Supporting Information. Contents

Σχετικά έγγραφα
Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information

Supporting Information

Supporting Information

Supporting information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Electronic Supplementary Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Supporting Information for

Supporting Information. Experimental section

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Divergent synthesis of various iminocyclitols from D-ribose

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information. Experimental section

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Supporting Information

Supporting Information

Supporting Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Bishwajit Saikia*, Preeti Rekha Boruah, Abdul Aziz Ali and Diganta Sarma. Contents

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Supporting Information

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting Information for

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information

Supporting Information for

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

The Free Internet Journal for Organic Chemistry

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Palladium-Catalyzed Direct ortho-sulfonylation of. Azobenzenes with Arylsulfonyl Chlorides via C H. Table of Contents

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Electronic Supplementary Information

Supporting Information

Supporting Information for

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones

SUPPORTING INFORMATION

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

using metal-organic framework Cu-MOF-74 as an efficient heterogeneous catalyst Hanh T. H. Nguyen, Oanh T. K. Nguyen, Thanh Truong *, Nam T. S.

Electronic Supplementary Information (ESI)

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Supporting Information

Supporting information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Aerobic cross-dehydrogenative coupling of terminal alkynes and tertiary amines by a combined catalyst of Zn 2+ and OMS- 2

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supplementary Material

Synthesis of spiropyrazoline oxindoles by a formal [4+1] annulation reaction between 3-bromooxindoles and in situ-derived 1,2-diaza-1,3- dienes

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Selective mono reduction of bisphosphine

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Supporting Information

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 27 Supporting Information Transition-metal-free PhI(Ac) 2 -promoted highly selective hydroboration of terminal alkynes under air Suyuan Chen, ab Lu Yang, ab Dong Yi, ab Qiang Fu, ab Zhijie Zhang, ab Wu Liang, ab Qiang Zhang,* a Jianxin Ji a and Wei Wei* c a Chengdu Institute of iology, Chinese Academy of Sciences, Chengdu 64, China. b University of the Chinese Academy of Sciences, eijing 49, China; c School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 27365, Shandong, China; E-mail: weiweiqfnu@63.com (W. Wei); E-mail: zhangqiang@cib.ac.cn (Q. Zhang) Contents. General information...s 2. Screening with different parameters...s 3. Typical experimental procedure...s3 4. Preliminary mechanistic studies...s3 5. Characterization data of products...s6 6. References...S 7. Copies of NMR spectra for products...s

. General information All chemicals and solvents were purchased from Aldrich, J&K and Alfa Aesar Chemical Company as reagent grade and used without further purification unless otherwise stated. H NMR, 3 C NMR and 9 F NMR were recorded on a ruker Avance 4 spectrometer at room temperature. H NMR, 3 C NMR and 9 F NMR spectra were collected in CDCl 3 (4 MHz H, MHz 3 C, 376 MHz 9 F) spectrometer with TMS as internal standard. Carbons with directly attached boron atoms were not observed, most likely due to quadrupolar relaxation. HRMS were performed on a rucker Daltonics io-tf-q mass spectrometer by the ESI method and LC-MS were obtained on a on a Waters Xevo TQ (Waters, Manchester, UK) equipped with an ESI source. The products were purified by flash column chromatography on silica gel (2-3 mesh). 2. Screening with different parameters Table S. ptimization of catalysts a + 2 pin 2 Cat. ase, solvent r.t., air, 2 h Pin a 2 3a Entry Catalyst ase Solvent Yield(%) b NaI t-una EtH 7 2 KI t-una EtH 8 3 TAI t-una EtH 3 4 PhI t-una EtH 7 5 KI 3 t-una EtH 35 6 -Hydroxy-,2- benziodoxole-3-one t-una EtH 2 7 PhI(Piv) 2 t-una EtH 25 8 PhI(TFA) 2 t-una EtH 36 9 Ph 2 IF 4 t-una EtH 8 PhI(Ac) 2 t-una EtH 9 Dess-Martin t-una EtH 2 a Reaction conditions: a (.5 mmol), 2 (.75 mmol), catalyst (5 mol%), t-una (2 equiv), EtH (4 ml), r.t., air, 2 h. b Isolated yields based on a. Table S2. ptimization of bases a. Entry Catalyst ase Solvent Yield(%) b PhI(Ac) 2 - EtH 2 PhI(Ac) 2 K 2 C 3 EtH 7 3 PhI(Ac) 2 Cs 2 C 3 EtH 6 4 PhI(Ac) 2 KH EtH 3 5 PhI(Ac) 2 LiH EtH 43 6 PhI(Ac) 2 DU EtH 7 7 PhI(Ac) 2 Et 3 N EtH 9 8 PhI(Ac) 2 DIPEA EtH n.d. S

