Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Σχετικά έγγραφα
Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Structural Expression of Exo-Anomeric Effect

Supporting Information

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Accessory Publication

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Electronic Supplementary Information for

Supporting Information

Supporting Information for

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Electronic Supplementary Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Synthesis, characterization and luminescence studies of

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Chemical Communications. Electronic Supporting Information

Electronic Supplementary Information

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information. Experimental section

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic Supplementary Information (ESI) for

Supplementary Information for

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Electronic Supplementary Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

The Free Internet Journal for Organic Chemistry

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supplementary Figures

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting information

Supporting Information

Electronic Supplementary Information (ESI)

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Supporting Information

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Supporting Information

Disulfide-based metal free sulfanylation of ketones

Supporting Information

Supporting Information for

Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Electronic Supplementary Information (ESI)

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information for

Electronic Supplementary Information

Transcript:

Supporting Information Copyright Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2008

Organocatalytic Asymmetric Hydrophosphination of α,β- Unsaturated Aldehydes: Development, Mechanism and DFT Calculations Ismail Ibrahem, Peter Hammar, Jan Vesely, Ramon Rios, Lars Eriksson and Armando Córdova * Department of Organic Chemistry The Arrhenius Laboratory Stockholm University, SE-196 91 Stockholm (Sweden) Supporting Information General: Chemicals and solvents were either purchased puriss p.a. from commercial suppliers or purified by standard techniques. Catalysts 10, 11 and 12 were synthesized according to literature procedures. [1] For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution of phosphomolybdic acid (25 g), Ce(SO 4 ) 2. H2 O (10 g), conc. H 2 SO 4 (60 ml), and H 2 O (940 ml) followed by heating or by treatment with a solution of p-anisaldehyde (23 ml), conc. H 2 SO 4 (35 ml), acetic acid (10 ml), and ethanol (900 ml) followed by heating. Flash chromatography was performed using silica gel Merck 60 (particle size 0.040-0.063 mm), 1 H NMR, 13 C NMR and 31 P NMR spectra were recorded on Varian AS 400. Chemical shifts are given in δ relative to tetramethylsilane (TMS) and to external standard 85% H 3 PO 4 ( 31 P NMR), the coupling constants J are given in Hz. The spectra were recorded in CDCl 3 as solvent at room temperature, TMS served as internal standard (δ = 0 ppm) for 1 H NMR, and CDCl 3 was used as internal standard (δ = 77.0 ppm) for 13 C NMR. HPLC was carried out using a Waters 2690 Millennium with photodiode array detector. Optical rotations were recorded on a Perkin Elemer 241 Polarimeter (λ = 589 nm, 1 dm cell). High-resolution mass spectra were recorded on a Bruker MicrOTOF spectrometer. Computational study: In order to rationalize the enantioselectivity, we have performed DFTcalculations on the chiral iminium complexes as well as the phosphine addition transition states. All calculations were performed using the B3LYP functional [2] implemented in Gaussian 03. [3] [1] a) M. Marigo, T. C. Wabnitz, D. Fielenbach, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 794. b) M. Marigo, D. Fielenbach, A. Braunton, A. Kjaersgaard, K. A. Jørgensen, Angew. Chem. Int. Ed. 2005, 44, 3703. c) J. Franzén, M. Marigo, D. Fielenbach, T. C. Wabnitz, A. Kjaersgaard, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 18296. d) Y. Hayashi, H. Gotoh, T. Hayashi, M. Shoji, Angew. Chem. Int. Ed. 2005, 44, 4212. e) M. Marigo, J. Franzén, T. B. Poulsen, W. Zhuang, K. A. Jørgensen, J. Am. Chem. Soc. 2005, 127, 6964. g) H. Sundén, I. Ibrahem, A. Córdova, Tetrahedron Lett. 2006, 47, 99. h) I. Ibrahem, A. Córdova, Chem. Commun. 2006, 1760. [2] a) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785. b) A. D. Becke, Phys. Rev. A 1988, 38, 3098. c) A. D. Becke, J. Chem. Phys. 1992, 96, 2155. d) A. D. Becke, J. Chem. Phys. 1992, 97, 9173. e) A. D. Becke, J. Chem. Phys. 1993, 98, 5648. [3] Gaussian 03, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. 1

