T.E.I ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΠΙΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ



Σχετικά έγγραφα
Άσκηση 5 ΦΩΤΟΒΟΛΤΑΪΚΟ ΦΑΙΝΟΜΕΝΟ

ΑΣΚΗΣΗ 7 Μέτρηση ωμικής αντίστασης και χαρακτηριστικής καμπύλης διόδου

Αρχές φωτοβολταϊκών διατάξεων

Συλλογή μεταφορά και έλεγχος Δεδομένων ΕΛΕΓΧΟΣ ΦΩΤΙΣΜΟΥ

Εργαστηριακή Άσκηση 8 Εξάρτηση της αντίστασης αγωγού από τη θερμοκρασία.

Απορρόφηση φωτός: Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών

Φωτοδίοδος. 1.Σκοπός της άσκησης. 2.Θεωρητικό μέρος

Πειραματική διάταξη μελέτης, της. χαρακτηριστικής καμπύλης διπόλου

ΤΟΠΙΚΟΣ ΠΡΟΚΡΙΜΑΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΕΥΡΩΠΑΪΚΗΣ ΟΛΥΜΠΙΑΔΑΣ ΕΠΙΣΤΗΜΩΝ - EUSO Σάββατο 7 Δεκεμβρίου Εξέταση στη Φυσική

ΑΣΚΗΣΗ 15 Μελέτη φωτοδιόδου (φωτοανιχνευτή) και διόδου εκπομπής φωτός LED

Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών

Φύλλο εργασίας Το φωτοβολταϊκό στοιχείο

ΣΧΟΛΕΙΟ:. Μαθητές/τριες που συμμετέχουν:

Το υποσύστηµα "αίσθησης" απαιτήσεις και επιδόσεις φυσικά µεγέθη γενική δοµή και συγκρότηση

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

Πειραματικός σχεδιασμός της χαρακτηριστικής καμπύλης παθητικής διπολικής συσκευής ηλεκτρικού κυκλώματος. Σκοπός και κεντρική ιδέα της άσκησης

γ ρ α π τ ή ε ξ έ τ α σ η σ τ ο μ ά θ η μ α Φ Υ Σ Ι Κ Η Γ Ε Ν Ι Κ Η Σ Π Α Ι Δ Ε Ι Α Σ B Λ Υ Κ Ε Ι Ο Υ

ΕΝΔΕΙΚΤΙΚΕΣ ΑΣΚΗΣΕΙΣ ΦΥΣΙΚΗΣ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ Β ΛΥΚΕΙΟΥ

Ακτίνες Χ (Roentgen) Κ.-Α. Θ. Θωμά

ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ

Μετρήσεις Διατάξεων Laser Ανιχνευτές Σύμφωνης Ακτινοβολίας. Ιωάννης Καγκλής Φυσικός Ιατρικής Ακτινοφυσικός

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2017

ΑΣΚΗΣΗ 1 ΜΟΝΟΦΑΣΙΚΟΣ ΜΕΤΑΣΧΗΜΑΤΙΣΤΗΣ

ΗΛΕΚΤΡΙΚΑ ΚΥΚΛΩΜΑΤΑ Ι ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ ΚΑΙ ΑΝΤΙΣΤΑΣΗ

Δ1. Δ2. Δ3. Δ4. Λύση Δ1. Δ2. Δ3. Δ4.

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

Άσκηση 3 Η φωτο-εκπέµπουσα δίοδος (Light Emitting Diode)

Παράρτημα. Πραγματοποίηση μέτρησης τάσης, ρεύματος, ωμικής αντίστασης με χρήση του εργαστηριακού εξοπλισμού Άσκηση εξοικείωσης

ΦΩΤΟΒΟΛΤΑΪΚΑ. Γ. Λευθεριώτης Αναπλ. Καθηγητής Γ. Συρροκώστας Μεταδιδακτορικός Ερευνητής

ΣΗΜΕΙΩΣΕΙΣ ΦΥΣΙΚΗΣ Γ ΓΥΜΝΑΣΙΟΥ

ΤΕΙ - ΧΑΛΚΙ ΑΣ 4. ΕΙ ΙΚΕΣ ΙΟ ΟΙ. ίοδος zener. Χαρακτηριστική καµπύλη διόδου zener. Χαρακτηριστική καµπύλη διόδου Zener

ΝΟΜΟΣ ΤΟΥ OHM ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: ΕΠΩΝΥΜΟ: ΟΝΟΜΑ: ΑΜ: 1 ΣΚΟΠΟΣ 1 2 ΘΕΩΡΗΤΙΚΟ ΥΠΟΒΑΘΡΟ 1 3 ΕΞΟΠΛΙΣΜΟΣ 5 4 ΕΞΑΡΤΗΜΑΤΑ 5

ΘΕΩΡΗΤΙΚΟ ΜΕΡΟΣ. Εργαστήριο Φυσικής IΙ. Μελέτη της απόδοσης φωτοβολταϊκού στοιχείου με χρήση υπολογιστή. 1. Σκοπός. 2. Σύντομο θεωρητικό μέρος

Στις ερωτήσεις A1 - A4, να γράψετε τον αριθμό της ερώτησης και δίπλα σε κάθε αριθμό το γράμμα που αντιστοιχεί στη σωστή απάντηση.

ΠΕΙΡΑΜΑ 8 ΧΑΡΑΚΤΗΡΙΣΤΙΚΑ ΗΛΙΑΚΟΥ ΦΩΤΟΚΥΤΤΑΡΟΥ

Άσκηση 10 Στοιχεία ηλεκτρονικής τεχνολογίας

Β ΛΥΚΕΙΟΥ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ 1999

1 η ΕΡΓΑΣΤΗΡΙΑΚΗ ΑΣΚΗΣΗ: ΧΑΡΑΚΤΗΡΙΣΤΙΚΗ ΚΑΜΠΥΛΗ ΩΜΙΚΟΥ ΑΝΤΙΣΤΑΤΗ ΚΑΙ ΛΑΜΠΤΗΡΑ ΠΥΡΑΚΤΩΣΗΣ

ΕΡΓΑΣΤΗΡΙΟ ΦΥΣΙΚΗΣ ΧΗΜΕΙΑΣ ΤΜΗΜΑΤΟΣ ΒΙΟΛΟΓΙΑΣ Φασματοφωτομετρία

10η Ενότητα: Το υποσύστημα "αίσθησης"

ΘΕΜΑΤΑ ΔΙΑΓΩΝΙΣΜΟΥ ΦΥΣΙΚΗΣ B ΛΥΚΕΙΟΥ 5 Μαρτίου 2017

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

Επισημάνσεις από τη θεωρία

Δίοδος Εκπομπής Φωτός, (LED, Light Emitting Diode), αποκαλείται ένας ημιαγωγός ο οποίος εκπέμπει φωτεινή ακτινοβολία στενού φάσματος όταν του