9 PhI(Ac) 2 Pyridine EtH n.d. PhI(Ac) 2 DMAP EtH n.d. PhI(Ac) 2 MeNa EtH 5 2 PhI(Ac) 2 EtNa EtH 55 3 PhI(Ac) 2 t-uli EtH 5 4 PhI(Ac) 2 t-una EtH 9 5 PhI(Ac) 2 t-uk EtH 62 a Reaction conditions: a (.5 mmol), 2 (.75 mmol), PhI(Ac) 2 (5 mol%), base (2 equiv), EtH (4 ml), r.t., air, 2 h; DU:,5-diaza(5,4,)undec-5-ene; DIPEA: N,N -diisopropylethylamine; DMAP: 4-dimethylaminopyridine. b Isolated yields based on a. Table S3. ptimization of loading of catalyst a. Entry PhI(Ac) 2 ase Solvent Yield(%) b % t-una EtH 32 2 5% t-una EtH 42 3 % t-una EtH 73 4 2% t-una EtH 85 5 5% t-una EtH 9 6 8% t-una EtH 89 7 2% t-una EtH 9 a Reaction conditions: a (.5 mmol), 2 (.75 mmol), t-una (2 equiv), EtH (4 ml), r.t., air, 2 h. b Isolated yields based on a. Table S4. ptimization of solvents a. Entry Catalyst ase Solvent Yield(%) b PhI(Ac) 2 t-una MeH 4 2 PhI(Ac) 2 t-una EtH 9 3 PhI(Ac) 2 t-una n-prh 7 4 PhI(Ac) 2 t-una i-prh 55 5 PhI(Ac) 2 t-una t-uh 25 6 PhI(Ac) 2 t-una EtH 35 c a Reaction conditions: a (.5 mmol), 2 (.75 mmol), PhI(Ac) 2 (5 mol%), t- una (2 equiv), solvent (4 ml), r.t., air, 2 h. b Isolated yields based on a. c 95% EtH. Table S5. ptimization of loading of bases a. Entry Catalyst ase Solvent Yield(%) b PhI(Ac) 2.2 EtH 5 2 PhI(Ac) 2.5 EtH 39 3 PhI(Ac) 2. EtH 6 4 PhI(Ac) 2.3 EtH 69 5 PhI(Ac) 2.5 EtH 82 6 PhI(Ac) 2.8 EtH 9 7 PhI(Ac) 2 2. EtH 9 8 PhI(Ac) 2 EtH 9 a Reaction conditions: a (.5 mmol), 2 (.75 mmol), PhI(Ac) 2 (5 mol%), t- una, EtH (4 ml), r.t., air, 2 h. b Isolated yields based on a. S2

