Programmable Enantioselective One-pot Synthesis of Molecules With Eight. Stereocenters

Σχετικά έγγραφα
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

The Free Internet Journal for Organic Chemistry

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information for

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Supporting Information

Electronic Supplementary Information

Supplementary information

Supporting Information. Experimental section

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Supporting information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information for

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Aminofluorination of Fluorinated Alkenes

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supplementary Information for

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

SUPPLEMENTARY INFORMATION

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Supporting Information

Supporting Information for

Diastereo- and Enantioselective Propargylation of Benzofuranones. Catalyzed by Pybox-Copper Complex

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

multicomponent synthesis of 5-amino-4-

Supporting Information for

The Supporting Information for

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Electronic Supplementary Information (ESI)

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Supporting Information

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supporting Information

Electronic Supporting Information. Synthesis and Reactivity of 18 F-Labeled α,α-difluoro-α-aryloxyacetic Acids

Supporting Information

Supporting Information. Experimental section

Supplement: Intramolecular N to N acyl migration in conformationally mobile 1 -acyl-1- systems promoted by debenzylation conditions (HCOONH 4

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for

Supporting Information

Transcript:

Programmable Enantioselective ne-pot Synthesis of Molecules With Eight Stereocenters Marco Potowski 1,2, Markus Schürmann 3, ans Preut 3, Andrey P. Antonchick 1* and erbert Waldmann 1,2* 1) Max-Planck-Institut für Molekulare Physiologie, Abteilung Chemische Biologie, tto-ahn-strasse 11, 44227 Dortmund, Germany 2) Technische Universität Dortmund, akultät Chemie, Chemische Biologie, tto- ahn-strasse 6, 44221 Dortmund, Germany 3) Technische Universität Dortmund, akultät Chemie, Anorganische Chemie, tto- ahn-strasse 6, 44221 Dortmund, Germany e-mail: andrey.antonchick@mpi-dortmund.mpg.de and herbert.waldmann@mpidortmund.mpg.de 1

Table of Contents Supplementary Results Supplementary igures 1 3 3 Supplementary Tables 1 9 6 Supplementary Methods 15 Synthesis of α-iminoesters 16 General procedure of 1,3-dipolar cycloaddition of azomethine ylides with 1,4-benzoquinone (a) Procedure for the synthesis of the anti-regioisomers 24 Characterization of the anti-regioisomers (3a 3h) 25 NMR-spectra of the anti-regioisomers (3a 3h) 30 (b) Procedure for the synthesis of the mono addition products 38 Characterization of the mono addition products (6a 6l) 39 NMR-spectra and PLC chromatograms of the mono addition products (6a 6l) 47 (c) Procedure A 71 Characterization of the chiral syn-regioisomers (4a 4l) 72 NMR-spectra of the chiral syn-regioisomers (4a 4l) 80 (d) Procedure B 92 Characterization of the chiral mixed syn-regioisomers (8a 8i) 93 NMR-spectra of the chiral mixed syn-regioisomers (8a 8i) 100 (e) Procedure C 109 Characterization of the mixed chiral anti-regioisomers (9a 9l) 110 NMR-spectra and PLC chromatograms of the mixed chiral anti-regioisomers (9a 9l) 120 2

Supplementary Results Supplementary igures Supplementary igure 1. RTEP plot of anti-regioisomer 3a at the 50% probability level. See Supplementary Table 8 for additional details. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number CCDC 834647. 3

Supplementary igure 2. RTEP plot of syn-regioisomer 4a at the 50% probability level. See Supplementary Table 9 for additional details. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre and copies can be obtained on request, free of charge, by quoting the publication citation and the deposition number CCDC 834648. 4

Br N N anti-9 (rac) Br N N anti-9 98% ee Br N N anti-9 95% ee Supplementary igure 3. Reverse mixed asymmetric 1,3-dipolar cycloaddition of azomethine ylides to obtain the two different anti-9 enantiomers. 5

Supplementary Tables Supplementary Table 1. ptimization of the reaction conditions for the catalytic 1,3-dipolar cycloaddition of benzoquinone 1 with azomethine ylides. See Supplementary Methods for additional details. Entry * catalyst Catalyst (mol%) Base Solvent Time r.r. (3a:4a) d.r. Yield [%] 1 Cu(C 3 CN) 4 P 6 5 Et 3 N DCM 10 min 50:50 >95:5 80 2 Cu(C 3 CN) 4 P 6 5 Et 3 N PhMe 24 h n.d. n.d. trace 3 Cu(C 3 CN) 4 P 6 5 Et 3 N Et 2 24 h n.d. n.d. trace 4 Cu(C 3 CN) 4 P 6 5 Et 3 N T 10 min 75:25 >95:5 78 5 Cu(C 3 CN) 4 P 6 5 Et 3 N EtAc 1 h 34:66 >95:5 37 6 Cu(C 3 CN) 4 P 6 5 Et 3 N C 3 CN 1 h n.d. n.d. n.d. 7 Cu(C 3 CN) 4 P 6 5 Et 3 N Me 10 min n.d. n.d. n.d. 8 Cu(C 3 CN) 4 P 6 5 Et 3 N CCl 3 10 min 50:50 >95:5 73 9 Cu(C 3 CN) 4 P 6 5 Et 3 N 1,4-Dioxane 1 h 75:25 >95:5 38 10 Cu(C 3 CN) 4 P 6 5 Et 3 N 1,2-Dichloroethane 10 min 50:50 >95:5 85 11 Cu(C 3 CN) 4 B 4 5 Et 3 N T 30 min 80:20 >95:5 87 (65 ) 12 CuTf 0.5PhMe 5 Et 3 N T 3 h 80:20 >95:5 68 13 AgAc 5 Et 3 N T 1 h n.d. n.d. n.d. 14 AgTA 5 Et 3 N T 1 h n.d. n.d. n.d. 15 AgTf 5 Et 3 N T 1 h n.d. n.d. n.d. 16 AgSb 6 5 Et 3 N T 1 h n.d. n.d. n.d. 17 Cu(C 3 CN) 4 B 4 5 DIPEA T 1 h n.d. n.d. trace 18 Cu(C 3 CN) 4 B 4 5 DMAP T 1 h n.d. n.d. trace 19 Cu(C 3 CN) 4 B 4 5 DBU T 15 min n.d. n.d. 54 20 Cu(C 3 CN) 4 B 4 5 NaMe T 1h n.d. n.d. trace * Reaction conditions: catalyst, base (20 mol%, 0.06 mmol), iminoester 2a (2.2 equiv., 0.66 mmol) and 1,4-benzoquinone 1 (1 equiv., 0.30 mmol), ambient temperature. Determined by 1 NMR spectroscopy. Yields of the regioisomeric mixture of 3a and 4a after column chromatography. Yield for the pure regioisomer 3a. r.r. regioisomer ratio, d.r. diastereomer ratio, n.d. not determinated. 6

Supplementary Table 2. Selective catalytic synthesis of the anti-regioisomers 3. * *The reactions were carried out with 0.30 mmol of 1 and 0.66 mmol of 2 in T (0.1M). Isolated yields of the pure major regioisomer. Determined by 1 -NMR spectroscopy. r.r. regioisomer ratio, d.r. diastereomer ratio. 7