Geometries were optimized with 6-31G(d,p) basis set, and energies calculated with the more accurate basis set 6-311+G(2d,2p) and corrected for zero point vibrational energies from frequency calculations, also confirming the nature of the stationary points. The effect of solvation was treated as a single point correction to the final energy obtained from polarizable continuum model, CPCM, [4] calculation with the smaller basis set on the optimized structures, specifying CHCl 3 as solvent. Typical experimental procedure for the the optimized organocatalytic AHP reactions: To a stirred solution of catalyst (20 mol%) and 2-fluorobenzoic acid (10 mol%) in CHCl 3 (1.0 ml) at 4 C, was added 0.25 mmol (1.0 equiv) of α,β-unsaturated aldehyde 1. The reaction was then flushed with Ar, and 0.3 mmol (1.2 equiv) of diphenylphosphine was added. The reaction was stirred at 4 C for the time reported in Table 2. Next, the product was oxidized or reduced in situ. Thus,1.5 equiv of I 2 in 2%H 2 O in pyridine (1.2 ml) was added. The crude mixture was purified by column chromatography to afford the pure phoshineoxide aldehydes 5. In order to determine the ee, the crude was reduced in situ by NaBH 4 in MeOH, and the crude was purifed by column chromatography to afford the corresponding phosphine alcohol derivatives 4. 4a: Colorless oil. IR (KBr): 3226, 3080, 3029, 2970, 1593, 1495, 1454, 1437, 1178, 1048, 752, 697 cm -1 31 P (162 MHz, CDCl 3 ): 24.5 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.00-7.93 (m, 2H), 7.56-7.48 (m, 3H), 7.36-7.29 (m, 3H), 7.22-7.18 (m, 2H), 7.17-7.12 (m, 5H), 4.10-3.99 (m, 1H), 3.62-3.56 (m, 1H), 3.39-3.31 (m, 1H), 2.34-2.26 (m, 1H), 2.16-2.06 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 135.3, 133.4, 133.3, 132.9, 132.8, 131.7, 131.6, 131.0, 130.9, 130.3, 130.2, 129.2, 129.1, 128.3, 128.2, 127.5, 127.4, 125.8, 60.1 (d, J C-P =12.9Hz), 39.2 (d, J C-P =31.8Hz), 33.0 (d, J C-P =3.7Hz). [α] D = -13.2 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 24 BOP) requires m/z 357.1550, found 357.1565. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i-proh = 95:5, λ =250 nm), 1.0 ml/min; t R = major enantiomer 29.77 min, minor enantiomer 25.3 min. 5a: Colorless solid. IR (KBr): 3080, 3029, 2970, 1966, 1723, 1593, 1495, 1454, 1437, 1178, 1048, 752, 697 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.5 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.60 (t, J=1.47Hz, 1H), 7.92-7.87 (m, 2H), 7.55-7.13 (m, 13H), 4.23-4.16 (m, 1H), 3.38-3.28 (m, 1H), 3.01-2.92 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 199.1 (d, J C-P =13.7Hz), 135.4, 135.3, 132.4, 132.3, 131.8, 131.7, 131.5, 131.4, 131.3, 131.2, 129.9, 129.8, 129.2, 129.1, 128.6, 128.5, 127.6, 127.5, 125.9, 44.0, 40.2 (d, J C- P=68.3Hz). [α] D = -44.2 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 20 O 2 P) requires m/z 335.1195, found 335.1189. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004. [4] a) V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995. b) M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669. 2