ΚΥΚΛΩΜΑΤΑ AC-DC. ΚΕΦΑΛΑΙΟ 1ο ΒΑΣΙΚΑ ΚΥΚΛΩΜΑΤΑ ΚΑΙ ΕΞΑΡΤΗΜΑΤΑ - ΑΠΛΑ ΓΡΑΜΜΙΚΑ ΚΥΚΛΩΜΑΤΑ

ΠΑΝΕΛΛΗΝΙΟΣ ΜΑΘΗΤΙΚΟΣ ΔΙΑΓΩΝΙΣΜΟΣ ΠΕΙΡΑΜΑΤΙΚΗ ΔΟΚΙΜΑΣΙΑ ΣΤΗ ΦΥΣΙΚΗ. Σάββατο 28 ΙΑΝΟΥΑΡΙΟΥ 2017

και συνδέει τον αριθμό των σπειρών του πρωτεύοντος και του

ΑΠΟΤΥΠΩΣΗ ΜΕΛΕΤΗ ΗΛΕΚΤΡΙΚΩΝ ΠΕΔΙΩΝ

Καινοτόµο σύστηµα αξιοποίησης φυσικού φωτισµού µε αισθητήρες στο επίπεδο εργασίας

Θέµατα Εξετάσεων 94. δ. R

ΚΕΦΑΛΑΙΟ 1. Άσκηση: Όργανα παρακολούθησης περιβαλλοντικών συνθηκών (θερμοκρασία, υγρασία, φως)

λ [nm]

ΠΕΙΡΑΜΑΤΙΚΟ ΜΕΡΟΣ. Η πειραματική διάταξη που χρησιμοποιείται στην άσκηση φαίνεται στην φωτογραφία του σχήματος 1:

Μετρολογικές Διατάξεις Μέτρησης Θερμοκρασίας Μετρολογικός Ενισχυτής τάσεων θερμοζεύγους Κ και η δοκιμή (testing).

1.1. Σκοποί της Εφαρμογής Μαθησιακοί Στόχοι

Εργαστηριακή άσκηση L0: Ασφάλεια και προστασία από ακτινοβολία Laser. Σύγκριση έντασης ακτινοβολίας Laser με συμβατικές πηγές φωτός

ΚΕΦΑΛΑΙΟ 2: ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

11 η ΕΥΡΩΠΑΙΚΗ ΟΛΥΜΠΙΑ Α ΕΠΙΣΤΗΜΩΝ EUSO 2013

ηλεκτρικό ρεύμα ampere

Ραδιομετρία. Φωτομετρία

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

Το Μαγνητικό πεδίο σαν διάνυσμα Μέτρηση οριζόντιας συνιστώσας του μαγνητικού πεδίου της γης

ΜΕΤΡΗΣΗ ΤΗΣ ΣΤΑΘΕΡΑΣ ΤΟΥ PLANCK

Εργαστηριακή Άσκηση στη Φυσική Γενικής Παιδείας Β' Λυκείου Ο ΝΟΜΟΣ ΤΟΥ OHM ΓΙΑ ΑΝΤΙΣΤΑΤΗ

ΘΕΜΑΤΑ ΠΑΝΕΛΛΗΝΙΩΝ ΕΞΕΤΑΣΕΩΝ-ΗΛΕΚΤΡΟΛΟΓΙΑ Γ ΛΥΚΕΙΟΥ- ΗΜΙΑΓΩΓΟΙ, ΕΝΙΣΧΥΤΕΣ ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Περιεχόμενο της άσκησης

Εισαγωγή στις Ηλεκτρικές Μετρήσεις

είναι τα μήκη κύματος του φωτός αυτού στα δύο υλικά αντίστοιχα, τότε: γ. 1 Β) Να δικαιολογήσετε την επιλογή σας.

ΚΕΦΑΛΑΙΟ 2: Ηλεκτρικό Ρεύμα Μέρος 1 ο

Δίοδοι Ορισμός της διόδου - αρχή λειτουργίας Η δίοδος είναι μια διάταξη από ημιαγώγιμο υλικό το οποίο επιτρέπει την διέλευση ροής ρεύματος μόνο από

ΣΥΝΕΧΕΣ ΗΛΕΚΤΡΙΚΟ ΡΕΥΜΑ

ΑΣΚΗΣΗ 5. Ερωτήσεις προετοιμασίας (Να απαντηθούν στην εργαστηριακή αναφορά)

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΟΝΙΚΗΣ

Όργανα Μέτρησης Υλικά Πολύμετρο Πειραματική Διαδικασία

2. Ο νόμος του Ohm. Σύμφωνα με το νόμο του Ohm, η τάση V στα άκρα ενός αγωγού με αντίσταση R που τον διαρρέει ρεύμα I δίνεται από τη σχέση: I R R I

Φυσική ΘΕΜΑ 1 ΘΕΜΑ 2 ΘΕΜΑ 3

α. Η ένδειξη 220 V σημαίνει ότι, για να λειτουργήσει κανονικά ο λαμπτήρας, πρέπει η τάση στα άκρα του να είναι 220 V.

Για το δείκτη διάδοσης της ακτινοβολίας στο οπτικό μέσο Β, στο οποίο διαδίδεται με ταχύτητα ισχύει:

ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ Γ ΗΜΕΡΗΣΙΩΝ

2ο Γενικό Λύκειο Λευκάδας Άγγελος Σικελιανός 24 Μαΐου Λευκάδα 24 Μαΐου 2016 ΓΡΑΠΤΕΣ ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ ΠΕΡΙΟΔΟΥ ΜΑΪΟΥ - ΙΟΥΝΙΟΥ 2016 ΤΑΞΗ Β

LASER 4. ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΜΕΓΕΘΩΝ ΤΟΥ ΙΟ ΙΚΟΥ LASER ΑΙΣΘΗΤΙΚΗΣ ΚΑΙ ΦΥΣΙΚΟΘΕΡΑΠΕΙΑΣ GaAs (ΤΥΠΟΥ FE-LA 10)

ΠΑΡΑΓΟΝΤΕΣ ΑΠΟ ΤΟΥΣ ΟΠΟΙΟΥΣ ΕΞΑΡΤΑΤΑΙ Η ΑΝΤΙΣΤΑΣΗ ΕΝΟΣ ΑΝΤΙΣΤΑΤΗ ΜΕΤΡΗΣΗ ΕΙΔΙΚΗΣ ΑΝΤΙΣΤΑΣΗΣ

ΠΡΟΑΓΩΓΙΚΕΣ ΕΞΕΤΑΣΕΙΣ Β ΤΑΞΗΣ ΕΝΙΑΙΟΥ ΛΥΚΕΙΟΥ ΤΡΙΤΗ 3 ΙΟΥΝΙΟΥ 2003 ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ

Μονοφασικός μετασχηματιστής σε λειτουργία. χωρίς φορτίο

Επαναληπτικό ιαγώνισµα Β Ενιαίου Λυκείου ευτέρα 26 Γενάρη 2015 Στατικός Ηλεκτρισµός/Συνεχές Ρεύµα. Συνοπτικές Λύσεις. Θέµα Α.

