.6, 54.3, 43.5; IR (cm -1, KBr): 3384, 2927, 1637, 1491, 1419, 1369, 1156, 1079, 1029, 947, 862, 757, 701, 581, 528; MS (ESI): m/z 1338.5 ([M+H] + ); HRMS (ESI): Calcd. For C58H84N34 + 1338.4796, found 1338.4874. White solid; 51% yield; S8

1 H NMR (600 MHz, d 6 -DMS): δ 7.49-7.46 (m, 2H, Ar-H), 7.39 (d, J = 3.8 Hz, 3H, Ar-H), 7.23 (d, J = 7.5 Hz, 2H, Ar-H), 7.13 (d, J = 7.5 Hz, 2H, Ar-H), 5.99 5.64 (m, 14H, -2, - 3), 4.94-4.84 (m, 7H, H-1), 4.52 (s, 6H, -6), 3.87 (s, 44H, H-2, H-3, H-4, H-5, H-6a, H-6b, H- 1, H-2 ), 2.91 (dd, J = 39.3, 10.7 Hz, 2H, H-6a, H-6b ), 2.30 (s, 3H, CH 3 ); 13 C NMR (150 MHz, d 6 -DMS): δ 136.4, 131.9, 129.2, 128.7, 128.5, 126.0, 123.2, 102.7, 102.6, 102.45, 102.42, 102.38, 102.0, 86.2, 85.3, 84.1, 82.1, 81.94, 81.85, 81.8, 81.5, 73.7 72.4, 60.4 60.2, 58.6, 54.3, 43.7, 21.3; IR (cm -1, KBr): 3374, 2927, 1637, 1514, 1491, 1414, 1368, 1244, 1156, 1079, 1030, 946, 860, 758, 693, 581, 527; MS (ESI): m/z 1352.7 ([M+H] + ); HRMS (ESI): Calcd. For C59H86N35 + 1352.4953, found 1352.5014. White solid; 42% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.49 7.35 (m, 5H, Ar-H), 7.25 (d, J = 8.1 Hz, 2H, Ar-H), 6.89 (d, J = 8.2 Hz, 2H, Ar-H), 5.97 (d, J = 5.7 Hz, 1H, -2 or -3), 5.87 5.73 (m, 13H, -2, -3), 4.96 4.81 (m, 7H, H-1), 4.58 (m, 6H, -6), 3.74 (s, 3H, Me), 3.71 3.31 (m, 44H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1, H-2 ), 2.98 2.86 (m, 2H, H-6a, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 158.8, 131.9, 131.1, 130.5, 129.1, 128.7, 123.2, 114.0, 102.7, 102.5, 102.42, 102.37, 102.1, 86.2, 85.4, 84.0, 82.3, 82.0, 81.9, 81.8, 81.6, 73.6 72.4, 60.4 60.2, 58.0, 55.5, 55.3, 54.2, 43.1; IR (cm -1, KBr): 3393, 2928, 1636, 1513, 1491, 1419, 1369, 1302, 1248, 1156, 1079, 1029, 946, 758, 693, 581, 528; MS (ESI): m/z 1368.5 ([M+H] + ); HRMS (ESI): Calcd. For C59H86N35 + 1368.4902, found 1368.4970. S9

White solid; 49% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.51 7.43 (m, 2H, Ar-H), 7.43 7.33 (m, 7H, Ar-H), 5.97 (d, J = 6.4 Hz, 1H, -2 or -3), 5.85 5.71 (m, 13H, -2, -3), 4.93 (d, J = 3.1 Hz, 1H, H-1), 4.86-4.83 (m, 6H, H-1), 4.56-4.46 (m, 6H, -6), 3.90 3.26 (m, 44H, H-2, H-3, H-4, H- 5, H-6a, H-6b, H-1, H-2 ), 3.03 2.82 (m, 2H, H-6a, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 138.5, 131.9, 131.1, 129.1, 128.8, 128.6, 126.0, 123.1, 102.8, 102.54, 102.47, 102.41, 102.39, 102.1, 86.0, 85.4, 84.2, 82.1, 82.0, 81.84, 81.80, 81.7, 73.6 72.4, 60.4 60.2, 58.1, 54.2, 43.7; IR (cm -1, KBr): 3373, 2928, 1637, 1491, 1410, 1368, 1336, 1245, 1156, 1079, 1029, 946, 860, 758, 694, 582, 528; MS (ESI): m/z 1372.4 ([M+H] + ); HRMS (ESI): Calcd. For C58H82ClN34 + 1372.4407, found 1372.4488. White solid; 50% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.41 (d, J = 8.7 Hz, 2H, Ar-H), 7.35-7.31 (m, 4H, Ar-H), 7.23 (t, J = 6.7 Hz, 1H, Ar-H), 6.94 (d, J = 8.8 Hz, 2H, Ar-H), 5.98 (d, J = 6.5 Hz, 1H, -2 or -3), 5.85 5.70 (m, 13H, -2, -3), 4.96 (d, J = 3.1 Hz, 1H, H-1), 4.85 (dd, J = 7.8, 3.4 S10