4b: Colorless oil. IR (KBr): 3397, 2928, 2392, 1722, 1597, 1519, 1346, 1261, 694 cm - 1 ; 31 P NMR (162 MHz, CDCl 3 ): 25.2 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.05-7.95 (m, 4H), 7.60-7.47 (m, 3H), 7.35-7.05 (m, 7H), 4.24 (ddd, J=2.8Hz, 12Hz, 15.2Hz, 1H), 3.66-3.60 (m, 1H), 2.80 (td, J= 3.2Hz, 10Hz, 1H), 2.36-2.26 (m, 1H), 2.23-2.10 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 147.0, 141.5, 133.0, 132.9, 132.5, 132.4, 131.8, 131.8, 131.4, 131.3, 130.9, 130.8, 129.2, 129.1, 128.6, 128.5, 128.1, 127.5, 127.2, 126.7, 123.1, 123.1, 59.4 (d, J C-P =11.4Hz), 39.9 (d, J C-P =31.1Hz) 32.6 (d, J C-P =3.0Hz). [α] D = -25.7 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 23 NPO 3 ) requires m/z 402.1401, found 402.1407. The enantiomeric excess was determined by HPLC with an ODH column. (n-hexane: i-proh = 90:10, λ =250 nm), 1.0 ml/min; t R = major enantiomer 14.9 min, minor enantiomer 20.9 min. 5b: white solid. IR (KBr): 3079, 2970, 2618, 1966, 1723, 1601, 1491, 1485, 1260, 1048, 751 cm -1. 31 P (162 MHz, CDCl 3 ): 34.7 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.60 (m, 1H), 8.02 (d, J=8.75Hz, 2H), 7.72-7.61 (m, 2H), 7.46-7.43 (m, 3H), 7.32-7.28 (m, 3H), 7.19-7.15 (m, 4H), 4.30-4.21 (m, 1H), 3.17-3.10 (m, 1H), 2.87-2.80 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 199.3 (d, J C-P =12.2Hz), 148.7, 148.6, 134.9, 134.8, 134.1, 134.0, 133.9, 133.5, 133.4, 130.3, 130.0, 129.8, 129.6, 129.3, 129.2, 128.6, 128.5, 47.2 (d, J C-P =19.7Hz), 38.8 (d, J C-P =15.0Hz). [α] D = -176.5 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 19 NO 4 P) requires m/z 380.1046, found 380.1039. 4c: Colorless oil. IR (KBr): 3217 (bs), 2928, 2616, 1965, 1732, 1682, 1591, 1488, 1411, 1216, 1150, 842 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.8 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 7.98-7.92 (m, 2H), 7.57-7.50 (m, 3H), 7.37-7.30 (m, 3H), 7.24-7.20 (m, 2H), 7.13 (d, J=8.4Hz, 2H), 7.06 (d, J=8.4Hz, 2H), 4.08-3.99 (m, 1H), 3.64-3.58 (m, 1H), 3.36-3.29 (m, 1H), 2.29-2.20 (m, 1H), 2.14-2.06 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 134.1, 134.0, 133.4, 133.3, 133.0, 132.8, 132.0, 131.8, 131.6, 131.5, 131.3, 131.2, 129.3, 129.2, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 127.9, 59.9 (d, J C-P =12.2Hz), 38.5 (d, J C-P =32.7Hz), 32.3 (d, J C-P =4.6Hz). [α] D = -56.9 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 23 BClOP) requires m/z 391.1160, found 391.1174. The enantiomeric excess was determined by HPLC with an ODH column. (n-hexane: i-proh = 93:7, λ =250 nm), 1.0 ml/min; t R = major enantiomer 13.3 min, minor enantiomer 18.0 min. 3