Λαμπτήρας LED, με αισθητήρα φωτός ημέρας και νύκτας

ηλεκτρικό ρεύµα ampere

ΑΣΚΗΣΗ 1 η ΜΕΤΑΣΧΗΜΑΤΙΣΤΕΣ ΙΣΧΥΟΣ ΕΙΣΑΓΩΓΗ. Στόχοι της εργαστηριακής άσκησης είναι η εξοικείωση των σπουδαστών με την:

[1] ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ : ΦΥΣΙΚΗ ΓΕΝΙΚΗΣ ΠΑΙΔΕΙΑΣ ΤΑΞΗ : B ΛΥΚΕΙΟΥ ΔΙΑΓΩΝΙΣΜΑ ΠΕΡΙΟΔΟΥ : ΑΠΡΙΛΙΟΣ 2018

ΑΣΚΗΣΗ 8 η ΚΙΝΗΤΗΡΑΣ ΣΥΝΕΧΟΥΣ ΡΕΥΜΑΤΟΣ ΞΕΝΗΣ ΔΙΕΓΕΡΣΗΣ ΜΕΛΕΤΗ ΧΑΡΑΚΤΗΡΙΣΤΙΚΩΝ ΛΕΙΤΟΥΡΓΙΑΣ

Το αμπερόμετρο αποτελείται από ένα γαλβανόμετρο στο οποίο συνδέεται παράλληλα μια αντίσταση R

ΠΡΟΤΥΠΟ ΠΕΙΡΑΜΑΤΙΚΟ ΛΥΚΕΙΟ ΕΥΑΓΓΕΛΙΚΗΣ ΣΧΟΛΗΣ ΣΜΥΡΝΗΣ

Φυσική Οπτική (Ε) Ανοικτά Ακαδημαϊκά Μαθήματα. Ενότητα 8: Απορρόφηση του φωτός Προσδιορισμός του συντελεστή απορρόφησης διαφανών υλικών

Άσκηση 1. Όργανα εργαστηρίου, πηγές συνεχούς τάσης και μετρήσεις

Μετρήσεις σε ράβδους γραφίτη.

Επεξεργαςία πειραματικών δεδομζνων

ΣΚΟΠΟΣ ΤΟΥ ΠΕΙΡΑΜΑΤΟΣ: Μελέτη του φωτοηλεκτρικού φαινομένου, προσδιορισμός της σταθεράς του Planck, λειτουργία και χαρακτηριστικά φωτολυχνίας

ΕΡΓΑΣΤΗΡΙΟ ΗΛΕΚΤΡΙΚΩΝ ΚΥΚΛΩΜΑΤΩΝ & ΣΥΣΤΗΜΑΤΩΝ

ΝΟΜΟΣ ΤΟΥ ΟΗΜ. 1) Να μελετηθούν τα ηλεκτρικά κυκλώματα με αντίσταση, λαμπτήρα, αμπερόμετρο και βολτόμετρο.

Transcript:

T.E.I ΠΑΤΡΑΣ ΣΧΟΛΗ ΤΕΧΝΟΛΟΓΙΚΩΝ ΕΦΑΡΜΟΓΩΝ ΕΡΓΑΣΤΗΡΙΟ ΗΠΙΩΝ ΜΟΡΦΩΝ ΕΝΕΡΓΕΙΑΣ PV-CELL calibration to solar-radiation based on a lux-meter performance ΥΠΕΥΘΥΝΟΣ ΚΑΘΗΓΗΤΗΣ : Dr.ΚΑΠΛΑΝΗΣ ΣΩΚΡΑΤΗΣ ΜΕΪΔΑΝΗΣ ΕΥΑΓΓΕΛΟΣ ΣΑΜΨΩΝ ΠΑΝΑΓΙΩΤΗΣ ΦΡΑΓΚΟΣ ΠΑΝΑΓΙΩΤΗΣ

ΣΤΟΧΟΣ 1.Με αυτό το πείραμα αυτό θέλουμε να διερευνήσουμε τη σχέση μεταξύ της έντασης του ρεύματος που δίδει ένα ΡV-στοιχείο σε κατάσταση βραχυκύκλωσης i sc (shortcircuit) σε συνάρτηση με την φωτεινότητα (lumen/lux) (φωτεινής ροή) ή την ένταση της φωτεινής δέσμης ακτινοβολίας (W/m 2 ) που προσπίπτει σε αυτό. 2.Στόχος είναι, ακόμη, να βαθμονομηθεί ένα PV-στοιχείο με βάση την απόκριση ενός μετρητή φωτεινής ροής (luxmeter). Θα βαθμονομηθεί, τότε, το όργανο σε lux (μονάδα φωτεινότητας ) και κατά συνέπεια σε W/m 2, που με αυτή τη μονάδα μετράμε την ένταση της προσπίπτουσας ηλιακής ακτινοβολίας επί του PV-στοιχείου. Α.ΘΕΩΡΙΑ Α.1. Βασικά Θέματα 1.Ως γνωστόν διάφορα όργανα χρησιμοποιούνται για την μέτρηση των διαφόρων μεγεθών της ροής μιας φωτεινής δέσμης. π.χ. για την φωτεινή δέσμη ενός λαμπτήρα μετρούμενη σε lux, χρησιμοποιείται το φωτόμετρο ή λουξόμετρο (luxmeter) για τη μέτρηση της φωτεινότητας. Σχήμα 1.Φωτόμετρα Περισσότερα για το όργανο θα δούμε στη συνέχεια.

2. Φάσμα ηλιακού φωτός και ευαισθησία οφθαλμού στα μήκη κύματος Το σχήμα 2 δίνει την κατανομή της έντασης της ηλιακής ακτινοβολίας στα διάφορα μήκη κύματος π.χ. περιοχή ακτινών Χ, υπεριώδους, ορατού, υπέρυθρου, μικροκυμάτων, ραδιοκυμάτων. Σχήμα 2.Ηλιακό φάσμα.δείχνει τις διάφορες περιοχές του φάσματος. α. τις ακτίνες Χ β. 400 700 nm είναι η περιοχή μήκους κύματος του ορατού φάσματος γ. το υπεριώδες(ultra violet) δ. το υπέρυθρο(infra red) ε. τα μικροκύματα(radio waves) 3. Φάσμα λαμπτήρων στις διάφορες θερμοκρασίες Σε αντίθεση με τον ήλιο, οι λαμπτήρες εκπέμπουν μόνον υπεριώδη ακτινοβολία(uvb ), ενώ δεν εκπέμπουν UVA και υπέρυθρη ακτινοβολία. H UVB ακτινοβολία είναι υπεριώδης ακτινοβολία μεσαίου μ.κ.: 320-360 nm. Η UVA ακτινοβολία είναι υπεριώδης ακτινοβολία μ.κ.: 360-400nm.

