A Class of Orthohomological Triangles

Σχετικά έγγραφα
α & β spatial orbitals in

Πανεπιστήµιο Κρήτης - Τµήµα Επιστήµης Υπολογιστών. ΗΥ-570: Στατιστική Επεξεργασία Σήµατος. ιδάσκων : Α. Μουχτάρης. εύτερη Σειρά Ασκήσεων.

One and two particle density matrices for single determinant HF wavefunctions. (1) = φ 2. )β(1) ( ) ) + β(1)β * β. (1)ρ RHF

Matrices and Determinants

Multi-dimensional Central Limit Theorem

Commutative Monoids in Intuitionistic Fuzzy Sets

k A = [k, k]( )[a 1, a 2 ] = [ka 1,ka 2 ] 4For the division of two intervals of confidence in R +

Multi-dimensional Central Limit Theorem

Ordinal Arithmetic: Addition, Multiplication, Exponentiation and Limit

C.S. 430 Assignment 6, Sample Solutions

LECTURE 4 : ARMA PROCESSES

Homework 8 Model Solution Section

Reminders: linear functions

Generalized Fibonacci-Like Polynomial and its. Determinantal Identities

Trigonometry 1.TRIGONOMETRIC RATIOS

CHAPTER 25 SOLVING EQUATIONS BY ITERATIVE METHODS

ST5224: Advanced Statistical Theory II

2 Composition. Invertible Mappings

Example Sheet 3 Solutions

Quadratic Expressions

Solutions for Mathematical Physics 1 (Dated: April 19, 2015)

ECE Spring Prof. David R. Jackson ECE Dept. Notes 2

Derivation of Optical-Bloch Equations

TMA4115 Matematikk 3

Finite Field Problems: Solutions

Inverse trigonometric functions & General Solution of Trigonometric Equations

Concrete Mathematics Exercises from 30 September 2016

Solution Series 9. i=1 x i and i=1 x i.

b. Use the parametrization from (a) to compute the area of S a as S a ds. Be sure to substitute for ds!

Variance of Trait in an Inbred Population. Variance of Trait in an Inbred Population

Neutralino contributions to Dark Matter, LHC and future Linear Collider searches

Fractional Colorings and Zykov Products of graphs

New bounds for spherical two-distance sets and equiangular lines

Exercises 10. Find a fundamental matrix of the given system of equations. Also find the fundamental matrix Φ(t) satisfying Φ(0) = I. 1.

Symplecticity of the Störmer-Verlet algorithm for coupling between the shallow water equations and horizontal vehicle motion

4.6 Autoregressive Moving Average Model ARMA(1,1)

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

ORDINAL ARITHMETIC JULIAN J. SCHLÖDER

EE512: Error Control Coding

1 Complete Set of Grassmann States

Math221: HW# 1 solutions

3.4 SUM AND DIFFERENCE FORMULAS. NOTE: cos(α+β) cos α + cos β cos(α-β) cos α -cos β

( y) Partial Differential Equations

Απόκριση σε Μοναδιαία Ωστική Δύναμη (Unit Impulse) Απόκριση σε Δυνάμεις Αυθαίρετα Μεταβαλλόμενες με το Χρόνο. Απόστολος Σ.

MATHEMATICS. 1. If A and B are square matrices of order 3 such that A = -1, B =3, then 3AB = 1) -9 2) -27 3) -81 4) 81

Mock Exam 7. 1 Hong Kong Educational Publishing Company. Section A 1. Reference: HKDSE Math M Q2 (a) (1 + kx) n 1M + 1A = (1) =

THE SECOND WEIGHTED MOMENT OF ζ. S. Bettin & J.B. Conrey

Every set of first-order formulas is equivalent to an independent set

Congruence Classes of Invertible Matrices of Order 3 over F 2

w o = R 1 p. (1) R = p =. = 1

Section 8.3 Trigonometric Equations

Lecture 15 - Root System Axiomatics

Other Test Constructions: Likelihood Ratio & Bayes Tests

Practice Exam 2. Conceptual Questions. 1. State a Basic identity and then verify it. (a) Identity: Solution: One identity is csc(θ) = 1

2. Let H 1 and H 2 be Hilbert spaces and let T : H 1 H 2 be a bounded linear operator. Prove that [T (H 1 )] = N (T ). (6p)

Areas and Lengths in Polar Coordinates

Statistical Inference I Locally most powerful tests

A Note on Intuitionistic Fuzzy. Equivalence Relation

Numerical Analysis FMN011

Solutions to Exercise Sheet 5

Chapter 6: Systems of Linear Differential. be continuous functions on the interval

2. THEORY OF EQUATIONS. PREVIOUS EAMCET Bits.

An Inventory of Continuous Distributions

Fourier Series. MATH 211, Calculus II. J. Robert Buchanan. Spring Department of Mathematics

The Simply Typed Lambda Calculus

( ) 2 and compare to M.