5c: Colorless solid. IR (KBr): 3061, 3029, 2020, 2970, 1965, 1847, 1723, 1601, 1592, 1436, 1259, 1118, 1047 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.9 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.59 (m, 1H), 7.93-7.88 (m, 2H), 7.58-7.35 (m, 8H), 7.24 (d, J=8.4Hz, 2H), 7.14 (d, J=8.4Hz, 2H), 4.21-4.15 (m, 1H), 3.36-3.26 (m, 1H), 3.03-2.93 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 198.7 (d, J C-P =13.6Hz), 134.2, 134.1, 133.5, 133.4, 132.6, 132.5, 132.1, 132.0, 131.5, 131.4, 131.3, 131.2, 131.1, 131.0, 129.3, 129.2, 128.9, 128.8, 128.6, 128.5, 44.2, 39.8 (d, J C-P =68.3Hz). [α] D = -56.8 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 19 ClO 2 P) requires m/z 369.0806, found 369.0812. 4d: Colorless oil. IR (KBr): 3302, 30080, 2958, 2932, 2382, 1725, 1663, 1628, 1488, 1437, 1063, 738, 693 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.8 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.00-7.92 (m, 2H), 7.56-7.52 (m, 3H), 7.37-7.33 (m, 3H), 7.28 (d, J=8.4Hz, 2H), 7.24-7.22 (m, 2H), 7.01 (d, J=8.4Hz, 2H), 4.07-3.98 (m, 1H), 3.64-3.57 (m, 1H), 3.36-3.28 (m, 1H), 2.30-2.19 (m, 1H), 2.15-2.06 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 134.5, 134.4, 133.4, 133.3, 132.9, 132.8, 132.0, 131.9, 131.8, 131.7, 131.5, 131.4, 131.3, 131.2, 129.3, 129.2, 128.6, 128.5, 121.6, 121.5, 59.9 (d, J C-P =12.1Hz), 38.6 (d, J C-P =32.7Hz), 32.9 (d, J C-P =4.6Hz). [α] D = - 44.8 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 23 BBr 79 OP) requires m/z 435.0655, found 435.0676. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i-proh = 92:8, λ =250 nm), 1.0 ml/min; t R = major enantiomer 16.7 min, minor enantiomer 18.3 min. 5d: Colorless solid. IR (KBr): 3063, 3028, 2967, 1966, 1843, 1726, 1602, 1587, 1422, 1259, 1115, 1047, 738 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.5 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.58 (m, 1H), 7.92-7.86 (m, 2H), 7.60-7.36 (m, 8H), 7.29 (d, J=8.4Hz, 2H), 7.17 (d, J=8.4Hz, 2H), 4.20-4.14 (m, 1H), 3.36-3.26 (m, 1H), 3.03-2.93 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 198.6 (d, J C-P =13.6 Hz), 135.0, 134.7, 133.0, 132.8, 132.5, 132.4, 132.1, 131.6, 131.5, 131.4, 131.3, 131.2, 131.1, 131.0, 130.9, 129.3, 129.2, 128.6, 128.5, 44.1, 39.5 (d, J C-P =67Hz). [α] D = -67.0 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 19 Br 81 O 2 P) requires m/z 415.0283, found 415.0264. 4e: Colorless oil. IR (KBr): 3365, 3060, 2935, 2880, 2390, 1600, 1486, 1436, 1217, 1062, 738, 600 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.6 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.14-8.12 (m, 1H), 8.04-7.98 (m, 2H), 7.84-7.80 (m, 2H), 7.78-7.74 (m, 4