3. Typical experimental procedure α β PhI(Ac) 2 (5 mol%) β R + 2 pin 2 Pin t-una, EtH, air, r.t. R 2 3 Alkyne (.5 mmol), 2 Pin 2 2 (.75 mmol, 9 mg), t-una (.9 mmol, 87 mg), PhI(Ac) 2 (.75 mmol, 24 mg) were added to a round-bottom flask with EtH (4 ml). Then, the reaction mixture was stirred at room temperature under air for 2 h. After completion of the reaction, the reaction mixture was concentrated in vaccum. The residue was purified by flash chromatography on silica gel (petroleum ether / ethyl acetate) to afford the corresponding product 3. 4. Preliminary mechanistic studies () Radical trapping experiment + 2 pin 2 standard conditions TEMP ( equiv), N 2 Pin a 2 3a (89%) Phenylacetylene a (.5 mmol), 2 Pin 2 2 (.75 mmol, 9 mg), t-una (.9 mmol, 87 mg), TEMP (.5 mmol, 78 mg), and PhI(Ac) 2 (.75 mmol, 24 mg) were added to a round-bottom flask with EtH (4 ml), then the reaction mixture was stirred under at room temperature N 2 atmosphere for 2 h. The corresponding product 3a was still obtained in 89% yield. (2) LC-MS analysis 2 Pin 2 2 (.75 mmol, 9mg), PhI(Ac) 2 (.75 mmol, 24 mg), t-una (.9 mmol, 87 mg), - ethynyl-4-methoxybenzene b (.5 mmol), and EtH (4 ml) were added to a round-bottom flask equipped with a magnetic stirrer. Then, the reaction mixture was stirred at room temperature under air atmosphere for 4 h. This reaction mixture was directly analyzed by LC-MS. In addition to the desired product 3b, the [M+H] + ion peaks (m/z = 337.2, 39.) for intermediates A and E and the [M+Na] + ion peaks (m/z = 43.3, 545.) for intermediate C and D were detected. S3

2526-- 479 (6.885) : MS2 ES+ 337.2 6.75e6 I % 336.3 338. 38.9 3 324.8 334.9 35 357.8 368.8 346.7 364.8 375.2 m/z 3 32 33 34 35 36 37 Compound A 2526-- 72 (5.422) : MS2 ES+ 43.3 9.63e7 % 4 I 248.7 4 3. 35. 393.3 44. 48. 574. 52. 559. m/z 25 3 35 4 45 5 55 Compound C S4

2526-- 52 (7.475) : MS2 ES+ 545. 6.33e5 % I H 465.2 499.2 475. 54.9 57.8 548.8 579.4 553.2 592.8 65.2 48 5 52 54 56 58 6 Compound D m/z 2526-- 839 (2.68) : MS2 ES+ 39. 3.e6 % 3. 38.8 327.4 35. 339.2 382.3 4.6 353.2 368.5 393. m/z 3 32 33 34 35 36 37 38 39 4 Compound E I S5

2526-- 766 (.7) : MS2 ES+ 283. 6.3e6 % 283.6 237.3 256.4 26.3 282. 245.6 247.8 27. 285.3 293. 294.9 m/z 23 24 25 26 27 28 29 Product 3b 5. Characterization data of products (3a-3t) (E)-4,4,5,5-tetramethyl-2-styryl-,3,2-dioxaborolane (3a) [2] : H NMR (4 MHz, CDCl 3 ) δ 2 (d, J = 8.3 Hz, 2H), 7.42 (d, J = 8.5 Hz, H), 7.35 (ddd, J = 2.3, 8.4, 4.2 Hz, 3H), 6.9 (d, J = 8.4 Hz, H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 49.53, 37.47, 28.92, 28.59, 27.8, 83.38, 24.84. (E)-2-(4-methoxystyryl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3b) [3] : H NMR (4 MHz, CDCl 3 ) δ 7.46 (d, J = 8.7 Hz, 2H), 7.38 (d, J = 8.4 Hz, H), 6.89 (d, J = 8.7 Hz, 2H), 6.4 (d, J = 8.4 Hz, H), 3.83 (s, 3H),.33 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 6.29, 49.8, 3.38, 28.47, 3.97, 83.22, 55.28, 24.83. HR-MS(M+H) + calculated for C 5 H 22 3 26.657, found 26.657. (E)-4,4,5,5-tetramethyl-2-(2-methylstyryl)-,3,2-dioxaborolane (3c) [2] : S6