Σχήμα 3. Tο σχήμα 3, δείχνει το φάσμα της έντασης της ακτινοβολούμενης ενέργειας από λαμπτήρες πυρακτώσεως για δύο διαφορετικές θερμοκρασίες σε σύγκριση με το φάσμα του ήλιου. 4. Χαρακτηριστικές περιοχές μηκών κύματος (λ) στο φάσμα των διαφόρων ακτινοβολιών Σχήμα 4.Το σχήμα παρουσιάζει τις διάφορες περιοχές μ.κ. με τις σχετικές τους ονομασίες Α.2. Φωτόμετρο(luxmeter). Τα βασικά του στοιχεία Το φωτόμετρο(luxmeter) είναι το βασικό όργανο για τη μέτρηση της φωτεινότητας. Χαρακτηριστικός τύπος είναι το όργανο lux-lite που θα χρησιμοποιηθεί στις μετρήσεις. Φωτεινότητα καλείται ο λόγος της φωτεινής ροής που δέχεται μία επιφάνεια προς το εμβαδόν της επιφάνειας αυτής,όπως ορίζεται από τη διεθνή επιτροπή για τον φωτισμό (International Illumination Council CIE).Mονάδα μέτρησης της φωτεινότητας είναι το Lux. Για τη μέτρηση της φωτεινότητας θα χρησιμοποιήσουμε το όργανο που είναι ευρέως γνωστό ως luxmeter. Το luxmeter έχει ευαισθησία στο φάσμα του φωτός,όπως ακριβώς το ανθρώπινο μάτι. Αυτή η ευαισθησία στο φάσμα του φωτός μιας πηγής δίδεται γενικά ως συνάρτηση της μορφής V(λ), ή μερικές φορές αναφέρεται ως καμπύλη σταθερής παρατήρησης. Η μέτρηση της έντασης χρησιμοποιείται σε εφαρμογές όπου ο κύριος παράγων είναι η επιφάνεια που δέχεται το φως και ζητούμε την ένταση της φωτεινής ροής (W/m 2 ) που λαμβάνουμε από όλα τα μήκη κύματος (ορατά και μη ορατά). Στις περισσότερες εφαρμογές, κλιματολογικές ή μετεωρολογικές, ο αισθητήρας (luxmeter), χρησιμοποιείται για μετρήσεις σχετικά με το ηλιακό φως. Το όργανο αυτό της μέτρησης της φωτεινότητας για τις περιπτώσεις αυτές τοποθετείται σε σταθερά μέρη και η αισθητήρια επιφάνεια του είναι εστραμμένη προς τα άνω ή υπό κλίση προς την υπό μελέτη επιφάνεια.

Το ίδιο πείραμα μπορεί να πραγματοποιηθεί και με ένα πυρανόμετρο το οποίο μετρά την ένταση της ηλιακής ακτινοβολίας,βλ. ΗΜΕ ΙΙ σελ293. Σχήμα 5.Το σχήμα δείχνει ένα Πυρανόμετρο. Βλέπουμε το κεντρικό μέρος (ή την κεντρική περιοχή του αισθητήρα) και την ημισφαιρική γυάλινη επιφάνεια που περιβάλλει την αισθητήρια επιφάνεια. Α.2.1.Αισθητήρας του Luxmeter (Lux-lite) Περιγραφή-Ιδιότητες Το lux-lite μετράει τα φωτόνια τα οποία δέχεται ο αισθητήρας από ένα ολόκληρο ημισφαίριο, ήτοι πεδίο θέασης 180 μοιρών ή αλλιώς view factor 2π. Η έξοδος του luxmeter είναι τάση DC και βαθμονομούμε το μέγεθος αυτό σε lux. To lux-lite είναι σχεδιασμένο για συνεχή εξωτερική χρήση. Η βαθμονόμησή του είναι έγκυρη για το ηλιακό φως, ενώ για το τεχνητό φως είναι λιγότερο ακριβής. Όσο το φάσμα του λαμπτήρα προσεγγίζει το φάσμα του ηλιακού φωτός, δηλαδή όσο αυξάνει η θερμοκρασία του,τότε οι ενδείξεις του είναι πιο ακριβείς. Το lux-lite αποτελείται από μία φωτοδίοδο, ένα φίλτρο, ένα διαχύτη, ένα προστατευτικό κάλυμμα και την καλωδίωση.

Σχήμα 6. Φωτόμετρο ή λουξόμετρο τύπου Lux-lite - H φωτοδίοδος είναι ένας ηλεκτρονικός φωτοελεγκτής. Αποτελείται από ημιαγώγιμο υλικό τύπου p και n σε επαφή (junction), που έχει σχεδιασθεί έτσι ώστε να ανταποκρίνονται σε οπτικά ερεθίσματα. Το σχήμα 7α δίδει την χαρακτηριστική της διόδου σε ορθή και ανάστροφη πόλωση(στο σκότος). Το σχήμα 7β δίδει την χαρακτηριστική της διόδου ενός PV-στοιχείου όταν πέφτει επ αυτής φωτεινή δέσμη. Το όργανο φέρει μία οπή ώστε να διέρχεται φως στην ευαίσθητη περιοχή της συσκευής. Σχήμα 7.(a) i-v χαρακτηριστική διόδου.το I D είναι το ρεύμα ανάστροφης πόλωσης το οποίο είναι της τάξεως των μα. (b) i-v χαρακτηριστική(φωτοδιόδου) επαφής p-n υπό την επίδραση φωτεινής δέσμης Το σχήμα 8 δίδει τομή και κάτοψη με τα γεωμετρικά χαρακτηριστικά του Luxmeter.

Σχήμα 8.Γεωμετρία του φωτομέτρου lux-lite σε mm Το φωτόμετρο (luxmeter) περιλαμβάνει μία αντίσταση (R sh ) η οποία συνδέεται εν παραλλήλω με τη φωτοδίοδο. Αυτό γίνεται για να λάβουμε την τάση εξόδου,η οποία είναι ανάλογη της φωτεινότητας, Ι L. (V oc =a*lni L ) (1) Η φωτοδίοδος (p-n) και η αντίσταση R sh είναι καθοριστικά μεγέθη για τα περισσότερα ηλεκτρικά χαρακτηριστικά του οργάνου. Η φωτοδίοδος, το φίλτρο και ο διαχύτης είναι καθοριστικά μεγέθη για την ευαισθησία σε περιοχή ή σε περιοχές του φάσματος. Τέλος, ο διαχύτης εξασφαλίζει για το luxmeter ένα πεδίο θέασης 180 μοιρών. Το lux-lite έχει μία οπή από την οποία επιτρέπεται στο φως να διέρχεται προς την συσκευή μέσα από το διαχύτη.