1H), 7.64-7.60 (m, 2H), 7.54-7.24 (m, 7H), 7.18-7.14 (m, 2H), 4.82 (bs, 1H), 4.25-4.16 (m, 1H), 3.65-3.60 (m, 1H), 3.40-3.33 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 133.6, 133.2, 133.1, 133.0, 132.7, 132.6, 131.5, 131.4, 130.8, 130.2, 129.3, 129.2, 129.0, 128.9, 128.5, 128.4, 128.3, 128.2, 128.1, 128.0, 127.9, 127.8, 127,7, 127.6, 126.2, 126.0, 59.9 (d, J C-P =12.2Hz), 39.1 (d, J C-P =31.9Hz), 32.8 (d, J C- P=3.8Hz). [α] D = -15.2 (c = 0.5, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 25 H 26 BOP) requires m/z 407.1707, found 407.1712. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i-proh = 95:5, λ =250 nm), 1.0 ml/min; t R = major enantiomer 41.6 min, minor enantiomer 70.2 min. 5e: Yellow solid. IR (KBr): 2919, 2851, 1437, 1788, 1721, 1626, 1599, 1437, 1354, 913, 744 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.1 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.61 (m, 1H), 8.00-7.14 (m, 17H), 4.40-4.34 (m, 1H), 3.50-3.40 (m, 1H), 3.12-2.02 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 198.8 (d, J C-P =13.5), 132.5, 132.2, 132.1, 131.6, 131.6, 131.4, 131.3, 131.2, 131.1, 131.0, 129.1, 129.0, 128.9, 128.8, 128.7, 128.2, 128.1, 128.1, 127.9, 127.6, 127.6, 127.2, 127.5, 126.1, 126.0, 44.1, 40.1 (d, J C- P=68.0Hz). [α] D = -45.7 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 25 H 21 O 2 P) requires m/z 385.1352, found 385.1357. 4f: Colorless oil: IR (KBr): 3056, 2920, 2857, 1718, 1663, 1589, 1437, 1357, 1278, 1161, 1118, 913, 747 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 23.7 (m). [α] D = -11.0 (c = 1.0). 1 H NMR (400 MHz, CDCl 3 ): δ = 7.79-7.73 (m, 3H), 7.48-7.28 (m, 12H), 4.44 (q, J=7.6Hz, 11.6Hz, 2H), 3.59-3.47 (m, 2H), 3.44-3.33 (m, 2H), 2.86-2.76 (m, 1H), 1.96-1.56 (m, 6H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 138.3, 132.8, 132.8, 131.3, 129.4, 128.9, 128.8, 128.6, 127.9, 127.8, 73.1, 70.3, 60.8 (d, J C- P=10.0Hz), 32.8 (d, J C-P =3.0Hz), 29.2 (d, J C-P =34.9Hz), 28.4 (d, J C-P =9.2Hz), 27.0 (d, J C-P =3.0Hz). HRMS (ESI): calcd. for [M+Na] + (C 25 H 32 BNO 2 P) requires m/z 429.2125, found 429.2134. The enantiomeric excess was determined by HPLC with an ODH column. (n-hexane: i-proh = 97:3, λ =210nm), 1.0 ml/min t R = major enantiomer 60.3 min, minor enantiomer 66.3 min. 5f: Colorless oil: IR (KBr): 3391, 2925, 2860, 2380, 1719, 1437, 1279, 1105, 1064, 739 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 36.7 (s). [α] D = -33.1 (c = 1.0). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.67 (s, 1H), 7.84-7.75 (m, 3H), 7.52-7.43 (m, 6H), 7.33-7.23 (m, 6H), 4.41 (d, J=11.2Hz, 1H), 4.39 (d, J=11.2Hz, 1H), 3.42-3.33 (m, 2H), 3.21-3.12 (m, 1H), 2.83 (dt, J=3.6Hz, 16.4Hz, 1H), 2.68 (dt, J=4.0Hz, 17.2Hz, 1H), 1.87-1.46 5