H NMR (4 MHz, CDCl 3 ) δ 7.67 (d, J = 8.3 Hz, H), 7.6 5 (m, H), 7.2 (dd, J = 6.2, 2.8 Hz, 2H), 7.9 7.3 (m, H), 6. (d, J = 8.3 Hz, H), 2.45 (s, 3H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 47.4, 36.33, 34.75, 3.4, 28.59, 26.2, 25.78, 83.32, 24.84, 9.85. HR-MS(M+H) + calculated for C 5 H 22 2 245.77, found 245.77. (E)-4,4,5,5-tetramethyl-2-(3-methylstyryl)-,3,2-dioxaborolane (3d) [2] : H NMR (4 MHz, CDCl 3 ) δ 7.4 (d, J = 8.5 Hz, H), 7.32 (d, J = 5.7 Hz, 2H), 7.25 (t, J = 7.8 Hz, H), 7.4 (d, J = 7.4 Hz, H), 6.8 (d, J = 8.4 Hz, H), 2.37 (s, 3H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 49.7, 38.9, 37.48, 29.72, 28.47, 27.8, 24.26, 83.33, 24.82, 2.4. HR-MS(M+H) + calculated forc 5 H 22 2 245.77, found 245.74. (E)-4,4,5,5-tetramethyl-2-(4-methylstyryl)-,3,2-dioxaborolane (3e) [3] : H NMR (4 MHz, CDCl 3 ) δ 7.44 7.36 (m, 3H), 7.7 (d, J = 7.9 Hz, 2H), 6.3 (d, J = 8.4 Hz, H), 2.37 (s, 3H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 49.49, 38.99, 34.8, 29.3, 27.4, 83.3, 24.83, 2.35. HR-MS(M+H) + calculated for C 5 H 22 2 245.77, found 245.76. (E)-4,4,5,5-tetramethyl-2-(4-pentylstyryl)-,3,2-dioxaborolane (3f) [2] : n-u H NMR (4 MHz, CDCl 3 ) δ 7.43 (d, J = 8. Hz, 2H), 7.4 (d, J = 8.5 Hz, H), 7.7 (d, J = 8. Hz, 2H), 6.5 (d, J = 8.4 Hz, H), 2.6 (m, 2H),.63 (m, 2H),.34 (s, 6H),.9 (t, J = 6.9 Hz, 3H). 3 C NMR ( MHz, CDCl 3 ) δ 49.57, 44.6, 35.3, 28.65, 2, 83.28, 35.77,, 3., 24.82, 24, 4.3. HR- MS(M+H) + calculated for C 9 H 3 2 3.2333, found 3.2332. (E)-2-(4-(tert-butyl)styryl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3g) [4 ]: t-u S7