Hz, 6H, H-1), 4.56 4.47 (m, 6H, -6,), 3.88 3.25 (m, 47H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1, H-2, Me), 2.91 (dt, J = 14.4, 9.6 Hz, 2H, H-6a, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 159.8, 139.8, 133.6, 129.3, 128.9, 127.5, 115.4, 114.9, 103.0, 102.8, 102.7, 102.6, 102.3, 85.6, 84.4, 84.3, 82.3, 82.2, 82.14, 82.07, 82.0, 81.8, 73.9 72.7, 60.6 60.4, 58.6, 55.9, 54.3, 43.6; IR (cm -1, KBr): 3373, 2928, 1637, 1607, 1510, 1413, 1368, 1338, 1293, 1249, 1156, 1079, 1029, 946, 834, 755, 704, 580, 533; MS (ESI): m/z 1368.5 ([M+H] + ); HRMS (ESI): Calcd. For C59H86N35 + 1368.4902, found 1368.4943. White solid; 67% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.43 (d, J = 8.1 Hz, 2H, Ar-H), 7.37 7.30 (m, 6H, Ar-H), 7.24 (t, J = 6.7 Hz, 1H, Ar-H), 5.98 (d, J = 6.4 Hz, 1H, -2 or -3), 5.86 5.68 (m, 13H, -2, -3), 5.29 (t, J = 5.8 Hz, 1H, PhCH2), 4.96 (d, J = 3.0 Hz, 1H, H-1), 4.92 4.78 (m, 6H, H-1), 4.55 4.48 (m, 8H, -6, PhCH 2 ), 3.90 3.27 (m, 44H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1, H-2 ), 2.93 (dt, J = 14.5, 9.5 Hz, 2H, H-6a, H-6b ); 13 C NMR (150 MHz, d 6 -DMS): δ 143.5, 139.8, 132.0, 129.3, 128.9, 127.6, 127.2, 121.6, 103.0, 102.8, 102.7, 102.6, 102.3, 85.8, 85.6, 84.3, 82.3, 82.2, 82.1, 82.0, 81.8, 73.9 72.7, 63.2, 60.6 60.4, 58.6, 54.2, 43.6; IR (cm -1, KBr): 3373, 2927, 1636, 1508, 1413, 1368, 1246, 1205, 1156, 1079, 1029, 946, 848, 754,703, 581, 530; MS (ESI): m/z 1368.5 ([M+H] + ); HRMS (ESI): Calcd. For C59H86N35 + 1368.4902, found 1368.4938. S11

White solid; 52% yield; 1 H NMR (600 MHz, d 6 -DMS): δ 7.33 7.24 (m, 4H, Ar-H), 7.21 (t, J = 7.0 Hz, 1H, Ar-H), 5.99 (t, J = 5.8 Hz, 1H, -2 or -3), 5.83 5.68 (m, 13H, -2, -3), 4.93 (d, J = 3.3 Hz, 1H, H-1), 4.84 (dd, J = 13.8, 3.6 Hz, 6H, H-1), 4.58 4.44 (m, 6H, -6), 3.82 3.28 (m, 43H, H-2, H-3, H-4, H-5, H-6a, H-6b, H-1, H-2 ), 3.15 (d, J = 17.0 Hz, 1H, H-2 ), 2.83 (d, J = 13.2 Hz, 1H, H-6a ), 2.76 (dd, J = 13.9, 5.9 Hz, 1H, H-6b ), 1.37 1.27 (m, 1H), 0.83 0.69 (m, 2H), 0.63 0.55 (m, 2H); 13 C NMR (150 MHz, d 6 -DMS): δ 139.6, 129.0, 128.6, 127.2, 102.8, 102.6, 102.5, 102.43, 102.36, 102.0, 88.9, 84.2, 82.1, 82.0, 81.9, 81.6, 81.5, 73.7 72.2, 70.8, 60.4 60.2, 57.9, 55.4, 42.9, 31.2, 8.64, 8.61; IR (cm -1, KBr): 3374, 2929, 1636, 1409, 1369, 1331, 1250, 1203, 1156, 1032, 947, 863, 754, 701, 581, 531; MS (ESI): m/z 1302.5 ([M+H] + ); HRMS (ESI): Calcd. For C55H83N34 + 1302.4796, found 1302.4858. White solid; 26% yield; S12