Α.2.2.Ηλεκτρικά χαρακτηριστικά Mετά από όσα εκτέθηκαν προηγουμένως,το ηλεκτρικό κύκλωμα του φωτομέτρου (luxmeter) τύπου lux-lite είναι αυτό που δείχνεται στο σχήμα 9. Σχήμα 9. Ηλεκτρικό κύκλωμα φωτομέτρου.το κάλυμμα γειώνεται για προστασία.(κλωβός Farraday) Ο Πίνακας 1 παρουσιάζει τα ηλεκτρικά και μηχανικά χαρακτηριστικά του φωτομέτρου. Πίνακας 1 Α. Ηλεκτρικά χαρακτηριστικά του lux-lite Εσωτερική αντίσταση, R 560 Ω Χρόνος απόκρισης <0.1s Ευαισθησία 10mV/100klx Eύρος μετρήσεων 0-200klx Απόκλιση από γραμμικότητα <1% στα100klx Eυαισθησία φωτοδιόδου ανάλογα με τη θερμοκρασία <0.2%/ ο C ( 0.15%/ o C) B. Μηχανικά χαρακτηριστικά του lux-lite Υλικό κελύφους Αλουμίνιο Βάρος 110g Μήκος καλωδίου 3m Υλικό καλωδίου Πολυουρεθάνιο Θερμοκρασία λειτουργίας -30 ο C -+70 ο C Yγρασία λειτουργίας 0-100% RH Για να λαμβάνουμε αξιόπιστες μετρήσεις, μετατρέποντας την τάση εξόδου (mv) σε lux, προϋπόθεση είναι να έχει η σύνθετη αντίσταση του οργάνου μέτρησης τιμή τουλάχιστον 56kΩ. Tότε, το σφάλμα μέτρησης είναι μικρότερο του 1%.

Περισσότερα για το θέμα αυτό, περί ακριβείας στις μετρήσεις των οργάνων βλ. Β μέρος του Bιβλίου Εργαστηριακές Ασκήσεις Φυσικής. Σ.Καπλάνης, Ν.Νανούσης Το καλώδιο μπορεί να επεκταθεί χωρίς προβλήματα έως 100m, εφόσον η αντίσταση του καλωδίου είναι μικρότερη από το 0.1% της σύνθετης αντίστασης του οργάνου μέτρησης. Η ηλεκτρική ευαισθησία της φωτοδιόδου αλλάζει ανάλογα με τη θερμοκρασία. Μία μέση τιμή είναι 0.15% ανά βαθμό Κελσίου.Δηλαδή,αυξανομένης της θερμοκρασίας ελατώνεται η ευαισθησία του. Η βαθμονόμηση του luxmeter έχει γίνει στους 20 ο C. Εν κατακλείδι, όταν μια φωτεινή δέσμη πέσει επί του αισθητήρα του luxmeter,τότε στα άκρα αυτού αναπτύσσεται μια διαφορά δυναμικού,v ή ορθότερα επειδή εξαρτάται και από το μήκος κύματος,v=f(v(λ)). Προσοχή : Η ευαισθησία του luxmeter είναι 0.0907μV/lux,δηλαδή, 10 5 *0.0907 μv=9.07 mv ή στα 10 5 lux αναπτύσσεται διαφορά δυναμικού 9.07mV. Το σχήμα 10, δίδει τη σχετική ευαισθησία του λουξομέτρου lux-lite στα διάφορα φάσματα, όπως το ηλιακό φάσμα,το φάσμα ενός λαμπτήρα θερμοκρασίας 2856 ο Κ σε σύγκριση με την καμπύλη CIE. Σχήμα 10.Σχετική ευαισθησία του lux-lite και της καμπύλης CIE V(λ) σε σύγκριση με το ηλιακό φάσμα φωτός σε καθαρό ουρανό (1.5 ΑΜ) και το φάσμα φωτός ενός λαμπτήρα στους 2856 ο Κ Το ορατό του ηλιακού φάσματος είναι μεταξύ 400 700nm.

Σημείωση : Είναι γεγονός ότι η φωτεινή ροή,δηλαδή ο αριθμός των φωτονίων που φθάνει σε μία επιφάνεια,ακολουθεί το νόμο I*1/r 2 (2) όπου Ι είναι η ένταση της φωτεινότητας μετρώμενη π.χ. σε W/m 2 ή η φωτεινή ροή σε Lux, που συνεπάγεται ότι και η απόκριση του λουξομέτρου πρέπει να ακολουθεί αυτό το νόμο. Αυτό είναι και ένα από τα βήματα της πειραματικής μελέτης, ώστε να επιβεβαιωθεί ότι η απόκριση του Luxmeter ακολουθεί το νόμο αυτό. Α.2.3. Τα όργανα για την μέτρηση της ακτινοβολίας είναι ακριβά λόγω της ευαισθησίας, αξιοπιστίας και ακριβείας που πρέπει να έχουν. Για τούτο θα εξετάσουμε στην περίπτωση της βαθμονόμησης ενός απλού PVστοιχείου (PV-cell ) που να μπορεί να μετρά την ένταση της ηλιακής ακτινοβολίας (W/m 2 ) με σχετική ακρίβεια.

Α.3.Φωτοβολταϊκό στοιχείο (PV- cell) Σχήμα 11. PV-στοιχείο (PV-cell) τετραγωνικής και κυκλικής διατομής. Η επιφάνεια τους είναι συνήθως 100cm 2. Τα εμπορικά PV-στοιχεία είναι κυρίως από πυρίτιο (Si)και δίδουν ένταση ρεύματος βραχυκύκλωσης i sc =3 3.3A στα 100cm 2 υπό συνθήκες S.T.C.(Standard Test Condition) (βλ.ημε ΙΙΙ σελ.177 2.1.2) Το φωτοβολταϊκά στοιχεία συνδεόμενα μεταξύ τους σε σειρά ή παράλληλα ή μεικτά και σχηματίζουν το φωτοβολταϊκό πλαίσιο, βλ. σχήμα 12. Το PV-στοιχείο από πυρίτιο (Si) έχει την ακόλουθει κατασκευαστική δομή. Σχήμα 13.Στρώσεις υλικών που σχηματίζουνε ένα PV-στοιχείο. Περισσότερα στο διαδίκτυο solar-net.teipat.gr

Όταν η ηλιακή ακτινοβολία πέσει σε ένα PV-στοιχείο, τότε εάν οι ακροδέκτες στα άκρα p και n βραχυκυκλωθούν διαρρέεται από ένα ρεύμα i ή i sc (short circuit) το οποίο μετρείται με ένα μιλιαμπερόμετρο (βλ. σχήμα 14). Το ίδιο συμβαίνει όταν συνδεθούν οι ακροδέκτες p και n με αντίσταση (φορτίο) R L, οπότε και η διαφορά δυναμικού(τάση) στα άκρα της R L και το i μεταβάλλονται, βλ. σχήμα 14. Σχήμα 14.Χαρακτηριστική καμπύλη i V ενός PV-στοιχείουl για διάφορες τιμές έντασης της ηλιακής ακτινοβολίας Ι. Οι μαύρες κουκίδες επιδεικνύουν το σημείο λειτουργίας του PV-στοιχείου όταν αυτό συνδέεται με αντίσταση που λαμβάνει διάφορες τιμές.παρατηρούμε ότι για αντίσταση R L =0.4Ω τότε και η ένταση είναι 10 3 W/m 2 (1 sun) το σημείο λειτουργίας συμπίπτει σχεδόν με το Μ.Ρ.Ρ.(βλ. ΗΜΕ ΙΙΙ σελ.140 1.18) Είναι προφανές ότι εάν η αντίσταση R L γίνει μηδέν τότε μετράμε το ρεύμα βραχυκύκλωσης (i sc ).