H NMR (4 MHz, CDCl3) δ 7.46 (d, J = 8.3 Hz, 2H), 7.4 (d, J = 8.4 Hz, H), 7.39 (d, J = 8.3 Hz, 3H), 6.5 (d, J = 8.4 Hz, H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 52.3, 49.4, 34.78, 26.84, 2, 83.29, 34.7, 3.25, 24.83. HR-MS(M+H) + calculated for C 9 H 3 2 3.2333, found 3.2334. (E)-3-(2-(4,4,5,5-tetramethyl-,3,2-dioxaborolan-2-yl)vinyl)aniline (3h) [3] : H 2 N H NMR (4 MHz, CDCl 3 ) H NMR (4 MHz, CDCl 3 ) δ 7.33 (d, J = 8.4 Hz, H), (t, J = 7.8 Hz, H), 6.92 (d, J = 7.6 Hz, H), 6.83 (s, H), 6.7 6.62 (m, H), 6.2 (d, J = 8.4 Hz, H), 3.7 (s, 2H),.33 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 49.72, 46.45, 38.57, 29.46, 7.97, 5.93, 3.4, 83.32, 24.82. HR- MS(M+H) + calculated for C 4 H 2 N 2 246.66, found 246.657. (E)-2-(4-(2-(4,4,5,5-tetramethyl-,3,2-dioxaborolan-2-yl)vinyl)phenyl)acetonitrile (3i) [5] : NC H NMR (4 MHz, CDCl 3 ) δ (d, J = 8. Hz, 2H), 7.39 (d, J = 8.5 Hz, H), 7.3 (d, J = 8. Hz, 2H), 6.9 (d, J = 8.4 Hz, H), 3.76 (s, 2H),.33 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 48.32, 37.35, 32.82, 3.34, 28.2, 27.7, 7.69, 83.48, 24.83, 23.45. HR-MS(M+H) + calculated for C 6 H 2 N 2 27.66, found 27.657. (E)-2-(3-fluorostyryl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3j) [2] : F H NMR (4 MHz, CDCl 3 ) δ 7.36 (d, J = 8.5 Hz, H), 7.32 (m, H), 7.26 (d, J = 7.7 Hz, H), 7.23 7.7 (m, H), 7.4 6.97 (m, H), 6.8 (d, J = 8.4 Hz, H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 63.7 (d, J = 245.6 Hz), 48.7 (d, J = Hz), 39.84 (d, J = Hz), 3.2 (d, J = 8.3 Hz), 23. (d, J = 2.7 Hz), 5.68 (d, J = Hz), 3.29 (d, J = Hz), 82, 24.82. 9 F NMR (376 MHz, CDCl 3 ) δ -3.48. (E)-2-(2-chlorostyryl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3k) [3] : Cl H NMR (4 MHz, CDCl 3 ) δ 7.8 (d, J = 8.4 Hz, H), 7.65 (dd, J = 7.3, 2. Hz, H), 7.37 (dd, J = 7.3,.8 Hz, H), 7.27 7.2 (m, 2H), 6.9 (d, J = 8.3 Hz, H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 44.96, 38, 33.85, 29.79, 29.7, 27., 26.87, 8, 24.84. HR-MS(M+H) + calculated for C 4 H 9 Cl 2 265.6, found 245.66. (E)-4-(2-(4,4,5,5-tetramethyl-,3,2-dioxaborolan-2-yl)vinyl)benzonitrile (3l) [5] : S8

NC H NMR (4 MHz, CDCl 3 ) δ 7.64 (d, J = 8.2 Hz, 2H), 6 (d, J = 8.3 Hz, 2H), 7.38 (d, J = 8.4 Hz, H), 6.29 (d, J = 8.4 Hz, H),.33 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 47.2, 4.65, 32.45, 27.42, 8.8,.97, 83.74, 24.8. HR-MS(M+Na) + calculated for C 5 H 8 NNa 2 278.323, found 278.39. (E)--(4-(2-(4,4,5,5-tetramethyl-,3,2-dioxaborolan-2-yl)vinyl)phenyl)ethan--one (3m) [6] : H NMR (4 MHz, CDCl 3 ) δ 7.95 (d, J = 8.3 Hz, 2H), 7 (d, J = 8.3 Hz, 2H), 7.43 (d, J = 8.4 Hz, H), 6.3 (d, J = 8.4 Hz, H), 2.6 (s, 3H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 97.64, 48., 4.82, 36.98, 28.74, 27.2, 83.62, 26.7, 24.83. (E)-2-(3-ethynylstyryl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3n) [3] : H NMR (4 MHz, CDCl 3 ) δ 7.62 (s, H), 7.49 (d, J = 7.7 Hz, H), 7.44 (d, J = 7.7 Hz, H), 7.34 (m, 2H), 6.2 (d, J = 8.4 Hz, H), 3. (s, H),.34 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 48.3, 37.66, 32.37, 3.75, 28.6, 27.38, 22.43, 83.48, 83.37, 77.24, 24.82. (E)-4,4,5,5-tetramethyl-2-(2-(naphthalen--yl)vinyl)-,3,2-dioxaborolane (3o) [7] : H NMR (4 MHz, CDCl 3 ) δ 8.29 (d, J = 8.3 Hz, H), 8.24 (d, J = 8.2 Hz, H), 7.9 7.83 (m, 3H), 7.76 (d, J = 7.2 Hz, H), 3 (m, 4H), 6.29 (d, J = 8.2 Hz, H),.38 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 46.45, 35.37, 33.62, 3., 29.2, 28.49, 26.7, 25.79, 29, 24.8, 23.79, 83.43, 24.88. (E)-4,4,5,5-tetramethyl-2-(2-(thiophen-3-yl)vinyl)-,3,2-dioxaborolane (3p) [2] : S H NMR (4 MHz, CDCl 3 ) δ 7.4 (d, J = 8.4 Hz, H), 7.35 7.3 (m, 2H), 7.29 (dd, J = 4.7, 3. Hz, H), 5.97 (d, J = 8.4 Hz, H),.33 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 43.6, 4.22, 26.3, 25.3, 24.89, 83.33, 24.8. S9