Supplementary Table 3. ptimization of the reaction conditions for the enantioselective 1,3-dipolar cycloaddition of benzoquinone 1 with azomethine ylides. See Supplementary Methods for additional details. Br Br Br Br 1 + N metal salt ligand 7 base solvent N N + N N 2a Br anti-3a syn-4a N PPh 2 PR 2 2 NMe 2 PCy 2 R= PPh 2 PPh 2 PPh PPh 2 2 PR 2 e e e 7a 7b 7c 7d 7e S-t-Bu PPh 2 N PPh 2 NMe2 PR 2 Ph 7j R= e P-t-Bu 2 PCy 2 e PPh 2 e PPh 2 Ph 2 P Me 2 N e Ph R 2 P e NMe 2 Ph C 3 Ph 7f 7g 7h 7i Me 2 N 7k R= C 3 Entry * catalyst Catalyst Ligand Time r.r. Ligand Base Solvent d.r. Yield e.e. (mol%) (mol%) [h] (3a:4a) [%] 1 Cu(C 3 CN) 4 P 6 6 7a 6 Et 3 N T 20 34:66 >95:5 27 8 2 Cu(C 3 CN) 4 P 6 6 7b 6 Et 3 N T 48 n.d. n.d. trace n.d. 3 Cu(C 3 CN) 4 P 6 6 7c 6 Et 3 N T 20 50:50 >95:5 36 20 4 Cu(C 3 CN) 4 P 6 6 7d 6 Et 3 N T 20 50:50 >95:5 31 62 5 Cu(C 3 CN) 4 P 6 6 7e 6 Et 3 N T 48 n.d. n.d. trace n.d. 6 Cu(C 3 CN) 4 P 6 6 7f 6 Et 3 N T 48 n.d. n.d. trace n.d. 7 Cu(C 3 CN) 4 P 6 6 7g 6 Et 3 N T 1 12:88 >95:5 54 97 8 Cu(C 3 CN) 4 P 6 6 7h 6 Et 3 N T 48 n.d. n.d. trace n.d. 9 Cu(C 3 CN) 4 P 6 6 7i 6 Et 3 N T 6 12:88 >95:5 48 92 10 Cu(C 3 CN) 4 P 6 6 7j 6 Et 3 N T 16 34:66 >95:5 51 64 11 Cu(C 3 CN) 4 P 6 6 7k 6 Et 3 N T 16 34:66 >95:5 40 44 12 Cu(C 3 CN) 4 P 6 3 7g 3 Et 3 N T 2 8:92 >95:5 51 97 13 Cu(C 3 CN) 4 P 6 1 7g 1 Et 3 N T 24 n.d. n.d. 13 82 14 Cu(C 3 CN) 4 Tf 3 7g 3 Et 3 N T 40 50:50 >95:5 40 80 15 Cu(C 3 CN) 4 B 4 3 7g 3 Et 3 N T 16 6:94 >95:5 61 96 16 Cu(Tf) 2 3 7g 3 Et 3 N T 40 50:50 >95:5 31 72 17 Cu(C 3 CN) 4 B 4 3 7g 3 Et 3 N DCM 4 25:75 >95:5 42 90 18 Cu(C 3 CN) 4 B 4 3 7g 3 Et 3 N PhMe 4 5:95 >95:5 57 99 19 Cu(C 3 CN) 4 B 4 3 7g 3 Et 3 N CCl 3 4 4:96 >95:5 45 92 20 Cu(C 3 CN) 4 B 4 3 7g 3 DIPEA PhMe 16 6:94 >95:5 65 98 * Reaction conditions: ligand 7a-k, catalyst, base (20 mol%, 0.06 mmol), iminoester 2a (2.2 equiv., 0.66 mmol) and 1,4-benzoquinone 1 (1 equiv., 0.30 mmol), ambient temperature. Determined by 1 NMR spectroscopy. Isolated yields of the major regioisomer 4a after column chromatography. Determined by PLC analysis on chiral phase for the single addition products 6. opposite enantiomer. r.r. regioisomer ratio, d.r. diastereomer ratio, n.d. not determinated. 8

Supplementary Table 4. Selective synthesis of the mono addition products 6* S-t-Bu R 1 e PPh 2 R 1 1 + N R 2 3 mol%(r)-esulphos 7g 3mol%Cu(C 3 CN) 4 B 4 20 mol% DIPEA toluene, rt, 16 h 6 N R 2 2 Br N N N N 6a 62% yield e.e. = 98% 6b 57% yield e.e. = 97% 6c 68% yield e.e. = 98% 6d 59% yield e.e. = 98% N N N N 6e 46% yield e.e. = 97% 6f 78% yield e.e. = 98% 6g 74% yield e.e. = 98% 6h 80% yield e.e. = 98% Br Br Cl N N N N Ph 6i 31% yield e.e. = 96% 6j 56% yield e.e. = 99% 6k 66% yield e.e. = 98% 6l 80% yield e.e. = 98% *The reactions were carried out with 0.30 mmol of 1 and 0.33 mmol of 2 in 3 ml toluene. Isolated yields after column chromatography. Determined by PLC analysis on chiral phase. 9

Supplementary Table 5. Enantioselective synthesis of the chiral syn-regioisomers 4.* S-t-Bu 1 + R 1 N R 2 e 3 mol%(r)-esulphos 7g 3mol%Cu(C 3 CN) 4 B 4 20 mol% DIPEA toluene, rt, 16 h PPh 2 R 2 N R 1 R 1 N R 2 + N R 2 R 1 R 1 N R 2 2 3 minor 4 major Br Br N N N N N N 4a 65% yield r.r. > 94:6 d.r. > 95:5 e.e. = 98% 4b 54% yield r.r. > 94:6 d.r. > 95:5 e.e. = 97% 4c 42% yield r.r. > 94:6 d.r. > 95:5 e.e. = 98% N N N N N N 4d 4e 4f 65% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 65% yield r.r. = 94:6 d.r. > 95:5 e.e. = 97% 73% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% Cl Cl N N N N N N 4g 4h 4i 79% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 84% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 41% yield r.r. = 94:6 d.r. > 95:5 e.e. = 96% Br Br Br Br N N N N N N 4j 4k Ph 4l Ph 66% yield r.r. = 94:6 d.r. > 95:5 e.e. = 99% 38% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 54% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% *The reactions were carried out with 0.30 mmol of 1 and 0.66 mmol of 2 in toluene (0.1M). Isolated yields of the pure major regioisomer after column chromatography. Determined by 1 -NMR spectroscopy. Determined by PLC analysis on chiral phase. r.r. regioisomer ratio, d.r. diastereomer ratio. 10

Supplementary Table 6. Enantioselective synthesis of the chiral mixed synregioisomers 8.* 1. 1 N R 1 R 2 1equiv. 2 3mol%Cu(C 3 CN) 4 B 4 3mol%(R)-eSulPhos 7g 20 mol% DIPEA toluene, rt, 1 h 2. N R 3 R 4 1.2 equiv. 2 rt, 15 h N R 4 R 3 8 major R 1 N R 2 + R 4 N R 3 9 minor R 1 N R 2 Br Br N N N N N N 8a 8b 8c 51% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 56% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 34% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% Br Br Br N N N N N N 8d Ph 8e Ph 8f Ph 70% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 64% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 72% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% Br Br Br Cl N N N N N N 8g Ph 8h Ph 8i Ph 64% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 57% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% 70% yield r.r. = 94:6 d.r. > 95:5 e.e. = 98% *The reactions were carried out with 0.30 mmol of 1 and 0.66 mmol of 2 in toluene (0.1M). Isolated yields of the pure major regioisomer after column chromatography. Determined by 1 -NMR spectroscopy. Determined by PLC analysis on chiral phase. r.r. regioisomer ratio, d.r. diastereomer ratio. 11

Supplementary Table 7. Enantioselective synthesis of the mixed chiral antiregioisomers 9.* *The reactions were carried out with 0.30 mmol of 1 and 0.66 mmol of 2 in toluene-t mixture (1:2.5). Isolated yields of the pure major regioisomer after column chromatography. Determined by 1 -NMR spectroscopy. Determined by PLC analysis on chiral phase. r.r. regioisomer ratio, d.r. diastereomer ratio. 12

Supplementary Table 8. Crystallographic statistics for 3a (CCDC 834647). See Supplementary Methods for additional details. Compound 3a ormula C 28 28 Br 2 N 2 6 ormula weight [g mol -1 ] 648.34 Temperature [K] 173(2) Wave length [Å] 0.71073 Space group P-1 Cell dimensions a, b, c (Å) 6.61, 8.85, 12.73 α, β, γ ( ) 72.81, 80.07, 69.64 Volume [Å 3 ] 665.97 (7) Z 1 R-actor% 3.03 Calc. density [Mg m 3 ] 1.617 Θ(max) [ ] 25.5 Θ(min) [ ] 2.5 (000) 328 Index ranges -8 h 8-10 k 10-15 l 15 Reflections collected 8625 Independent reflections 2476 [R(int) = 0.035] R[ 2 > 2σ( 2 )] 0.030 wr( 2 ) 0.069 S 1.09 13

Supplementary Table 9. Crystallographic statistics for 4a (CCDC 834648). See Supplementary Methods for additional details. Compound 4a ormula C 28 28 Br 2 N 2 6 ormula weight [g mol -1 ] 648.34 Temperature [K] 291(2) Wave length [Å] 0.71073 Space group P2 1 Cell dimensions a, b, c (Å) 10.16, 10.25, 13.43 α, β, γ ( ) 90.00, 102.60, 90.00 Volume [Å 3 ] 1366.61 (18) Z 2 R-actor% 2.98 Calc. density [Mg m 3 ] 1.576 Θ(max) [ ] 25.5 Θ(min) [ ] 2.1 (000) 656 Index ranges -12 h 12-12 k 12-16 l 16 Reflections collected 13442 Independent reflections 5045 [R(int) = 0.045] R[ 2 > 2σ( 2 )] 0.030 wr( 2 ) 0.043 S 0.85 14