Σχήμα 15.α)Απλοποιημένο σχηματικό κύκλωμα ενός PV-στοιχείου β)το ισοδύναμο κύκλωμα με μία δίοδο Ωστόσο, μέσα σε ένα PV-στοιχείο το ρεύμα που δημιουργείται και καλείται φωτόρευμα (κίνηση e - και οπών ) δεν είναι δυνατό να το μετρήσουμε καθώς μέσα στο σύστημα των ημιαγωγών του PV-στοιχείου το ρεύμα μειώνεται λόγω κυρίως του ρεύματος διάχυσης και επανασύνδεσης e - και οπών, σχήμα 16. Σχήμα 16.Τομή φωτοβολταϊκού στοιχείου όπου φαίνεται η κίνηση των e - μεταξύ των στρωμάτων p και n,καθώς και η δημιουργία οπών Το φωτόρευμα (i ph ) αποδεικνύεται ότι είναι ευθέως ανάλογο της έντασης της ηλιακής ακτινοβολίας που πέφτει στο PV-στοιχείο καθώς και στην ημιαγώγιμη επιφάνεια. Αυτό αποδεικνύεται με την Άσκηση 1 στο βιβλίο : H.M.E. III σελ 54. Γενικά,ένα PV-στοιχείο ισοδυναμεί με μια δίοδο σε συνδυασμό με δύο αντιστάσεις r s (εν σειρά) και R sh (εν παραλλήλω).

Σχήμα 17.Ισοδύναμο κύκλωμα PV-στοιχείο Σύμφωνα με το σχήμα αυτό, το ρεύμα το οποίο μετρούμε εξωτερικά στην R L και το οποίο διαρρέει την εσωτερική αντίσταση r s δίδεται από την ακόλουθη σχέση με πολύ καλή προσέγγιση (3). Όταν το i ph είναι της τάξεως των (ma) τότε ο εκθέτης της (3) είναι αμελητέος, ενώ όταν το i ph είναι της τάξεως των (Α),τότε ο εκθέτης είναι σημαντικό μέγεθος και επηρεάζει τη γραμμικότητα της καμπύλης, όπως φαίνεται στη συνέχεια στο σχήμα 17. i i ph I [ e s ( V ir )/ mv s T V irs 1] R sh (3) όπου : m>1 συντελεστής ιδεατότητας που δείχνει κατά πόσο το στοιχείο αποκλίνει από την ιδανική δίοδο όπου m=1 I s : αντίστροφο ρεύμα κορεσμού (σχήμα 6α) V T : k*t/q=0,0259 Volt σε θερμοκρασία Τ=300 ο Κ V: τάση στα άκρα του φορτίου Η εσωτερική αντίσταση r s,του PV-στοιχείου,είναι πολύ μικρή, περίπου 2mΩ (για επιφάνεια στοιχείου 10cm 2 ). Όταν το ρεύμα βραχυκύκλωσης (i sc ) αυξάνει,σημαίνει ότι το PV-στοιχείο φωτίζεται εντονότερα.τότε, ο παράγοντας της παρένθεσης στη σχέση (3) αυξάνεται.συνεπώς, η καμπύλη εμφανίζει υπογραμμικότητα (βλέπε σχήμα 18). Η καμπύλη (1) δίνει την εκτίμηση του φωτορεύματος i ph και λαμβάνεται από την εφαπτομένη της καμπύλης 2 στην αρχή των αξόνων,σχήμα 18.

Σχήμα 18.Όταν το Ι L έχει μικρή τιμή τότε i sc i ph ή η εφαπτομένη στην καμπύλη i sc (Ι L ) για μικρές τιμές του Ι L,όταν δηλαδή το Ι L 0,δίνει την ευθεία i ph συναρτήσει της Ι L. Συμπέρασμα: Όσο η ένταση της φωτεινής ροής Ι L επί του PV-στοιχείου αυξάνει(το i ph αυξάνει γραμμικά με την Ι L ),τόσο αυξάνεται και το ρεύμα βραχυκύκλωσης ( i sc ). Θα προσπαθήσουμε να συσχετίσουμε αυτά τα δύο με βάση την απόκριση του luxmeter.

Β.Όργανα που χρησιμοποιούνται για τη διεξαγωγή του πειράματος. Σχήμα 19.Ένας προβολέας τύπου Kaiser που δίνει 1 kw/m 2 σε απόσταση 70 cm Σχήμα 20. Ένα PV-στοιχείο της εταιρίας Solartech,διαστάσεων ¼ inch από c-si, βλ. site: www.solartech.cz

Σχήμα 21.Ένα λουξόμετρο LUX-LITE της εταιρίας Kipp and Zonen Σχήμα 22.Ένα πολύμετρο τύπου MASTECH MA 5830

Γ.ΠΕΙΡΑΜΑΤΙΚΗ ΜΕΘΟΔΟΛΟΓΙΑ Γενική Περιγραφή Για να επιτύχουμε τους στόχους που αναφέρονται στην αρχή, η μεθοδολογία που θα ακολουθήσουμε είναι η εξής : Για συγκεκριμένες αποστάσεις φωτεινής πηγής αισθητηρίου του οργάνου μέτρησης, φωτίζουμε το φωτοβολταικό στοιχείο και παίρνουμε μετρήσεις : α) το ρεύμα βραχυκύκλωσης (i sc ) του φωτοβολταικού στοιχείου β) το ρεύμα βραχυκύκλωσης (i bg ) που δημιουργείται από τον τεχνητό φωτισμό του χώρου(υπόστρωμα), όπου γίνεται το πείραμα, καθώς και γ) την ένταση της φωτεινότητας (I L ) που προσπίπτει σε αυτό, μετρούμενη μέσω του luxmeter, το οποίο τοποθετείται στις ίδιες όπως και το PV-στοιχείο θέσεις.. Η όλη διάταξη και συνδεσμολογία φαίνεται στο σχήμα 23. Σχήμα 23.Πειραματική διάταξη :φωτεινή πηγή, luxmeter (μέτρηση Ι L ), voltmeter. Την θέση του luxmeter παίρνει το PV-στοιχείο για τη μέτρηση των i sc και i bg. Συγκεκριμένα 1.Η ένταση της φωτεινότητας,σε κάθε θέση, μετρείται μέσω του λουξομέτρου του οποίου τους ακροδέκτες έχουμε συνδέσει σε ένα πολύμετρο με κλίμακα της τάξεως των mv.το πολύμετρο έχει εσωτερική αντίσταση >50kΩ. 2.Μέσω της τάσεως που μας δίνει το βολτόμετρο και γνωρίζοντας την σχέση μεταξύ mv και Lux,βλ. Α2.2, υπολογίζουμε την ένταση της φωτεινότητας σε Lux. 3.Τοποθετούμε το PV-στοιχείο στις ίδιες θέσεις,όπως ακριβώς για το luxmeter προηγουμένως.