(m, 4H); 13 C NMR (100 MHz, CDCl 3 ): 199.5 (d, J C-P =9.9Hz), 138.7, 132.1, 132.0, 131.3, 131.2, 131.1, 129.1, 129.0, 128.9, 128.8, 128.7, 128.5, 127.7, 73.0, 69.8, 42.4, 30.8 (d, J C-P =72.0Hz), 27.9 (d, J C-P =11.3Hz), 25.6. HRMS (ESI): calcd. for [M+H] + (C 25 H 27 NO 3 P) requires m/z 407.1771, found 407.1790. 4g: Colorless oil. IR (KBr): 3307 (bs), 2924, 2381, 1752, 1714, 1698, 1606, 1457, 1276, 1194, 913, 744 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.7 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 7.92-7.84 (m, 2H), 7.82-7.72 (m, 4H), 7.60-7.56 (m, 1H), 7.50-7.30 (m, 8H), 4.22-4.18 (m, 2H), 3.64-3.56 (m, 2H), 2.86-2.78 (m, 1H), 2.00-1.50 (m, 6H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 166.5, 132.9, 132.7 (d, J C-P =4.3Hz), 132.5 (d, J C-P =3.9Hz), 131.3, 131.2 (J C-P =2.3Hz), 129.5, 128.9 (d, J C-P =17.6Hz), 128.7, 128.5 (d, J C-P =23.3Hz), 64.2, 60.4, 32.5 (d, J C-P =3.3Hz), 28.9 (d, J C-P =35.1Hz), 27.6 (d, J C-P =8.7Hz), 26.2 (d, J C-P =3.1Hz). [α] D = -11.4 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 25 H 30 BO 3 P) requires m/z 443.1918, found 443.1922. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i-proh = 92:8, λ =250 nm), 1.0 ml/min; t R = major enantiomer 16.7 min, minor enantiomer 18.3 min. 5g: Colorless oil. IR (KBr): 3057, 2920, 1717, 1438, 1275, 1117, 713 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 37.7 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.71 (m, 1H), 7.94-7.80 (m, 5H), 7.60-7.30 (m, 10H), 4.23-4.15 (m, 2H), 3.22-3.18 (m, 1H), 2.94-2.60 (m, 2H), 1.90-1.80 (m, 2H), 1.70-1.60 (m, 2H); 13 C NMR (100 MHz, CDCl 3 ): 199.1 (d, J C-P =10.6 Hz), 166.4, 132.8, 132.0, 131.9, 131.0, 130.9, 129.5, 128.9, 128.9, 128.8, 128.7, 128.3, 64.0, 42.3, 30.4 (d, J C-P =72.1Hz), 26.8 (d, J C-P =10.7Hz), 25.1(d, J C-P =1.5Hz). [α] D = -34.2 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 25 H 25 O 4 P) requires m/z 421.1563, found 421.1575. 4h: Colorless oil. IR (KBr): 3397, 2928, 2392, 1722, 1597, 1519, 1346, 1261, 694 cm - 1 ; 31 P NMR (162 MHz, CDCl 3 ): 25.2 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.00-7.95 (m, 1H), 7.68-7.65 (m, 2H), 7.46-7.41 (m, 5H), 7.35-7.30 (m, 1H), 7.13-7.08 (m, 5H), 3.90-3.82 (m, 1H), 3.61-3.55 (m, 1H), 3.41-3.36 (m, 1H), 2.12-2.10 (m, 2H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 148.4, 143.3, 135.4, 135.3, 134.1, 134.0, 133.6, 132.9, 132.5, 132.4, 131.8, 131.4, 130.0, 129.8, 129.1, 129.0, 128.4, 128.3, 127.5, 124.2, 123.1, 121.1, 60.6 (d, J C-P =11.4Hz), 41.5 (d, J C-P =31.1Hz) 35.7 (d, J C- P=3.0Hz). [α] D = -48.4 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 23 NPO 3 ) requires m/z 402.1401, found 402.1407. The enantiomeric 6

excess was determined by HPLC with an AD column. (n-hexane: i-proh = 90:10, λ =250 nm), 1.0 ml/min; t R = major enantiomer 26.0 min, minor enantiomer 39.4 min. 5h: white solid. IR (KBr): 3079, 2970, 2618, 1966, 1723, 1601, 1491, 1485, 1260, 1048, 751 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.7 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.60 (m, 1H), 8.0-7.94 (m, 2H), 7.64-7.15 (m, 12H), 4.27-4.22 (m, 1H), 3.20-3.10 (m, 1H), 2.90-2.80 (m, 1H). ; 13 C NMR (100 MHz, CDCl 3 ): 199.4 (d, J C-P =12.2Hz), 148.4, 143.0, 135.4, 134.1, 134.0, 133.5, 133.4, 133.5, 133.4, 130.2, 130.0, 129.4, 129.2, 129.1, 128.5, 128.4, 47.2 (d, J C-P =19.7Hz), 38.4 (d, J C-P =15.0Hz). [α] D = - 138.0 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 19 NO 4 P) requires m/z 380.1046, found 380.1039. 4i: White solid. IR (KBr): 3226, 3080, 3029, 2970, 1607, 1512, 1455, 1437, 1178, 1032, 740, 696 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.5 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.00-7.93 (m, 2H), 7.56-7.48 (m, 3H), 7.36-7.29 (m, 3H), 7.22-7.18 (m, 2H), 7.1 (d, J=8.96 Hz, 2H), 6.70 (d, J=8.70 Hz, 2H), 4.01-3.93 (m, 1H), 3.75 (s, 3H), 3.62-3.58 (m, 1H), 3.40-3.34 (m, 1H), 2.30-2.21 (m, 1H), 2.20-2.04 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 158.0 (d, J C-P =2.5 Hz), 133.4, 133.3, 132.9 (d, J C-P =8.4 Hz), 131.6 (d, J C-P =34.0 Hz), 131.3 (d, J C-P =29.0 Hz), 131.0 (d, J C-P =10.0 Hz), 129.2, 129.1 (d, J C-P =10.0 Hz), 128.5, 128.3 (d, J C-P =12.2 Hz), 113.7 (d, J C-P =2.0 Hz), 60.0 (d, J C-P =12.4 Hz), 55.4 (d, J C-P =8.2 Hz), 38.4 (d, J C-P =33.4 Hz), 33.1 (d, J C-P =4.9 Hz), [α] D = -93.4 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 22 H 26 BNaO 2 P) requires m/z 387.1656, found 387.1650. The enantiomeric excess was determined by HPLC with an ODH column. (n-hexane: i-proh = 93:7, λ =250 nm), 1.0 ml/min; t R = major enantiomer 30.0 min, minor enantiomer 27.6 min. 5i: Colorless solid. IR (KBr): 3080, 3029, 2970, 1966, 1723, 1593, 1495, 1454, 1437, 1178, 1048, 752, 697 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.5 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.60 (t, J=1.47Hz, 1H), 7.92-7.87 (m, 2H), 7.60-7.18 (m, 10H), 6.71 (d, J=8.76Hz, 1H), 4.18-4.12 (m, 1H), 3.71 (s, 3H), 3.34-3.24 (m, 1H), 3.01-2.92 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 199.3 (d, J C-P =13.7Hz), 159.0 (d, J C-P =2.3Hz), 132.4, 132.3, 132.2, 131.8, 131.7, 131.5, 131.4, 131.3, 131.2, 131.0, 130.9, 129.2, 129.1, 129.0, 128.4, 128.3, 127.2, 127.1, 114.1, 55.4, 44.2, 39.6, 39.0. [α] D = -35.6 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 22 H 21 NaO 3 P) requires m/z 387.1121, found 387.1133. 7