Supplementary Methods: Chemistry Unless otherwise noted, all commercially available compounds were used as provided without further purifications. Dry solvents (T, toluene) were used as commercially available; C 2 Cl 2 was purified by the Solvent Purification System M-BRAUN Glovebox Technology SPS-800. Solvents for chromatography were technical grade. Analytical thin-layer chromatography (TLC) was performed on Merck silica gel aluminium plates with -254 indicator. Compounds were visualized by irradiation with UV light or potassium permanganate staining. Column chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm). Solvent mixtures are understood as volume/volume. 1 -NMR and 13 C-NMR were recorded on a Bruker DRX400 (400 Mz), Bruker DRX500 (500 Mz) and INVA500 (500 Mz) using CDCl 3 or (CD 3 ) 2 S as solvent. Data are reported in the following order: chemical shift (δ) values are reported in ppm with the solvent resonance as internal standard (CDCl 3 : δ = 7.26 ppm for 1, δ = 77.16 ppm for 13 C; (CD 3 ) 2 S: δ = 3.30 ppm for 1, δ = 39.52 ppm for 13 C); multiplicities are indicated br s (broadened singlet), s (singlet), d (doublet), t (triplet), q (quartet) m (multiplet); coupling constants (J) are given in ertz (z). igh resolution mass spectra were recorded on a LTQ rbitrap mass spectrometer coupled to an Acceka PLC-System (PLC column: ypersyl GLD, 50 mm x 1 mm, particle size 1.9 µm, ionization method: electron spray ionization). ourier transform infrared spectroscopy (T-IR) spectra were obtained with a Bruker Tensor 27 spectrometer (ATR, neat) and are reported in terms of frequency of absorption (cm -1 ). ptical rotations were measured in a Schmidt + aensch Polartronic 8 polarimeter. The enantiomeric excesses were determined by PCL analysis using a chiral stationary phase column (column: CIRALCEL IA, eluent: (DCM/Et = 100/2) / iso-hexane). The chiral PLC methods were calibrated with the corresponding racemic mixtures. The ratio of regioisomers and diastereomers was determined by 1 -NMR analysis via integration of 15

characteristic signals of methyl esters. Chemical yields refer to pure isolated substances. Yields and enantiomeric excesses, diastereoselectivity and regioselectivity are given in the tables. The chemicals and solvents were purchased from the companies Sigma-Aldrich, Acros rganic, ABCR and Alfa Aesar. (R p )-2-(tert-Butylthio)-1-(diphenyl-phosphino)ferrocene (purity: 98%), Tetrakis(acetonitrile)copper(I) hexafluorophosphate (purity; 97%) and Tetrakis(acetonitrile)copper(I) tetrafluoroborate (purity: 97%) were purchased from Sigma- Aldrich. Synthesis of α-iminoesters 1,2 To the suspension of amino acid ester hydrochloride (1.2 equiv., 12 mmol) and MgS 4 (1.25 equiv., 12.5 mmol) in DCM (15 ml) was added Et 3 N (1.2 equiv., 12 mmol). The mixture was stirred at ambient temperature for 1h. Then the corresponding aldehyde (1 equiv., 10 mmol) was added and the mixture was allowed to stir at ambient temperature overnight. The precipitate was removed by filtration and the filtrate was washed with water (15 ml). The aqueous phase was extracted two times with DCM (10 ml) and the combined organic layer was washed once with brine (15 ml), dried over MgS 4 and concentrated. The iminoesters were used for 1,3-dipolar cycloadditions and NMR studies without further purification. Methyl (E)-N-[(p-bromophenyl)methylene]alaninate (2a) 3 16

86% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.25 (s, 1), 7.64 (d, J = 8.4 z, 2), 7.54 (d, J = 8.4 z, 2), 4.15 (q, J = 6.8 z, 1), 3.74 (s, 3), 1.52 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 172.92, 161.84, 134.69, 131.97, 130.02, 125.72, 68.05, 52.41, 19.54. Methyl (E)-N-[(4-methylphenyl)methylene]alaninate (2b) 84% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.26 (s, 1), 7.66 (d, J = 8.0 z, 2), 7.21 (d, J = 8.0 z, 2), 4.13 (q, J = 6.8 z, 1), 3.73 (s, 3), 2.37 (s, 3), 1.52 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 173.22, 162.98, 141.56, 133.19, 129.39, 128.56, 68.14, 52.29, 21.63, 19.62. Methyl (E)-N-[p-methoxyphenyl)methylene]alaninate (2c) 3,4 66% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.30 (s, 1), 7.68 (d, J = 8.8 z, 2), 6.99 (d, J = 8.8 z, 2), 4.15 (q, J = 6.8 z, 1), 3.79 (s, 3), 3.62 (s, 3), 1.35 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.58, 162.32, 161.54, 129.84, 128.46, 114.09, 66.62, 55.32, 51.83, 19.24. Methyl (E)-N-[(p-fluorophenyl)methylene]alaninate (2d) 3 70% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.40 (s, 1), 7.84 7.76 (m, 2), 7.32 7.23 (m, 2), 4.21 (q, J = 6.8 z, 1), 3.63 (s, 3), 1.37 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.36, 163.78 (d, J = 248.6 z), 161.87, 132.28 (d, J = 2.9 z), 130.44 (d, J = 8.9 z), 115.77 (d, J = 21.9 z), 66.50, 51.90, 19.12. 17

Methyl (E)-N-[(m-fluorophenyl)methylene]alaninate (2e) 92% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.41 (s, 1), 7.59 (d, J = 7.7 z, 1), 7.56 7.46 (m, 2), 7.36 7.28 (m, 1), 4.24 (q, J = 6.8 z, 1), 3.64 (s, 3), 1.38 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.21, 162.34 (d, J = 244.4 z), 162.07 (d, J = 2.8 z), 138.10 (d, J = 7.4 z), 130.87 (d, J = 8.2 z), 124.59 (d, J = 2.7 z), 117.98 (d, J = 21.4 z), 113.94 (d, J = 22.2 z), 66.44, 51.94, 19.03. Methyl (E)-N-[(o-fluorophenyl)methylene]alaninate (2f) 81% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.63 (s, 1), 7.94 7.86 (m, 1), 7.59 7.49 (m, 1), 7.33 7.23 (m, 2), 4.32 (q, J = 6.8 z, 1), 3.64 (s, 3), 1.38 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.23, 161.67 (d, J = 251.3 z), 156.17 (d, J = 4.4 z), 133.31 (d, J = 8.8 z), 127.55 (d, J = 2.7 z), 124.81 (d, J = 3.4 z), 122.90 (d, J = 9.3 z), 116.05 (d, J = 20.8 z), 66.81, 51.94, 19.11. Methyl (E)-N-benzylidenealaninate (2g) 4,6 61% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.42 (s, 1), 7.76 (d, J = 7.7 z, 2), 7.56 7.39 (m, 3), 4.23 (q, J = 6.7 z, 1), 3.65 (s, 3), 1.39 (d, J = 6.7 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.41, 163.17, 135.63, 131.14, 128.72, 128.16, 66.65, 51.90, 19.15. 18

Methyl (E)-N-[2-naphthyl)methylene]alaninate (2h) 2,3 55% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.47 (s, 1), 8.09 (s, 1), 8.07 7.99 (m, 1), 7.93 7.82 (m, 3), 7.57 7.47 (m, 2), 4.23 (q, J = 6.8 z, 1), 3.77 (s, 3), 1.58 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 173.20, 163.19, 135.01, 133.49, 133.11, 130.58, 128.81, 128.60, 127.99, 127.48, 126.63, 124.15, 68.26, 52.41, 19.71. Cl N Methyl (E)-N-[(2-chloro,5-fluorophenyl)methylene]alaninate (2i) 85% yield; 1 NMR (500 Mz, (CD 3 ) 2 S): δ 8.59 (s, 1), 7.59 7.46 (m, 1), 7.41 (d, J = 8.1 z, 1), 7.37 7.25 (m, 1), 4.33 (q, J = 6.8 z, 1), 3.67 (s, 3), 1.41 (d, J = 6.8 z, 3); 13 C NMR (126 Mz, (CD 3 ) 2 S): δ 171.86, 160.51 (d, J = 254.3 z), 156.68 (d, J = 32.7 z), 134.04 (d, J = 4.8 z), 132.60 (d, J = 9.3 z), 126.01 (d, J = 54.9 z), 122.06 (d, J = 13.7 z), 115.75 (d, J = 21.0 z), 67.57, 51.93, 19.02. Methyl (E)-N-[4-(trifluoromethyl)phenyl)methylene]alaninate (2j) 7 96% yield; 1 NMR (400 Mz, (CD 3 ) 2 S): δ 8.52 (s, 1), 7.96 (d, J = 8.1 z, 2), 7.81 (d, J = 8.1 z, 2), 4.29 (q, J = 6.8 z, 1), 3.64 (s, 3), 1.39 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, (CD 3 ) 2 S): δ 172.16, 162.14, 139.21, 130.85 (q, J = 31.9 z), 128.80, 125.66 (q, J = 3.7 z), 122.67, 66.55, 51.96, 19.04. 19