Some generalization of Cauchy s and Wilson s functional equations on abelian groups

Trigonometric Formula Sheet

Areas and Lengths in Polar Coordinates

Vidyamandir Classes. Solutions to Revision Test Series - 2/ ACEG / IITJEE (Mathematics) = 2 centre = r. a

Sequent Calculi for the Modal µ-calculus over S5. Luca Alberucci, University of Berne. Logic Colloquium Berne, July 4th 2008

Uniform Convergence of Fourier Series Michael Taylor

Η ΑΝΘΥΦΑΙΡΕΤΙΚΗ ΕΡΜΗΝΕΙΑ ΤΗΣ ΕΞΩΣΗΣ ΤΗΣ ΠΟΙΗΣΗΣ ΣΤΟ ΔΕΚΑΤΟ ΒΙΒΛΙΟ ΤΗΣ ΠΟΛΙΤΕΙΑΣ ΤΟΥ ΠΛΑΤΩΝΟΣ

CRASH COURSE IN PRECALCULUS

Math 446 Homework 3 Solutions. (1). (i): Reverse triangle inequality for metrics: Let (X, d) be a metric space and let x, y, z X.

Περισσότερα+για+τις+στροφές+

Generating Set of the Complete Semigroups of Binary Relations

F19MC2 Solutions 9 Complex Analysis

Constant Elasticity of Substitution in Applied General Equilibrium

Ο μαθητής που έχει μελετήσει το κεφάλαιο των διανυσμάτων θα πρέπει να είναι σε θέση:

Spherical Coordinates

Lecture 2. Soundness and completeness of propositional logic

Homomorphism of Intuitionistic Fuzzy Groups

Answer sheet: Third Midterm for Math 2339

Affine Weyl Groups. Gabriele Nebe. Summerschool GRK 1632, September Lehrstuhl D für Mathematik

Phys460.nb Solution for the t-dependent Schrodinger s equation How did we find the solution? (not required)

Distances in Sierpiński Triangle Graphs

8.324 Relativistic Quantum Field Theory II

Nowhere-zero flows Let be a digraph, Abelian group. A Γ-circulation in is a mapping : such that, where, and : tail in X, head in

F A S C I C U L I M A T H E M A T I C I

Tridiagonal matrices. Gérard MEURANT. October, 2008

Partial Differential Equations in Biology The boundary element method. March 26, 2013

SOLVING CUBICS AND QUARTICS BY RADICALS

Στα επόμενα θεωρούμε ότι όλα συμβαίνουν σε ένα χώρο πιθανότητας ( Ω,,P) Modes of convergence: Οι τρόποι σύγκλισης μιας ακολουθίας τ.μ.

HOMEWORK 4 = G. In order to plot the stress versus the stretch we define a normalized stretch:

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r(t) = 3cost, 4t, 3sint

SCITECH Volume 13, Issue 2 RESEARCH ORGANISATION Published online: March 29, 2018

Approximation of distance between locations on earth given by latitude and longitude

SPECIAL FUNCTIONS and POLYNOMIALS

12. Radon-Nikodym Theorem

Transcript:

A Class of Orthohomologcal Trangles Prof. Claudu Coandă Natonal College Carol I Craova Romana. Prof. Florentn Smarandache Unversty of New Mexco Gallup USA Prof. Ion Pătraşcu Natonal College Fraţ Buzeşt Craova Romana. Abstract. In ths artcle we propose to determne the trangles class A orthohomologcal wth a gven trangle A nscrbed în the trangle A ( A B AC C AB ). We ll remnd here the fact that f the trangle A nscrbed n A s orthohomologc wth t then the perpendculars n A B respectvely n C on CA respectvely AB are concurrent n a pont P (the orthologcal center of the gven trangles) and the lnes AA BB CC are concurrent n pont (the homologcal center of the gven trangles). To fnd the trangles A t wll be suffcent to solve the followng problem. Problem. Let s consder a pont P n the plane of the trangle A and A ts pedal trangle. Determne the locus of pont P such that the trangles A and A to be homologcal. Soluton. Let s consder the trangle A A(100) B(010) C (001) and the pont P ( α βγ ) α β γ. The perpendcular vectors on the sdes are: CA ( ) ( ) ( ) U a a b c a b c U a b c b a b c UAB a b c a b c c The coordnates of the vector are (0 11) and the lne has the equaton x. The equaton of the perpendcular rased from pont P on s: x y z α β γ a a b c a b c We note A ( xyz ) because A we have: x and y z = 1. The coordnates y and z of A can be found by solvng the system of equatons 1