4j: Colorless oil. IR (KBr): 3217 (bs), 2928, 2616, 1965, 1732, 1682, 1591, 1488, 1411, 1216, 1150, 842 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 24.8 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 7.98-7.92 (m, 2H), 7.82-7.77 (m, 1H), 7.57-7.50 (m, 3H), 7.37-7.30 (m, 4H), 7.18 7.06 (m, 4H), 4.06-3.98 (m, 1H), 3.65-3.60 (m, 1H), 3.39-3.32 (m, 1H), 2.30-2.22 (m, 1H), 2.16-2.08 (m, 1H), 1.7-0.9 (bs, 3H); 13 C NMR (100 MHz, CDCl 3 ): 133.3 (d, J C-P =8.3Hz), 132.8 (d, J C-P =8.5Hz), 131.8 (d, J C-P =2.1Hz), 131.3 (d, J C-P =2.2Hz), 130.4 (d, J C-P =2.0Hz), 130.0, 129.5 (d, J C-P =1.6Hz), 129.2 (d, J C- P=9.8Hz), 128.5 (d, J C-P =9.9Hz), 127.8, 126.8, 60.0 (d, J C-P =12.5Hz), 33.5 (d, J C- P=4.5Hz), 33.1 (d, J C-P =31.2Hz). [α] D = -76.0 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 21 H 23 BClOP) requires m/z 391.1160, found 391.1159. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i- PrOH = 98:2, λ =250 nm), 1.0 ml/min; t R = major enantiomer 89.0 min, minor enantiomer 64.3 min. 5j: Colorless solid. IR (KBr): 3061, 3029, 2020, 2970, 1965, 1847, 1723, 1601, 1592, 1436, 1259, 1118, 1047 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 34.9 (s). 1 H NMR (400 MHz, CDCl 3 ): δ = 9.55 (m, 1H), 7.92-7.85 (m, 2H), 7.59-7.51 (m, 2H), 7.45-7.14 (m, 10H), 4.10-4.04 (m, 1H), 3.36-3.26 (m, 1H), 2.74-2.66 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 198.5 (d, J C-P =13.5Hz), 142.5 (d, J C-P =8.7Hz), 134.5, 134.3, 133.4, 133.2, 132.6, 132.5, 132.1, 132.0, 131.5, 131.4, 131.3, 131.2, 131.1, 131.0, 129.3, 129.2, 128.6, 128.5, 44.1, 39.4 (d, J C-P =67.4Hz). [α] D = -77.4 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+H] + (C 21 H 18 ClNaO 2 P) requires m/z 391.0625, found 391.0626. 4ab: Colorless oil. IR (KBr): 3390, 2924, 2852, 1730, 1495, 1454, 1391, 1229, 1050, 751, 700 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 30.5 (m). 1 H NMR (400 MHz, CDCl 3 ): δ = 7.35-7.24 (m, 5H), 4.11-3.99 (m, 2H), 3.95-3.87 (m, 1H), 3.82-3.76 (m, 1H), 3.71-3.67 (m, 1H), 3.51-3.45 (m, 1H), 3.33-3.23 (m, 1H), 2.38-2.29 (m, 1H), 2.19-2.11 (m, 1H), 1.27 (t, J=7.1-14.7Hz, 3H), 1.11 (t, J=7.0-14.2Hz, 3H).; 13 C NMR (100 MHz, CDCl 3 ): 136.4 (d, J C-P =6.8Hz), 129.5 (d, J C-P =6.9Hz), 128.8 (d, J C-P =2.3Hz), 127.5 (d, J C-P =3.0Hz), 63.0 (d, J C-P =7.15Hz), 62.2 (d, J C-P =7.15Hz), 60.4 (d, J C- P=13.1Hz), 42.1, 40.8, 33.5 (d, J C-P =3.12Hz), 16.6 (d, J C-P =6.11Hz), 16.5 (d, J C- P=6.11Hz). [α] D = -5.3 (c = 1.0, CHCl 3 ). HRMS (ESI): calcd. for [M+Na] + (C 13 H 21 NaO 4 P) requires m/z 295.1070, found 295.1064. The enantiomeric excess was determined by HPLC with an AD column. (n-hexane: i-proh = 94:6, λ =250 nm), 1.0 ml/min; t R = major enantiomer 12.6 min, minor enantiomer 11.2 min. 8