Methyl (E)-N-[(o-tolyl)methylene]alaninate (2k) 2 77% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.62 (s, 1), 7.92 (d, J = 7.4 z, 1), 7.31 (t, J = 7.4 z, 1), 7.23 (t, J = 7.4 z, 1), 7.17 (d, J = 7.4 z, 1), 4.16 (q, J = 6.8 z, 1), 3.75 (s, 3), 2.51 (s, 3), 1.54 (d, J = 6.8 z, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 173.17, 161.62, 137.96, 133.81, 130.87, 130.79, 127.85, 126.30, 68.62, 52.33, 19.73, 19.38. Methyl (E)-N-[(p-bromophenyl)methylene]glycinate (2l) 5 60% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.24 (s. 1), 7.65 (d, J = 8.4 z, 2), 7.55 (d, J = 8.4 z, 2), 4.40 (s, 2), 3.78 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 170.49, 164.32, 134.53, 132.03, 130.00, 125.92, 62.00, 52.36. Methyl (E)-N-[(p-fluorophenyl)methylene]phenylglycinate (2m) 74% yield; 1 NMR (500 Mz, CDCl 3 ): δ 8.31 (s, 1), 7.86 7.79 (m, 2), 7.51 (d, J = 7.5 z, 2), 7.41 7.35 (m, 2), 7.35 7.29 (m, 1), 7.13 7.07 (m, 2), 5.20 (s, 1), 3.75 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 171.61, 164.79 (d, J = 251.8 z), 162.38, 138.15, 132.15 (d, J = 3.1 z), 130.80 (d, J = 8.8 z), 128.92, 128.82, 128.29, 127.96, 126.96, 115.83 (d, J = 22.0 z), 76.52, 52.63. 20

Methyl (E)-N-[(p-bromophenyl)methylene]phenylglycinate (2n) 4 81% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.29 (s, 1), 7.70 (d, J = 8.4 z, 2), 7.55 (d, J = 8.4 z, 2), 7.50 (d, J = 7.2 z, 2), 7.38 (t, J = 7.2 z, 2), 7.32 (t, J = 7.2 z, 1), 5.20 (s, 1), 3.75 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 171.49, 162.65, 137.94, 134.64, 131.96, 130.21, 128.86, 128.35, 127.95, 125.92, 76.55, 52.71. N Methyl (E)-N-[(p-tolyl)methylene]phenylglycinate (2o) 8 83% yield; 1 NMR (500 Mz, CDCl 3 ): δ 8.31 (s, 1), 7.72 (d, J = 8.0 z, 2), 7.52 (d, J = 7.4 z, 2), 7.37 (t, J = 7.4 z, 2), 7.32 (d, J = 7.4 z, 1), 7.22 (d, J = 8.0 z, 2), 5.19 (s, 1), 3.74 (s, 3), 2.39 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 171.79, 163.81, 141.78, 138.39, 133.27, 129.42, 128.83, 128.76, 128.17, 127.96, 76.68, 52.60, 21.70. Methyl (E)-N-[(p-Methoxyphenyl)methylene]phenylglycinate (2p) 7 42% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.27 (s, 1), 7.78 (d, J = 8.8 z, 2), 7.51 (d, J = 7.3 z, 2), 7.37 (t, J = 7.3 z, 3), 7.32 (d, J = 7.3 z, 1), 6.92 (d, J = 8.8 z, 2), 5.17 (s, 1), 3.84 (s, 3), 3.74 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 171.92, 163.18, 162.22, 138.48, 130.49, 128.79, 128.76, 128.14, 127.92, 114.07, 76.65, 55.51, 52.62. 21

Methyl (E)-N-[2-Naphthyl)methylene]phenylglycinate (2q) 67% yield; 1 NMR (400 Mz, CDCl 3 ): δ 8.50 (s, 1), 8.16 8.08 (m, 2), 7.87 (dd, J = 16.6, 8.0 z, 3), 7.57 (d, J = 7.4 z, 2), 7.55 7.50 (m, 2), 7.40 (t, J = 7.4 z, 2), 7.34 (t, J = 7.4 z, 1), 5.28 (s, 1), 3.77 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 192.41, 171.75, 163.99, 138.24, 135.10, 133.51, 133.08, 130.93, 128.84, 128.59, 128.28, 128.00, 127.54, 126.94, 126.62, 124.26, 76.73, 52.70. Methyl (E)-N-[cyclohexyl)methylene]alaninate (2r) 9 The suspension of alanine methyl ester hydrochloride (1.2 equiv., 12 mmol) in DCM (15 ml) was washed with aqueous ammonia solution (25%, 15 ml) and the organic phase was dried over MgS 4. resh anhydrous MgS 4 and cyclohexanaldehyde (1 equiv., 10 mmol) were added and the mixture was allowed to stir at ambient temperature overnight. The precipitate was removed by filtration and the filtrate was washed with with brine (15 ml). The aqueous phase was extracted two times with DCM (10 ml) and the combined organic layer was dried over MgS 4 and concentrated. The iminoester was used for 1,3-dipolar cycloaddition and NMR studies without further purification. 58% yield; 1 NMR (400 Mz, CDCl 3 ): δ 7.51 (d, J = 5.5 z, 1), 3.85 (q, J = 6.9 z, 1), 3.71 (s, 3), 2.29 2.17 (m, 1), 1.84 1.60 (m, 6), 1.39 (d, J = 6.9 z, 3), 1.36 1.13 (m, 4); 13 C NMR (101 Mz, CDCl 3 ): δ 173.38, 171.51, 67.98, 52.25, 43.70, 29.68, 26.02, 25.42, 19.79. 22

References: [1] Cooper, D.M., Grigg, R., ergreaves, S., Kennewell, P. & Redpath, J. Z+Y-Z compounds as potential 1,3-dipoles. Part 44. Asymmetric 1,3-dipolar cycloaddition reactions of imines and chiral cyclic dipolarophiles. Tetrahedron 51, 7791-7808 (1995). [2] Cabrera, S., Arrayás, R.G., Martin-Matute, B., Cossio,.P. & Carretero, J.C. CuI- esulphos complexes: efficient chiral catalysts for asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Tetrahedron 63, 6587-6602 (2007). [3] Achard, T., Belokon, Y.N., uentes, J.A., North, M. & Parsons T. Influence of aromatic substituents on metal(ii)salen catalyzed, asymmetric synthesis of α-methyl α-amino acids. Tetrahedron 60, 5919-5930 (2004). [4] Wang, C.-J., Liang, G., Xue, Z.-Y. & Gao,. ighly enantioselective 1,3-dipolar cycloaddition of azomethine ylides catalyzed by copper(i)/t-biphamphos complexes. J. Am. Chem. Soc. 130, 17250-17251 (2008). [5] López-Pérez, A., Adrio, J. & Carretero, J.C. The phenylsulfonyl group as a temporal regiochemical controller in the catalytic asymmetric 1,3-dipolar cycloaddition of azomethine ylides. Angew. Chem. Int. Ed. 48, 340-343 (2009). [6] Lopez-Perez, A., Segler, M., Adrio, J. & Carretero, J.C. Silver-catalyzed 1,3-dipolar cycloaddition of azomethine ylides with β-boryl acrylates. J. rg. Chem. 76, 1945-1948 (2011). [7] Grigg, R., Gunaratne,.Q.N., Kemp, J. X=Y-Z Systems as Potential 1,3-Dipoles. Part1. Background and Scope. J. Chem. Perkin Soc. Trans. 1, 41-46 (1984). [8] Duhamel, L., Plaquevent, J.C. Deracemization by enantioselective protonation. Application to an α-amino acid, phenylglycine. rom Bulletin de la Societe Chimique de rance, 75-83 (1982). [9] Grigg, R., Montgomery, J., Somasunderam, A. X=Y-Z Systems as Potential 1,3- Dipoles. Part 39. Metallo-Azomethin Ylides from Aliphatic Aldimines. acile Regioand Stereo-specific Cycloaddition Reactions. Tetrahedron 48, 10431-10442 (1992) 23