4.Για να μετρήσουμε το i sc του PV-στοιχείου, βραχυκυκλώνουμε την επαφή p με την επαφή n του PV-στοιχείου μέσω ενός αμπερομέτρου (mα). Σε κάθε θέση μετά το i sc μετρούμε και το i bg. Για τούτο σε κάθε θέση ανάβουμε κατ αρχήν τον προβολέα και μετρούμε το i sc. Αμέσως, σβήνουμε τον προβολέα και ότι δείχνει το αμπερόμετρο είναι το i bg. Αυτή η διαδικασία γίνεται σε κάθε θέση : πηγής φωτός PV-στοιχείο. Σημείωση : Λόγω της αύξησης της θερμοκρασίας που προκαλείται στο PV-στοιχείο όταν φωτίζεται καθώς και στο luxmeter, η διαδικασία του πειράματος πρέπει να γίνεται ταχύτατα και συγκεκριμένα να ανάβει ο προβολέας όταν όλα είναι τοποθετημένα σωστά και έχει μετρηθεί η απόσταση πηγής φωτός - αισθητηρίου. Δ. ΜΕΤΡΗΣΕΙΣ : 1. Μέτρηση της Φωτεινότητας, Ι L (Lx) Τοποθετούμε το luxmeter σε μια υποδοχή ενός βραχίονα,κατά τρόπο τέτοιο ώστε το αισθητήριο του να βρίσκεται στο ίδιο ύψος με τον λαμπτήρα του προβολέα. Ιδιαίτερη προσοχή πρέπει να δοθεί ώστε το αισθητήριο του luxmeter να δέχεται πάντα κάθετα στην επιφάνειά του τη δέσμη φωτός που εκπέμπει ο προβολέας. Για συγκεκριμένες αποστάσεις του προβολέα από το luxmeter παίρνουμε τις ακόλουθες μετρήσεις, όπως δίδει ο Πίνακας 2. Πίνακας 2 x (cm) V (mv) V bg (mv) ΔV(mV) I L (klx) 180 0.3 0 0.3 3.31 160 0.4 0 0.4 4.41 140 0.5 0 0.5 5.51 120 0.7 0.1 0.6 6.62 100 0.9 0.1 0.8 8.82 80 1.4 0.1 1.3 14.33 70 1.8 0 1.8 19.84 60 2.4 0 2.4 26.46 40 5.4 0 5.4 59.54 20 20.6 0.1 20.5 226.02 10 63.0 0 63.0 694.60 όπου, x : η απόσταση της φωτεινής πηγής από το αισθητήριο του lux-meter V : η τάση στην έξοδο του lux-meter υπό το φως της φωτεινής πηγής V bg : η τάση στην έξοδο του lux-meter χωρίς την επίδραση του προβολέα λόγω του εσωτερικού φωτισμού στο χώρο του πειράματος ΔV : η διαφορά V-V bg I L : η ένταση της Φωτεινότητας σε klx

Σημείωση Οι τιμές του I L υπολογίζονται με βάση τον συντελεστή μετατροπής που είναι 9.07mV/100kLx,όπως είδαμε στην Α2.2. Οι τιμές αυτές δίδονται και στα διαγράμματα των σχημάτων 24,25.

V=f(x) 70 60 63 50 ΔV(V-Vbg)(mV) 40 30 20 20,5 10 5,4 2,4 1,8 1,3 0,8 0,6 0,5 0,4 0,3 0 0 20 40 60 80 100 120 140 160 180 200 X(cm) Σχήμα 24.Τάση εξόδου του luxmeter συναρτήσει της απόσταση μεταξύ luxmeter φωτεινής πηγής

ΙL=f(x) 800 700 694,6 600 500 IL(kLx) 400 300 200 226,02 100 59,54 26,46 19,84 14,33 8,82 6,62 5,51 4,41 3,31 0 0 20 40 60 80 100 120 140 160 180 200 Σχήμα 25.Ένταση της φωτεινότητας της δέσμης που δέχεται το luxmeter συναρτήσει της απόστασης luxmeter φωτεινής πηγής Να σημειωθεί ότι οι μετρήσεις τόσο της τάσης όσο και της έντασης (σχήματα 24,25) έχουν ληφθεί για τις ίδιες αποστάσεις. Ο συντελεστής μετατροπής από V σε Ι L (klx) είναι :9,07mV/100kLx. x(cm)