Typical experimental procedure for the direct enantioselective catalytic hydrophosphination of α,β unsaturated aldehydes and in situ oxidation to acid: To a stirred solution of catalyst (20 mol%) and 2-fluorobenzoic acid (10 mol%) in CHCl 3 (1.0 ml) at 4 C, was added 0.25 mmol (1.0 equiv) of α,β-unsaturated aldehyde. The reaction was then flushed with Ar, and 0.3 mmol (1.2 equiv) of diphenylphosphine was added. The reaction was stirred at 4 C for the time reported in Table 2. Next, isobutene (0.1 ml), tert-butanol (0.4 ml), H 2 O (0.2 ml) KH 2 PO 4 (54.4 mg, 4 mmol), and NaClO 2 (36 mg, 4mmol) were added sequentially. The reaction was allowed to reach room temperature and was stirred overnight. The crude was purified by column chromatography (pentane/ethyl Acetate mixtures) to afford the desired acid. 13c: Colorless solid. IR (KBr): 3057, 3025, 2969, 2916, 2533, 2227, 1717, 1486, 1438, 1164, 840, 726 cm -1 ; 31 P NMR (162 MHz, CDCl 3 ): 35.9 (s). [α] D = -35.2 (c = 1.0, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ): δ = 8.65 (s, 1H), 7.90-7.85 (m, 2H), 7.60-7.40 (m, 2H), 7.17 (d, J=8.5Hz, 2H), 7.06 (d, J=8.5Hz, 2H), 4.16-4.10 (m, 1H), 3.12-3.02 (m, 1H), 2.90-2.81 (m, 1H); 13 C NMR (100 MHz, CDCl 3 ): 172.9, 172.7, 134.0, 133.9, 133.3, 133.2, 133.0, 132.9, 132.5, 132.0, 131.7, 131.5, 131.4, 131.3, 131.2, 131.1, 131.0, 130.3, 130.1, 129.3, 129.2, 128.6, 128.5, 42.6, 42.0, 35.1. HRMS (ESI): calcd. for [M+H] + (C 21 H 18 ClO 3 P) requires m/z 407.0580, found 407.0583. 9