General procedure of 1,3-dipolare cycloaddition of azomethine ylides with 1,4-benzoquinone (a) Procedure for the synthesis of the anti-regioisomers To the solution of tetrakis(acetonitrile)copper(i) tetrafluoroborate (5 mol%, 15 µmol), α-iminoester 2 (2.2 equiv., 0.66 mmol) and Et 3 N (20 mol%, 60 µmol) in T was added 1,4-benzoquinone 1 (1 equiv., 0.30 mmol). The mixture was allowed to stir at ambient temperature for 30 minutes. The solvent was removed in vacuo and column chromatography on silica gel (ethyl acetate / petroleum ether (40-60 C)) afford the pure product. Additional purification is possible by crystallisation from ethyl acetate / n-pentane. 24

Characterization of the anti-regioisomers (3a 3h) rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 3,7-bis(4-bromophenyl)-1,5-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3a) 1 NMR (400 Mz, CDCl 3 ): δ 7.44 (d, J = 8.4 z, 4), 7.22 (d, J = 8.4 z, 4), 4.69 (d, J = 8.5 z, 2), 3.72 (dd, J = 9.2, 8.5 z, 2), 3.56 (s, 6), 2.72 (d, J = 9.2 z, 2), 1.48 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.29, 173.86, 137.51, 131.47, 129.05, 121.53, 68.82, 62.14, 61.48, 55.93, 52.76, 25.98; T-IR: v ~ = 3339, 1734, 1702, 1403, 1281, 1240, 1186, 1135, 1069, 1006 cm -1 ; RMS: calcd. for [M+] + C 28 79 29 Br 2 N 2 6 = 647.03869, found: 647.04001; calcd. for [M+] + C 28 79 29 Br 81 BrN 2 6 = 649.03664, found: 649.03710; calcd. for [M+] + C 28 81 29 Br 2 N 2 6 = 651.03460, found: 651.03484. N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 3,7-bis(4-methylphenyl)-1,5-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3b) 1 NMR (400 Mz, CDCl 3 ): δ 7.15 (d, J = 8.2 z, 4), 7.11 (d, J = 8.2 z, 4), 4.68 (d, J = 8.9 z, 2), 3.62 (dd, J = 9.2, 8.9 z, 2), 3.58 (s, 6), 2.54 (d, J = 9.2 z, 2), 2.31 (s, 25

6), 1.39 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.92, 174.26, 137.37, 135.31, 129.18, 127.16, 68.45, 63.03, 61.83, 56.77, 52.50, 26.22, 21.23; T-IR: v ~ = 3359, 1748, 1703, 1508, 1432, 1348, 1290, 1189, 1131, 1020 cm -1 ; RMS: calcd. for [M+] + C 30 35 N 2 6 = 519.24896; found: 519.24854. N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 3,7-bis(4-methoxyphenyl)-1,5-dimethyl- 4,8-dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3c) 1 NMR (400 Mz, CDCl 3 ): δ 7.18 (d, J = 8.7 z, 4), 6.84 (d, J = 8.7 z, 4), 4.67 (d, J = 8.8 z, 2), 3.78 (s, 6), 3.59 (s, 6), 3.57 (dd, J = 9.0, 8.8 z, 2), 2.59 (d, J = 9.0 z, 2), 2.47 (br s, 2), 1.40 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 205.09, 174.32, 159.06, 130.29, 128.48, 113.81, 68.37, 62.79, 61.79, 56.62, 55.39, 52.54, 26.33; T-IR: v ~ = 3351, 2955, 1734, 1693, 1608, 1510, 1302,1246, 1132, 1032 cm -1 ; RMS: calcd. for [M+] + C 30 35 N 2 8 = 551.23879, found: 551.23884. N N 26

rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3d) 1 NMR (400 Mz, CDCl 3 ): δ 7.33 7.27 (m, 4), 7.05 6.96 (m, 4), 4.70 (d, J = 8.7 z, 2), 3.68 (dd, J = 9.2, 8.7 z, 2), 3.56 (s, 6), 2.66 (d, J = 9.2 z, 2), 2.52 (br s, 2), 1.45 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.58, 174.00, 162.18 (d, J = 246.3 z), 134.23 (d, J = 3.1 z), 128.96 (d, J = 8.0 z), 115.25 (d, J = 21.4 z), 68.61, 62.11, 61.57, 56.14, 52.63, 26.08; T-IR: v ~ = 3318, 1738, 1704, 1606, 1508, 1439, 1292, 1219, 1132 cm -1 ; RMS: calcd. for [M+] + C 28 29 2 N 2 6 = 527.19882, found: 527.19863. N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 3,7-bis(4-fluorophenyl)-1,5-dimethyl-4,8-3,7-bis(3-fluorophenyl)-1,5-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3e) 1 NMR (400 Mz, CDCl 3 ): δ 7.33 7.26 (m, 2), 7.15 7.06 (m, 4), 6.97 6.89 (m, 2), 4.70 (d, J = 8.7 z, 2), 3.77 (dd, J = 9.2, 8.7 z, 2), 3.57 (s, 6), 2.60 (d, J = 9.2 z, 2), 2.31 (br s, 2), 1.44 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.13, 173.87, 162.92 (d, J = 246.0 z), 141.69 (d, J = 7.0 z), 129.92 (d, J = 8.2 z), 122.93 (d, J = 2.7 z), 114.48 (d, J = 21.2 z), 114.23 (d, J = 22.4 z), 68.58, 61.88 (d, J = 1.6 z), 61.34, 56.14, 52.56, 25.85 ; T-IR: v ~ = 3327, 1732, 1706, 1586, 1485, 1434, 1287, 1233, 1171, 1131 cm -1 ; RMS: calcd. for [M+] + C 28 29 2 N 2 6 = 527.19882, found: 527.19848. 27

N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3f) 1 NMR (500 Mz, CDCl 3 ): δ 7.63 7.55 (m, 2), 7.30 7.22 (m, 2), 7.20 7.12 (m, 2), 7.06 6.99 (m, 2), 4.88 (d, J = 8.5 z, 2), 3.88 (dd, J = 9.4, 8.5 z, 2), 3.51 (s, 6), 2.86 (d, J = 9.4 z, 2), 1.49 (s, 6); 13 C NMR (126 Mz, CDCl 3 ): δ 203.92, 173.58, 160.40 (d, J = 246.2 z), 129.35 (d, J = 8.2 z), 128.10 (d, J = 3.7 z), 124.26 (d, J = 3.2 z), 115.23 (d, J = 21.4 z), 68.69, 62.02, 56.97 (d, J = 3.1 z), 54.99, 52.59, 25.43; T-IR: v ~ = 3371, 1746, 1706, 1482, 1360, 1290, 1236, 1164, 1131 cm -1 ; RMS: calcd. for [M+] + C 28 29 2 N 2 6 = 527.19882, found: 527.19833. N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 3,7-bis(2-fluorophenyl)-1,5-dimethyl-4,8-1,5-dimethyl-4,8-dioxo-3,7-diphenyldodeca-hydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3g) 1 NMR (400 Mz, CDCl 3 ): δ 7.33 7.25 (m, 8), 7.23 7.19 (m, 2), 4.69 (d, J = 8.9 z, 2), 3.67 (dd, J = 9.2, 8.9 z, 2), 3.54 (s, 6), 2.45 (d, J = 9.2 z, 2), 1.36 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.66, 174.13, 138.56, 128.51, 127.72, 127.24, 68.43, 62.82, 61.64, 56.72, 52.52, 26.05; T-IR: v ~ = 3368, 1746, 1703, 1451, 1355, 1289, 1232, 1187, 1130, 1028 cm -1 ; RMS: calcd. for [M+] + C 28 31 N 2 6 = 491.21766, found: 491.21719. 28