(E)-4,4,5,5-tetramethyl-2-(3-phenylprop--en--yl)-,3,2-dioxaborolane (3q) [3] : H NMR (4 MHz, CDCl 3 ) δ 7.3 (t, J = 7.4 Hz, 2H), 7.2 (dd, J = 2.7, 7.4 Hz, 3H), 6.79 (dt, J = 7.8, 6.3 Hz, H), 5.47 (d, J = 7.8 Hz, H), (d, J = 5.8 Hz, 2H),.28 (s, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 52.47, 39.7, 28.94, 28.44, 26.5, 83.3, 42.29, 24.8. HR-MS(M+H) + calculated for C 5 H 22 2 245.77, found 245.75. (E)-2-(3,3-dimethylbut--en--yl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3r) [8] : H NMR (4 MHz, CDCl 3 ) δ 6.63 (d, J = 8.3 Hz, H), 5.34 (d, J = 8.3 Hz, H),.27 (s, 3H),. (s, 9H). 3 C NMR ( MHz, CDCl 3 ) δ 64.36, 82.95, 34.98, 28.78, 24.79. HR-MS(M+Na) + calculated for C 2 H 23 Na 2 233.684, found 233.696. (E)-2-(3-cyclopentylprop--en--yl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3s) [9] : H NMR (4 MHz, CDCl 3 ) δ 6.64 (dt, J = 7.8, 6.7 Hz, H), 5.43 (d, J = 7.9 Hz, H), 2.8 (t, J = 6.9 Hz, 2H),.92 (dt, J = 5., 7.6 Hz, H),.77 (dt, J =.3, 6.8 Hz, 2H),.66.45 (m, 4H),.29 (s, 2H),.4 (dt, J = 9.2, 7.2 Hz, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 54.2, 82.98, 42.48, 39., 32.42, 25.7, 24.79. HR- MS(M+Na) + calculated for C 4 H 25 Na 2 259.84, found 259.83. (E)-2-(2-cyclopropylvinyl)-4,4,5,5-tetramethyl-,3,2-dioxaborolane (3t) [2] : H NMR (4 MHz, CDCl 3 ) δ 6. (dd, J = 7.8, 9.3 Hz, H), 2 (d, J = 7.8 Hz, H),.56.5 (m, H),.28 (s, 2H),.83 (dt, J = 6.3, 4.3 Hz, 2H),.6.53 (m, 2H). 3 C NMR ( MHz, CDCl 3 ) δ 58.58, 82.93, 24.76, 7.2, 7.9. 6. References []. Wrackmeyer, Prog. Nucl. Magn. Reson. Spectrosc., 979, 2, 227-259. [2] J. Zhao, Z. Niu, H. Fu and Y. Li, Chem. Commun., 24, 5, 258-26. [3] S. Hong, W. Zhang, M. Liu, Z.-J. Yao and W. Deng, Tetrahedron Lett., 26, 57, -4. [4] M. Fleige, J. Möbus, T. vom Stein, F. Glorius and D. W. Stephan, Chem. Commun., 26, 52, 83-833. [5] C. Feng, H. Wang, L. Xu and P. Li, rg. iomol. Chem., 25, 3, 736-739. [6] M. Murata, S. Watanabe and Y. Masuda, Journal of Chemical Research, 22, 22, 42-43. [7] Y.-W. Zhao, Q. Feng and Q.-L. Song, Chin. Chem. Lett., 26, 27, 57-574. S