1 H NMR (600 MHz, d 6 -DMS): δ 7.31 (d, J = 4.3 Hz, 4H, Ar-H), 7.26 7.20 (m, 1H, Ar-H), 6.04 (s, 1H, vinyl CH), 6.00 (d, J = 6.3 Hz, 1H, -2 or -3), 5.83-5.70 (m, 13H, -2, - 3), 4.93 4.80 (m, 7H, H-1), 4.57 4.46 (m, 6H, -6), 3.73 3.29 (m, 44H, H-2, H-3, H-4, H- 5, H-6a, H-6b, H-1, H-2 ), 2.92 (d, J = 13.4 Hz, 1H, H-6a ), 2.78 (dd, J = 13.6, 6.3 Hz, 1H, H- 6b ), 2.09 (d, J = 10.9 Hz, 4H, allyl CH 2 ), 1.58 (ddd, J = 10.9, 9.0, 5.4 Hz, 4H, -CH 2 CH 2 -); 13 C NMR (150 MHz, d 6 -DMS): δ 139.7, 134.3, 129.3, 128.8, 127.5, 120.8, 103.0, 102.8, 102,7, 102.6, 102.3, 87.3, 84.7, 83.4, 82.3, 82.1, 81.9, 81.7, 74.0 72.4, 60.6 60.4, 59.1, 55.6, 55.3, 43.9, 29.8, 25.7, 22.6, 21.8; IR (cm -1, KBr): 3382, 2927, 1637, 1419, 1369, 1243, 1156, 1079, 1029, 946, 847, 755, 704, 581, 531; MS (ESI): m/z 1342.5([M+H] + ); HRMS (ESI): Calcd. For C58H88N34 + 1342.5109, found 1342.5128. S13

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 1b S14

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 1c S15

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) of 1d S16

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2a 139.5294 131.9381 129.1018 128.7336 128.6970 127.3747 123.1762 102.8029 102.5525 102.4593 102.4211 102.1175 86.1068 85.4117 84.1717 82.0682 81.9431 81.8754 81.8068 81.6127 73.4412 73.2776 72.8847 72.5719 72.5353 72.4759 60.3810 60.2996 60.2203 58.5659 54.2860 43.4894 139.5294 131.9381 129.1018 128.7336 128.6970 127.3747 123.1762 102.8029 102.5525 102.4593 102.4211 102.1175 86.1068 82.0682 81.9431 81.8754 73.4412 72.8847 72.4759 60.3810 60.2996 60.2203 58.5659 54.2860 43.4894 S17

CSY (600 MHz, d 6 -DMS) spectrum of 2a S18

RESY (600 MHz, d 6 -DMS) spectrum (300ms) of 2a S19

RESY (600 MHz, d 6 -DMS) spectrum (600ms) of 2a S20

HSQC (600 MHz, d 6 -DMS) spectrum of 2a S21

HMBC (600 MHz, d 6 -DMS) spectrum of 2a S22

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2b 2.0000 3.1741 1.8492 1.9289 15.3622 7.5682 6.1340 65.8165 1.7369 2.8540 7.4931 7.4680 7.4613 7.3949 7.3949 7.3886 7.2317 7.2192 7.1378 7.1253 5.9587 5.8344 5.7628 5.6947 5.6535 4.9381 4.8638 4.8491 4.8354 4.5169 3.8678 2.9548 2.9325 2.8849 2.8715 2.2953 S23

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2c 5.4934 1.8682 1.8186 0.8108 14.1637 7.0000 6.3015 3.2431 2.2745 7.4613 7.4538 7.4316 7.4271 7.3936 7.3855 7.2614 7.2480 6.9014 6.8877 5.9714 5.9619 5.8621 5.8520 5.8224 5.7777 5.7559 5.7385 4.9426 4.9380 4.8517 4.8418 4.8358 4.8287 4.5992 4.5626 3.7368 3.7132 3.3238 3.3100 2.9622 2.9386 2.8928 S24