N N rel-(1r,3s,3ar,4ar,5s,7r,7as,8as)-dimethyl 1,5-dimethyl-3,7-di(naphthalen-2-yl)-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,5-dicarboxylate (3h) 1 NMR (400 Mz, CDCl 3 ): δ 7.89 7.76 (m, 8), 7.52 7.43 (m, 4), 7.39 7.33 (m, 2), 4.86 (d, J = 8.8 z, 2), 3.82 (dd, J = 9.3, 8.8 z, 2), 3.36 (s, 6), 2.71 (d, J = 9.3 z, 2), 1.40 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 204.73, 174.14, 135.97, 133.31, 132.95, 128.21, 128.02, 127.73, 126.29, 126.13, 125.85, 125.59, 68.78, 63.09, 61.85, 56.49, 52.43, 25.99; T-IR: v ~ = 3354, 1747, 1706, 1506, 1375, 1280, 1229, 1152, 1126, 1015 cm -1 ; RMS: calcd. for [M+] + C 36 35 N 2 6 = 591,24896, found: 591,24918. 29

NMR-spectra of the anti-regioisomers (3a 3h) 1 NMR 3a 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 30

N N 3b 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 31

N N 3c 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 32

N N 3d 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 33

N N 3e 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 34

N N 3f 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 35

N N 3g 1 NMR 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 36

N N 3h 1 NMR top 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 37

(b) Procedure for the synthesis of the mono addition products (R p )-2-(tert-Butylthio)-1-(diphenylphosphino)ferrocene 7g (3 mol%, 9 µmol) and tetrakis- (acetonitrile)copper(i) tetrafluoroborate (3 mol%, 9 µmol) were dissolved in toluene and stirred at ambient temperature for 5 min. To the resulting solution were added α-iminoester 2 (1 equiv., 0.3 mmol), DIPEA (20 mol%, 60 µmol) and 1,4-benzoquinone 1 (1 equiv., 0.3 mmol) and the mixture was allowed to stir at ambient temperature for 1 h. The crude mixture was directly charged onto silica gel and the product was isolated using petroleum ether (40-60 C) / ethyl acetate as eluent. 38

Characterization of the mono addition products (6a 6l) Br 5 6 4 7 3a 3 7a 1 2 N (1S,3S)-Methyl 3-(4-bromophenyl)-4,7-dihydroxy-1-methylisoindoline-1-carboxylate (6a) 1 NMR (400 Mz, CDCl 3 ): δ 8.02 (br s, 1), 7.46 (d, J = 8.4 z, 2), 7.13 (d, J = 8.4, 2), 6.79 (d, J = 8.5 z, 1), 6.63 (d, J = 8.5 z, 1), 5.46 (s, 1), 3.83 (s, 3), 1.73 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 177.41, 146.26, 144.69, 141.12, 132.25, 129.64, 128.97, 128.80, 122.35, 118.68, 117.96, 71.24, 64.21, 53.91, 26.94; T-IR: v ~ = 3316, 2928, 2852, 1714, 1497, 1462, 1255, 1107, 1012, 941 cm -1 ; RMS: calcd. for [M+] + C 17 17 79 BrN 4 = 378.03355, found: 378.03357; calcd. for [M+] + C 17 17 81 BrN 4 = 380.03150, found: 380.03183; [ α ] RT D = -3.9 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 25.81 min; major enantiomer: t R = 23.34 min. N (1S,3S)-Methyl 4,7-dihydroxy-1-methyl-3-p-tolylisoindoline-1-carboxylate (6b) 1 NMR (500 Mz, CDCl 3 ): δ 8.01 (br s, 1), 7.22 7.13 (m, 4), 6.78 (d, J = 8.5 z, 1), 6.64 (d, J = 8.5 z, 1), 5.42 (s, 1), 3.84 (s, 3), 2.34 (s, 3), 1.73 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 177.44, 146.26, 144.81, 138.61, 138.50, 130.15, 129.69, 128.85, 127.86, 39

118.48, 118.02, 71.21, 64.65, 53.77, 26.80, 21.31; T-IR: v ~ = 3307, 2923, 2853, 1718, 1457, 1253, 1184, 1110, 1021 cm -1 ; RMS: calcd. for [M+] + C 18 20 N 4 = 314.13868, found: 314.13869; [ α ] RT D = -5.4 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 18.14 min; major enantiomer: t R = 16.29 min. N (1S,3S)-Methyl 4,7-dihydroxy-3-(4-methoxyphenyl)-1-methylisoindoline-1-carboxylate (6c) 1 NMR (500 Mz, CDCl 3 ): δ 7.99 (br s, 1), 7.22 (d, J = 8.6 z, 2), 6.89 (d, J = 8.6 z, 2), 6.78 (d, J = 8.6 z, 1), 6.65 (d, J = 8.6 z, 1), 5.42 (s, 1), 3.84 (s, 3), 3.80 (s, 3), 1.72 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 177.43, 159.96, 146.25, 144.84, 133.44, 129.63, 129.18, 128.82, 118.49, 118.01, 114.83, 71.09, 64.17, 55.45, 53.79, 26.74; T-IR: v ~ = 2922, 2853, 2323, 1730, 1510, 1460, 1246, 1177, 1031 cm -1 ; RMS: calcd. for [M+] + C 18 20 N 5 = 330.13360, found: 330.13365; [ α ] RT D = -3.5 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 21.40 min; major enantiomer: t R = 18.89 min. N 40

(1S,3S)-Methyl 3-(4-fluorophenyl)-4,7-dihydroxy-1-methylisoindoline-1-carboxylate (6d) 1 NMR (400 Mz, CDCl 3 ): δ 8.02 (br s, 1), 7.29 7.17 (m, 2), 7.05 7.00 (m, 2), 6.79 (d, J = 8.5 z, 1), 6.63 (d, J = 8.5 z, 1), 5.47 (s, 1), 3.83 (s, 3), 1.73 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 177.45, 162.70 (d, J = 247.1 z), 146.25, 144.74, 137.78, 129.62 (d, J = 8.2 z), 129.24, 128.80, 118.63, 117.98, 116.10 (d, J = 21.6 z), 71.12, 64.04, 53.87, 26.87; T-IR: v ~ = 3320, 2954, 2853, 1716, 1604, 1502, 1459, 1222, 1110 cm -1 ; RMS: calcd. for [M+] + C 17 17 N 4 = 318.11361, found: 318.11360; [ α ] RT D = -1.5 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 24.78 min; major enantiomer: t R = 21.51 min. N (1S,3S)-Methyl 3-(3-fluorophenyl)-4,7-dihydroxy-1-methylisoindoline-1-carboxylate (6e) 1 NMR (400 Mz, CDCl 3 ): δ 8.04 (br s, 1), 7.38 7.27 (m, 1), 7.09 (d, J = 7.5 z), 7.05 6.91 (m, 2), 6.80 (d, J = 8.5 z, 1), 6.64 (d, J = 8.5 z, 1), 5.50 (s, 1), 3.84 (s, 3), 1.74 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 177.56, 163.33 (d, J = 247.1 z), 146.34, 144.71, 130.67 (d, J = 8.2 z), 128.85 (d, J = 16.4 z), 123.45 (d, J = 2.8), 118.75, 118.02, 115.44 (d, J = 21.2 z), 114.83 (d, J = 21.6 z), 71.23, 64.33 (d, J = 1.5 z), 53.88, 26.99; T-IR: v ~ = 3301, 2925, 2853, 2628, 2321, 2163, 1730, 1590, 1449, 1247, 1119 cm -1 ; RMS: calcd. for [M+] + C 17 17 N 4 = 318.11361, found: 318.11367; [ α ] RT D = -3.4 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 25.33 min; major enantiomer: t R = 20.95 min. 41

N (1S,3R)-Methyl 3-(2-fluorophenyl)-4,7-dihydroxy-1-methylisoindoline-1-carboxylate (6f) 1 NMR (400 Mz, CDCl 3 ): δ 8.01 (br s, 1), 7.31 7.19 (m, 1), 7.15 6.96 (m, 3), 6.79 (d, J = 8.5 z, 1), 6.63 (d, J = 8.5 z, 1), 5.83 (s, 1), 3.76 (s, 3), 1.74 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 177.84, 160.90 (d, J = 247.2 z), 146.31, 144.64, 129.77 (d, J = 8.4 z), 129.15 (d, J = 4.0 z), 129.02 (d, J = 13.0 z), 128.38, 124.66 (d, J = 3.5 z), 118.63, 117.76, 115.92 (d, J = 21.8), 71.18, 57.71 (d, J = 3.5 z), 53.71, 27.00; T-IR: v ~ = 3230, 2925, 2852, 1702, 1587, 1494, 1373, 1265, 1116, 943 cm -1 ; RMS: calcd. for [M+] + C 17 17 N 4 = 318.11361, found: 318.11363; [ α ] RT D = -30.5 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 24.20 min; major enantiomer: t R = 20.34 min. N (1S,3S)-Methyl 4,7-dihydroxy-1-methyl-3-phenylisoindoline-1-carboxylate (6g) 1 NMR (400 Mz, CDCl 3 ): δ 8.06 (br s, 1), 7.39 7.32 (m, 3), 7.28 (d, J = 7.9 z, 2), 6.79 (d, J = 8.5 z, 1), 6.64 (d, J = 8.5 z, 1), 5.46 (s, 1), 3.83 (s, 3), 1.73 (s, 3); 13 C NMR (101 Mz, CDCl 3 ): δ 177.48, 146.23, 144.78, 141.64, 129.50, 129.39, 128.83, 128.69, 127.93, 118.53, 118.03, 71.23, 64.81, 53.84, 26.85; T-IR: v ~ = 3308, 2928, 2851, 2632, 1980, 1714, 1496, 1454, 1254, 1158, 1030, 941 cm -1 ; RMS: calcd. for [M+] + C 17 18 N 4 = 300.12303, found: 300.12309; [ α ] RT D = -7.4 (Me, c = 1.0); PLC conditions: 42

CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 20.30 min; major enantiomer: t R = 17.60 min. N (1S,3S)-Methyl 4,7-dihydroxy-1-methyl-3-(naphthalen-2-yl)isoindoline-1-carboxylate (6h) 1 NMR (500 Mz, CDCl 3 ): δ 8.06 (br s, 1), 7.87 7.74 (m, 4), 7.50 7.48 (m, 2), 7.32 7.26 (m, 1), 6.82 (d, J = 8.5 z, 1), 6.65 (d, J = 8.5 z, 1), 5.65 (s, 1), 3.82 (s, 3), 1.77 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 177.56, 146.36, 144.96, 139.02, 133.54, 133.51, 129.56, 129.29, 128,90, 128.14, 127.91, 127.03, 126.65, 126.56, 125.32, 118.71, 118.12, 71.35, 64.96, 53.79, 26.96; T-IR: v ~ = 3322, 2923, 2853, 1712, 1497, 1460, 1369, 1258, 1125 cm -1 ; RMS: calcd. for [M+] + C 21 20 N 4 = 350.13868, found: 35013883; [ α ] RT D = +24.2 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 45/55, flow rate = 0.5 ml min -1, minor enantiomer: t R = 28.76 min; major enantiomer: t R = 24.17 min. Cl N (1S,3R)-Methyl 3-(2-chloro-6-fluorophenyl)-4,7-dihydroxy-1-methylisoindoline-1- carboxylate (6i) 43

1 NMR (500 Mz, CDCl 3 ) major rotamer: δ 8.49 (s, 1), 8.23 (s, 1), 7.22 7.15 (m, 2), 7.11 7.00 (m, 1), 6.93 6.81 (m, 1), 6.78 (d, J = 8.2 z, 1), 6.60 6.56 (m, 1), 6.18 (s, 1), 3.85 (s, 3), 1.77 (s, 3); 13 C NMR (126 Mz, CDCl 3 ) major rotamer: δ 178.56, 162.39 (d, J = 252.7 z), 146.34, 144.34, 129.60 (d, J = 10.3 z), 125.54 (d, J = 3.4 z), 118.53, 118.43, 117.26, 117.22, 115.51 (d, J = 22.5 z), 71.89, 58.65, 53.76, 27.52; T-IR: v ~ = 3239, 2955, 2853, 1692, 1576, 1455, 1299, 1226, 1113, 1020 cm -1 ; RMS: calcd. for [M+] + C 17 16 35 ClN 4 = 352.07464, found: 352.07459; calcd. for [M+] + C 17 16 37 ClN 4 = 354.07169, found: 354.07193; [ α ] RT D = +26.5 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 19.57 min; major enantiomer: t R = 20.53 min. N (1S,3S)-Methyl 4,7-dihydroxy-1-methyl-3-(4-(trifluoromethyl)phenyl)isoindoline-1- carboxylate (6j) 1 NMR (500 Mz, CDCl 3 ): δ 7.98 (br s, 1), 7.58 (d, J = 8.0 z, 2), 7.38 (d, J = 8.0 z, 2), 6.80 (d, J = 8.6 z, 1); 6.62 (d, J = 8.6 z, 1), 5.57 (s, 1), 3.82 (s, 3), 1.75 (s, 3); 13 C NMR (126 Mz, CDCl 3 ): δ 177.55, 146.55, 146.42, 144.70, 128.99, 128.94, 128.32, 126.31 125.48 (m), 118.81, 117.94, 71.36, 64.42, 53.83, 27.08; T-IR: v ~ = 3317, 2929, 1712, 1619, 1498, 1461, 1323, 1108, 1018 cm -1 ; RMS: calcd. for [M+] + C 18 17 3 N 4 = 368.11042, found: 368.11048; [ α ] RT D = +1.0 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 24.27 min; major enantiomer: t R = 22.68 min. 44

Br N (1S,3S)-Methyl 3-(4-bromophenyl)-4,7-dihydroxyisoindoline-1-carboxylate (6k) 1 NMR (500 Mz, CDCl 3 /(CD 3 ) 2 S = 10/1): δ 7.29 (d, J = 8.4 z, 2), 7.01 (d, J = 8.4 z, 2), 6.58 (d, J = 8.6 z, 1), 6.50 (d, J = 8.6 z, 1), 5.35 (s, 1), 5.01 (s, 1), 3.64 (s, 3); 13 C NMR (126 Mz, CDCl 3 /(CD 3 ) 2 S = 10/1): δ 173.99, 145.80, 145.32, 141.87, 131.36, 129.45, 124.62, 121.30, 116.96, 116.87, 65.70, 64.12, 52.90; T-IR: v ~ = 3339, 2925, 2851, 1729, 1490, 1463, 1252, 1211, 1010 cm -1 ; LCMS: calcd. for [M+] + C 16 15 79 BrN 4 = 364, found: 364; calcd. for [M+] + C 16 81 15 BrN 4 = 366, found: 366; [ α ] RT D = 8.6 (Me, c = 1.0); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 75/25, flow rate = 0.5 ml min -1, minor enantiomer: t R = 25.20 min; major enantiomer: t R = 23.15 min. Br N (1S,3S)-methyl 3-(4-bromophenyl)-4,7-dihydroxy-1-phenylisoindoline-1-carboxylate (6l) 1 NMR (500 Mz, CDCl 3 ): δ 7.94 (s, 1), 7.48 (d, J = 8.4 z, 2), 7.34 (d, J = 7.6 z, 3), 7.23 7.16 (m, 4), 6.87 (d, J = 8.6 z, 1), 6.73 (d, J = 8.6 z, 1), 5.41 (s, 1), 3.91 (s, 3); 13 C NMR (126 Mz, CDC 3 ): δ 176.27, 147.15, 144.64, 141.40, 141.01, 132.31, 130.38, 129.80, 129.26, 129.03, 128.70, 125.96, 122.45, 118.90, 118.86, 77.97, 64.18, 54.06; T-IR: v ~ = 3326, 2923, 2852, 1703, 1594, 1459, 1270, 1033, 1009, 977 cm -1 ; LCMS: calcd. for [M+] + C 22 19 79 BrN 4 = 440, found: 440; calcd. for [M+] + C 22 19 81 BrN 4 = 442, found: 442; [ α ] RT D = -5.1 (c = 1.0 in C 2 Cl 2 ); PLC conditions: CIRAPAK IA column, (C 2 Cl 2 /Et = 45

100 / 2) / iso-hexane = 40 / 60, flow rate = 0.5 ml min -1, minor enantiomer: t R = 23.69 min; major enantiomer: t R = 31.07 min. 46

NMR-spectra and PLC chromatograms of the mono addition products (6a 6l) Br N 1 NMR 6a 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 47

PLC traces for 6a: racemat top, chiral bottom. 48

N 6b 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 49

PLC traces for 6b: racemat top, chiral bottom. 50

N 6c 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 51

PLC traces for 6c: racemat top, chiral bottom. 52

N 6d 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 53

PLC traces for 6d: racemat top, chiral bottom. 54

N 6e 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 55

PLC traces for 6e: racemat top, chiral bottom. 56

N 6f 1 NMR top 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 57

PLC traces for 6f: racemat top, chiral bottom. 58

N 6g 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 59

PLC traces for 6g: racemat top, chiral bottom. 60

N 6h 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 61

PLC traces for 6h: racemat top, chiral bottom. 62

Cl N 6i 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 63

PLC traces for 6i: racemat top, chiral bottom. 64

N 6j 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 65

PLC traces for 6j: racemat top, chiral bottom. 66

Br N 6k 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 67

PLC traces for 6k: racemat top, chiral bottom. 68

Br N 6l 1 NMR 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 13 C NMR 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 69