We have: x y z α β γ a a b c a b c y z α γ α β y = z a a b c a a b c ( ) ( ) α ( a b c ) γa y y = 1 α ( a b c ) βa ( ) ( ) α ( a b c ) βa y α a b c γa = z α a b c βa α a b c βa α a b c γa y = 1 ( α β γ) a y = 1 α a b c βa ( ) t results α y = ( a b c ) β a z 1 y α 1 ( ) ( ) a b c α = = β = α γ a a a b c. Therefore α α A 0 ( a b c ) β ( a b c ) γ a a. Smlarly we fnd: β β ( ) 0 ( B a b c α a b c ) γ b b γ γ C ( a b c ) α ( a b c ) β 0 c c. We have:

α ( a b c ) γ AB a αccos B γ a = = AC α cos ( a b c ) β αb C βa a β ( a b c ) α b βacosc αb = =. BA α ccos A b ( a b c ) γ β γ a γ ( a b c CA ) β c γbcos A βc = = CB γ acos B c ( a b c γ α ) α c (We took nto consderaton the cosne s theorem: a = b c bccosa). In conformty wth Ceva s theorem we have: AB CA =1. AC BA CB aγ αccos B bα βacos C cβ γbcos A = ( )( )( ) = ( aβ αbcosc)( bγ βccos A)( cα γacos B) ( )( cos cos cos ) ( )( cos cos cos ) aα b γ c β A B C bβ c α a γ B A C ( )( ) cγ a β b α cosc cos Acos B. Dvdng t by abc we obtan that the equaton n barycentrc coordnates of the locus L of the pont P s: α γ β β α γ ( cos A cos BcosC) ( cos B cos AcosC) a c b b a c γ β α ( cosc cos Acos B). c b a We note da db d C the dstances orented from the pont P to the sdes CA respectvely AB and we have: α da β db γ d = = = C. a s b s c s The locus L equaton can be wrtten as follows: cos cos cos d d d A B C d d d cos B cos A cos C Remarks. ( )( ) ( )( ) A C B B A C dc db da cosc cos Acos B 0 ( )( ) = 3

1. It s obvous that the trangle s A orthocenter belongs to locus L. The orthc trangle and the trangle A are orthohomologc; a orthologcal center s the orthocenter H whch s the center of homology.. The center of the nscrbed crcle n the trangle A belongs to the locus L because da= db= dc = r and thus locus equaton s quckly verfed. Theorem (Smarandache-Pătraşcu). If a pont P belongs to locus L then also ts sogonal 4 P belongs to locus L. Proof. Let P( α βγ ) a pont that verfes the locus L. equaton and P ( α β γ ) ts sogonal αα ββ γγ n the trangle A. It s known that = =. We ll prove that P L.e. a b c α γ β ( cos A cos BcosC) a c b α γ b β c ( cos A cos BcosC) a b c α ( γ b β c )( cos A cos BcosC) ab c α γ ββ c c γγ β ( cos A cos BcosC) ab c γ β αβγ βc γb ( cos A cos BcosC) ab c γ β αβγ β c γ b ( cos A cos BcosC) ab c βγ α α βγ 1 β γ bc ( cos A cos BcosC). a αβγ b c b c We obtan that: αβγ α γ β ( cos A cos BcosC) αβγ a c b ths s true because P L. Remark. We saw that the trangle s A orthocenter H belongs to the locus from the precedent theorem t results that also O the center of the crcumscrbed crcle to the trangle A (sogonable to H ) belongs to the locus. Open problem: What does t represent from the geometry s pont of vew the equaton of locus L?

In the partcular case of an equlateral trangle we can formulate the followng: Proposton: The locus of the pont P from the plane of the equlateral trangle A wth the property that the pedal trangle of P and the trangle A are homologcal s the unon of the trangle s heghts. Proof: P α βγ a pont that belongs to locus L. The equaton of the locus becomes: Let ( ) ( ) ( ) ( ) α γ β β α γ γ β α Because: ( ) ( ) ( ) α γ β β α γ γ β α = αγ αβ βα βγ γβ γα = = αβγ αγ αβ βα βγ γβ γα αβγ = = αβ γ β αγ γ β α γ β βγ γ β = ( ) ( ) ( ) ( ) ( γ β) α ( β α ) γ ( β α ) ( β α)( α γ)( γ β) = =. We obtan that α = β or β = γ or γ = α that shows that P belongs to the medans (heghts) of the trangle A. References: [1] C. Coandă Geometre analtcă în coordanate barcentrce Edtura Reprograph Craova 005. [] Multspace & Multstructure. Neutrosophc Trandscplnarty (100 Collected Papers of Scences) vol. IV North European Scentfc Publshers Hanko Fnland 010. 5