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2d S25

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2e 2.0004 4.2726 0.9351 1.9307 0.8947 13.2049 0.9900 6.0000 6.0144 69.1232 159.7561 139.7987 133.6459 129.2876 128.8731 127.5342 115.3746 114.8739 102.9909 102.7491 102.6612 102.6091 102.2971 84.4182 82.1663 82.1448 82.0168 73.6366 73.0762 72.7246 60.5898 60.5081 60.4139 58.5559 55.8832 55.8588 43.6478 2.0231 7.4153 7.4009 7.3495 7.3357 7.3237 7.3108 7.2452 7.2340 7.2228 6.9503 6.9356 5.7851 5.7723 5.7628 5.7617 5.7536 5.7222 4.8601 4.8544 4.8471 4.8414 4.5240 4.5141 3.8093 3.7870 3.7806 3.2928 2.9576 2.9354 2.9148 2.9062 2.8921 2.8823 16000 15000 14000 13000 12000 11000 10000 9000 159.7561 139.7987 133.6459 129.2876 128.8731 127.5342 115.3746 114.8739 102.9909 102.7491 102.6612 102.6091 102.2971 84.4182 82.2746 82.1663 82.1448 82.0662 82.0168 81.8008 73.6366 73.4792 73.0762 72.7246 60.5898 60.5081 60.4139 58.5559 55.8832 55.8588 54.2762 43.6478 8000 7000 6000 5000 4000 3000 2000 1000 0-1000 -2000 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0 S26

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2f 2.0292 6.2843 1.0000 0.9130 14.2424 1.0137 0.9883 6.3735 8.6928 61.7493 1.8904 7.4407 7.4272 7.3528 7.3382 7.3260 7.3234 7.3139 7.2483 7.2370 7.2258 5.8009 5.7889 5.7749 5.7697 5.7653 5.7556 5.7517 5.7286 5.7172 5.2992 5.2895 5.2800 4.8553 4.8478 4.8425 4.5386 4.5264 4.5169 4.4969 3.8433 3.8222 3.7983 3.7756 3.2943 2.9659 2.9436 2.9302 2.9214 2.9065 2.8972 S27

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2g 139.6481 128.9564 128.5986 127.2411 102.7772 102.5640 102.4779 102.4270 102.3611 102.0100 88.8887 82.0728 81.9609 81.8517 81.6428 81.4903 73.4318 73.2386 72.9297 72.8327 72.5346 72.4891 60.3802 60.3176 60.2876 60.1712 57.9413 55.4035 54.0038 46.1572 42.8683 139.6481 128.9564 128.5986 127.2411 102.7772 102.5640 102.4779 102.4270 102.3611 102.0100 88.8887 82.0728 81.9609 81.8517 81.4903 73.2386 72.5346 72.4891 60.3802 60.3176 60.2876 60.1712 55.4035 46.1572 42.8683 31.1880 8.6433 8.6056-0.2603 4.0682 1.0000 0.9056 13.2675 1.0141 6.2252 6.0204 1.0777 67.7885 1.0252 0.9485 0.9067 0.9053 2.0602 2.0386 7.3097 7.2970 7.2850 7.2714 7.2593 7.2225 7.2108 5.9913 5.9810 5.8199 5.8085 5.8029 5.7999 5.7880 5.7762 5.7707 5.7638 5.7597 5.7536 5.7419 5.7338 5.7301 5.7139 5.7102 5.6971 5.6912 5.6852 5.6791 4.9302 4.9247 4.8534 4.8470 4.8301 4.8243 4.5289 4.5195 4.5099 4.5039 4.4949 3.8108 3.4301 3.3569 3.3121 3.3073 3.2910 3.2852 2.8219 2.7624 1.3219 1.3136 0.7896 0.7830 0.7787 0.7724 0.7695 0.7651 0.7595 0.6098 0.6038 0.5998 0.5958 0.5917 0.5853 S28

1 H NMR (600 MHz, d 6 -DMS) and 13 C NMR (150 MHz, d 6 -DMS) spectra of 2h 139.7436 134.2914 129.2925 128.8311 127.5191 120.7872 102.9816 102.7934 102.6593 102.5757 102.2605 83.4450 82.2550 82.1305 81.8587 73.6406 73.0769 72.7232 60.5591 60.4927 60.3719 59.0884 55.5925 55.2827 43.9201 29.7903 25.7241 22.5892 21.8355 75000 70000 65000 60000 55000 50000 45000 40000 139.7436 134.2914 129.2925 128.8311 127.5191 120.7872 102.9816 102.7934 102.6593 102.5757 102.2605 87.3225 84.6761 83.4450 82.2550 82.1305 81.8587 81.6574 73.7244 73.6406 73.1632 73.0769 72.7232 72.6463 60.5591 60.4927 60.3719 59.0884 55.5925 55.2827 43.9201 35000 30000 25000 20000 15000 10000 5000 0-5000 -10000 210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm) 90 80 70 60 50 40 30 20 10 0 S29