2. Μετρήσεις του i sc που δίδει το υπό βαθμονόμηση PV-στοιχείο. Τοποθετούμε το PV-στοιχείο σε μια υποδοχή ενός βραχίονα με τρόπο τέτοιο, ώστε να βρίσκεται στο ίδιο ύψος με το λαμπτήρα της φωτεινής πηγής και να δέχεται κάθετα τη δέσμη φωτός. Για αποστάσεις της φωτεινής πηγής από το PV-στοιχείο, ίδιες με αυτές του προηγουμένου πειράματος, καταγράφουμε τις ενδείξεις του αμπερομέτρου, (ma), δηλαδή τις τιμές του i sc. Για να μετρήσουμε το i bg, δηλαδή το ρεύμα του φωτεινού υποστρώματος στο χώρο, σβήνουμε το λαμπτήρα της φωτεινής πηγής αμέσως μετά τη λήψη της ένδειξης i sc και καταγράφουμε τη νέα ένδειξη του αμπερομέτρου που είναι η i bg. Τελικά, παίρνουμε τον ακόλουθο Πίνακα τιμών. Πίνακας 3 x i sc i bg (ma) Δi(i sc - i bg ) lnδi(i sc - i bg ) ln I lum (cm) (ma) (mα) 180 24.6 1.9 22.7 2 3.12 8.11 160 31.8 2.2 29.6 2 3.39 8.39 140 40.7 2.2 38.5 3.65 8.62 120 53.9 2.2 51.7 3.95 8.80 100 76.8 2.2 74.6 4.31 9.08 80 114.5 2.2 112.3 4.72 9.57 70 140 2.2 137.8 4.93 9.90 60 160 2.2 157.8 5.06 10.18 40 179 1.1 177.9 5.18 10.99 20 199 1.1 197.9 5.29 12.33 10 220 1.1 218.9 4 5.39 13.45 Σημείωση Για ενδείξεις του i sc που είναι μικρές ενδείκνυται να χρησιμοποιηθεί ένα μίκροαμπερόμετρο ή ένα ακριβές όργανο (ma) με κατάλληλη κλίμακα. όπου: x :η απόσταση της φωτεινής πηγής από την επιφάνεια του PV-στοιχείου. i sc : το ρεύμα βραχυκύκλωσης του PV-στοιχείου υπό την επίδραση της φωτεινής πηγής και του περιβάλλοντος. i bg : το ρεύμα βραχυκύκλωσης που οφείλεται μόνο στο φως του περιβάλλοντος (συνήθως διάχυτο) στο χώρο όπου γίνεται το πείραμα. Δi=(i sc - i bg ): η διαφορά μεταξύ i sc και i bg,αντιπροσωπεύει το ρεύμα που δίδει το PVστοιχείο στην έξοδό του ( i = i ph - i D ) υπό την επίδραση μόνον της φωτεινής δέσμης. Το σχήμα 27 δείχνει πως μεταβάλλεται το Δi(=i sc - i bg ) συναρτήσει της φωτεινότητας Ι L. Για να μελετήσουμε καλύτερα την περιοχή όπου τα πειραματικά σημεία είναι πολύ κοντά μεταξύ τους, βλ. σχήμα 27, και επειδή στην περιοχή αυτή η συνάρτηση Δi=f(I L ),

δηλαδή η απόκριση του PV-cell μέχρι τα 80kLux είναι αναλογική ταχέως μεταβαλλόμενη, η βαθμονόμηση μπορεί να γίνει με ευκολία, εάν αλλάξουμε την κλίμακα στον άξονα των x ( I L ). Παίρνουμε τότε το διάγραμμα του σχήματος 28α. Τα σημεία για I L >80 klx, που υπάρχουν στο σχήμα 28α, είναι, πλέον, εκτός διαγράμματος. Η βαθμονόμηση αυτή του PV-στοιχείου γίνεται για να μπορέσουμε να εκτιμήσουμε, όσο το δυνατόν με περισσότερη ακρίβεια, την ένταση της φωτεινότητας που προσπίπτει σε αυτό μέσω της μέτρησης του i sc. Στο σχήμα 28β απεικονίζει την καμπύλη βαθμονόμησης του PV-στοιχείου, όπου για συγκεκριμένη τιμή του Δi=80mA I L =9,4kLx. Το σχήμα 28β δημιουργείται μέσω του σχήματος 28α. Στο σχήμα 28β παρατηρούμε 3 ευθύγραμμα τμήματα, το ένα μετά το άλλο με διαφορετική κλίση που δημιουργήθηκαν από την ομαδοποίηση των πειραματικών σημείων σε τρεις ομάδες. Σε κάθε ομάδα σημείων του η καμπύλη Δi=f(I L ) ακολουθεί γραμμική σχέση. Επομένως εάν θέλουμε να χειριστούμε ως όργανο την I L θα μπορεί αυτό να έχει τρεις κλίμακες μέτρησης του i.(η κάθε κλίμακα θα αλλάζει όταν αλλάζει η εσωτερική αντίσταση του οργάνου μέτρησης και από την άλλη θα έχει βαθμονομηθεί σε klx) Γνωρίζοντας την τιμή του ρεύματος βραχυκύκλωσης του PV-στοιχείου μπορούμε να εκτιμήσουμε την τιμή της έντασης της φωτεινότητας που προσπίπτει σε αυτό. Στο σχήμα 29 δείχνεται η γραμμική αναλογία του φωτορεύματος (i ph ) συναρτήσει της έντασης της φωτεινότητας Ι L (καμπύλη 1),ενώ η (2) δείχνει την πειραματική μη γραμμική συνάρτηση του Δi συναρτήσει της Ι L. Αν φέρουμε τις παράλληλες στον άξονα των y, αυτές τέμνουν την ευθεία (1) και την καμπύλη (2) σε αντίστοιχα σημεία,p και P.Παίρνουμε τα μήκη (ΡΡ ) που αντιπροσωπεύουν το ln(i ph - Δi) και δημιουργούμε το διάγραμμα του σχήματος 30.

Δi=f(x) 250 218,9 200 197,9 177,9 Δi(isc-ibg)(mA) 150 100 157,8 137,8 112,3 74,6 50 51,7 38,5 29,6 22,7 0 0 20 40 60 80 100 120 140 160 180 200 X(cm) Σχήμα 26.Το διάγραμμα δίδει το παραγόμενο ρεύμα από το PV-στοιχείο συναρτήσει της απόστασης μεταξύ PV-στοιχείου φωτεινής πηγής.

Δi=f(IL) 250 694,60 200 226,02 Δi(isc-ibg) (ma) 150 100 26,46 19,84 14,33 59,54 8,82 50 6,62 5,51 4,41 3,31 0 0 100 200 300 400 500 600 700 800 IL(kLx) Σχήμα 27.Το διάγραμμα δίδει το παραγόμενο ρεύμα από το PV-στοιχείο συναρτήσει της έντασης της φωτεινότητας που προσπίπτει σε αυτό.

Σχήμα 28a.Το διάγραμμα δίδει το παραγόμενο ρεύμα i από το pv-στοιχείο συναρτήσει της ένταση της φωτεινής ροής που προσπίπτει σε αυτό.

Δi=f(IL) 180 160 140 120 Δi(Isc-ibg)(mA) 100 80 60 40 20 0 0 5 10 15 20 25 30 35 IL(kLx) Σχήμα 28β.Παραγόμενο ρεύμα ενός pv-cell σε συνάρτηση με την ένταση της φωτεινότητας που προσπίπτει σε αυτό

Δi=f(IL) 450 (1) 400 P 350 300 Δi(isc-ibg)(mA) 250 200 150 P' 135 100 118,9 50 25 48,4 35,8 57 74,6 96,9 (2) 0 0 5 10 15 20 25 30 IL(kLx) Σχήμα 29.Το διάγραμμα δίδει το Δi συναρτήσει της έντασης,ι L, της προσπίπτουσας φωτεινότητας στο PV-στοιχείο

ln(iph-δi)=f(il) 6 5 4 ln(iph-δi) 3 2 1 0 0 5 10 15 20 25 30 IL(kLx) Σχήμα 30.Το διάγραμμα δίδει το ln(i ph -Δi) συναρτήσει της φωτεινότητας Ι L που προσπίπτει στο PV-στοιχείο