PLC traces for 6l: racemat top, chiral bottom. 70

(c) Procedure A R 1 R 1 R 1 1 + N R 2 3mol%(R)-eSulPhos 7g 3 mol% Cu(C 3 CN) 4 B 4 20 mol% DIPEA toluene, rt, 16 h N R 2 N R 2 2 4 (R p )-2-(tert-Butylthio)-1-(diphenylphosphino)ferrocene 7g (3 mol%, 9 µmol) and tetrakis- (acetonitrile)copper(i) tetrafluoroborate (3 mol%, 9 µmol) were dissolved in toluene and stirred at ambient temperature for 5 min. To the resulting solution were added α-iminoester 2 (2.2 equiv., 0.66 mmol), DIPEA (20 mol%., 60 µmol) and 1,4-benzoquinone 1 (1 equiv., 0.30 mmol) and the mixture was allowed to stir at ambient temperature for 16h. The crude mixture was directly charged onto silica gel and the product was purified using petroleum ether (40-60 C) / ethyl acetate as eluent. Yields, enantiomeric excesses, diastereoselectivity and regionselectivity are given in the tables. The enantiomeric excesses were determined after the first cycloaddition, because the first cycloaddition is the enantioselective step and the second cycloaddition is regio- and diastereoselective. Therefore, in parallel to the double cycloaddition, under identical conditions a reaction with 1.1 equivalent of the azomethine ylide was performed, purified and analyzed by PLC. Retention time and PLC methods are reported for the monoaddition products. 71

Characterization of the chiral syn-regioisomers (4a 4l) Br Br 6 N 5 4a 7a 7 4 8 3 3a 8a 1 2 N dioxododecahydropyrrolo[3,4-f]isoindole-1,7-dicarboxylate (4a) 1 NMR (400 Mz, CDCl 3 ): δ 7.35 (d, J = 8.4 z, 4), 6.98 (d, J = 8.4 z, 4), 4.58 (d, J = 8.0 z, 2), 3.75 (s, 6), 3.41 3.33 (m, 2), 3.30 (d, J = 9.3 z, 2), 2.38 (br s, 2), 1.56 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 205.64, 203.65, 174.01, 137.33, 131.42, 128.53, 121.34, 69.69, 62.24, 61.99, 56.25, 52.88, 26.08; T-IR: v ~ = 3325, 2925, 2851, 2163, 1981, 1720, 1487, 1435, 1401, 1375, 1289, 1196, 1139, 1071, 1010 cm -1 ; RMS: calcd. for [M+] + C 28 29 79 Br 2 N 2 6 = 647.03869, found: 647.03802; calcd. for [M+] + C 28 29 79 Br 81 BrN 2 6 = 649.03664, found: 649.03543; calcd. for [M+] + C 28 29 81 Br 2 N 2 6 = 651.03460, found: 651.03376; [ α ] RT D = -48.9 (c = 1.0 in C 2 Cl 2 ); PLC conditions: CIRALPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 25.81 min; major enantiomer: t R = 23.34 min. N N (1S,3R,3aS,4aS,5R,7S,7aR,8aR)-Dimethyl (1S,3R,3aS,4aS,5R,7S,7aR,8aR)-Dimethyl 3,5-bis(4 -bromophenyl)-1,7-dimethyl-4,8-3,5-bis(4-methylphenyl)-1,7-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,7-dicarboxylate (4b) 72

1 NMR (500 Mz, CDCl 3 ): δ 7.08 6.95 (m, 8), 4.61 (d, J = 9.0 z, 2), 3.77 (s, 6), 3.30 (d, J = 9.4 z, 2), 3.23 (dd, J = 9.4, 9.0 z, 2), 2.30 (s, 6), 1.48 (s, 6); 13 C NMR (126 Mz, CDCl 3 ): δ 206.75, 204.20, 173.94, 137.13, 135.34, 129.13, 127.09, 69.18, 62.72, 61.10, 57.34, 52.65, 25.85, 21.22; T-IR: v ~ = 3778, 3329, 2924, 2852, 2163, 1728, 1514, 1434, 1376, 1270, 1187, 1136, 1020 cm -1 ; RMS: calcd. for [M+] + C 30 35 N 2 6 = 519.24896; found: 519.24741; [ α ] RT D = -6.8 (c = 1.0 in C 2 Cl 2 ); PLC conditions: CIRALPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 18.14 min; major enantiomer: t R = 16.29 min. N N (1S,3R,3aS,4aS,5R,7S,7aR,8aR)-Dimethyl 3,5-bis(4 -methoxyphenyl)-1,7-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,7-dicarboxylate (4c) 1 NMR (400 Mz, CDCl 3 ): δ 7.05 (d, J = 8.7 z, 4), 6.76 (d, J = 8.7 z, 4), 4.61 (d, J = 9.0 z, 2), 3.77 (s, 12), 3.29 (d, J = 9.4 z, 2), 3.20 (dd, J = 9.4, 9.0 z, 2), 1.47 (s, 6); 13 C NMR (101 Mz, CDCl 3 ): δ 206.87, 204.53, 173.92, 158.86, 130.33, 128.34, 113.75, 69.03, 62.32, 60.75, 57.29, 55.26, 52.66, 25.84; T-IR: v ~ = 3778, 3660, 2922, 2853, 2342, 2163, 1729, 1609, 1512, 1459, 1376, 1246, 1137, 1031 cm -1 ; RMS: calcd. for [M+] + C 30 35 N 2 8 = 551.23879, found: 551.23736; [ α ] RT D = -8.3 (c = 1.0 in C 2 Cl 2 ); PLC conditions: CIRALPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 21.40 min; major enantiomer: t R = 18.89 min. 73

N N (1S,3R,3aS,4aS,5R,7S,7aR,8aR)-Dimethyl dioxododecahydropyrrolo[3,4-f]isoindole-1,7-dicarboxylate (4d) 1 NMR (500 Mz, CDCl 3 ): δ 7.16 7.03 (m, 4), 6.95 6.85 (m, 4), 4.61 (d, J = 6.9 z, 2), 3.76 (s, 6), 3.35 3.25 (m, 4), 1.54 (s, 6); 13 C NMR (126 Mz, CDCl 3 ): δ 205.95, 203.90, 174.00, 162.06 (d, J = 246.2 z), 134.13 (d, J = 3.2 z), 128.65 (d, J = 8.0 z), 115.18 (d, J = 21.4 z), 69.40, 62.07, 61.75, 56.76, 52.76, 26.11; T-IR: v ~ = 3778, 3351, 2926, 2853, 2163, 1722, 1507, 1375, 1296, 1246, 1167, 1072, 1017 cm -1 ; RMS: calcd. for [M+] + C 28 29 2 N 2 6 = 527.19882, found: 527.19703; [ α ] RT D = 2.6 (c = 1.0 in C 2 Cl 2 ); PLC conditions: CIRALPAK IA column, (C 2 Cl 2 /Et = 100/2) / iso-hexane = 50/50, flow rate = 0.5 ml min -1, minor enantiomer: t R = 24.78 min; major enantiomer: t R = 21.51 min. N N (1S,3R,3aS,4aS,5R,7S,7aR,8aR)-Dimethyl 3,5-bis(4 -fluorophenyl)-1,7-dimethyl-4,8-3,5-bis(3 -fluorophenyl)-1,7-dimethyl-4,8- dioxododecahydropyrrolo[3,4-f]isoindole-1,7-dicarboxylate (4e) 1 NMR (500 Mz, CDCl 3 ): δ 7.20 7.11 (m, 2), 6.92 (d, J = 10.1 z, 2), 6.90 6.81 (m, 4), 4.61 (d, J = 7.9 z, 2), 3.75 (s, 6), 3.43 (dd, J = 9.3, 7.9 z, 2), 3.31 (d, J = 9.3 z, 2), 1.58 (s, 6); 13 C NMR (126 Mz, CDCl 3 ): δ 205.51, 203.13, 174.07, 162.82 (d, J = 245.7 z), 141.15 (d, J = 7.2 z), 129.75 (d, J = 8.7 z), 122.56 (d, J = 2.5 z), 114.25 (d, J = 20.9 z), 113.77 (d, J = 22.4 z), 69.56, 62.42, 62.23, 56.38, 52.84, 26.27; T-IR: v ~ = 74