[8] A. ismuto, S. P. Thomas and M. J. Cowley, Angew. Chem. Int. Ed., 26, 55, 5356-5359. [9] H. Jang, A. R. Zhugralin, Y. Lee and A. H. Hoveyda, J. Am. Chem. Soc., 2, 33, 7859-787. S

S2 7. Copies of NMR spectra for products 3a..5..5 2. 3. 4. 5. 6. 7. 8. 8.5-5 5 5 2 25 3 35 4 45 5 55 6 65.99..6.98.34 6.7 6.22 7.3 7.33 7.34 7.35 7.36 7.38 7.39 7.4 7.45 3 2 3 4 5 6 7 8 9 2 3 4 5-2 - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 24.84 83.38 27.8 28.59 28.92 37.47 49.53

S3 3b..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 2.9 3.2. 2.2. 2.6.33 3.83 6.2 6.6 6.88 6.9 7.36 7.4 7.45 7.47 2 3 4 5 6 7 8 9 2 3 4 5 6 7-5 5 5 2 25 3 35 4 45 5 55 6 24.83 55.28 83.22 3.97 28.47 3.38 49.8 6.29

S4 3c..5..5 2. 3. 4. 5. 6. 7. 8. 8.5 5 5 2 25 3 35 4 45 2.39 2.96..2 2..27..34 2.45 6.8 6.3 7.6 7.7 7.8 7.2 7.2 7.2 7.22 7 8 9 7.65 7.69 2 3 4 5 6 7 8 9 2 3 4 5-2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 9.85 24.84 83.32 25.78 26.2 28.59 3.4 34.75 36.33 47.4

S5 3d..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 5 2.24 3.24..9. 2..3.34 2.37 6.6 6.2 7.3 7.4 7.23 7.25 7.27 7.32 7.33 7.38 7.43 2 3 4 5 6 7 8 9 2 3 4 5 6-2 3 4 5 6 7 8 9 2 3 4 5 2.4 24.82 83.33 24.26 27.8 28.47 29.72 37.48 38.9 49.7

S6 3e..5..5 2. 3. 4. 5. 6. 7. 5 5 2 25 3 35 4 45 5.89 2.96. 2..34 2.37 6. 6.6 7.6 7.8 7.37 7.4 7.42 2 3 4 5 6 7 8 9 2 3 4 5-2 3 4 5 6 7 8 9 2 3 4 5 6 7 2.35 24.83 83.3 27.4 29.3 34.8 38.99 49.49

S7 3f..5..5 2. 3. 4. 5. 6. 7. - 2 3 4 5 6 7 8 9 2 3 4 4.3 6.2 2.9 2.43. 2.9 3.2.9.9.93.34.6.62.63.65.67 2.6 2.6 2.62 2.64 6.2 6.7 7.6 7.8 7.39 7.42 7.44 7.44 2 3 4 5 6 7 8 9 2 3 4 5 6-2 - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 22 4.3 24 24.82 3. 35.77 83.28 2 28.65 35.3 44.6 49.57

S8 3g..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 2.7..72.56.7.56 2.6.34 6.3 6.7 7.38 7.39 7.4 7.44 7.45 7.47 2 3 4 5 6 7 8 9 2 3 4 5 6 7-2 2 4 6 8 2 4 6 8 2 22 24 26 28 24.83 3.25 34.7 83.29 2 26.84 34.78 49.4 52.3

S9 3h..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2.22 2.8..2.2.3.8.34.33 3.7 6. 6.5 6.65 6.66 6.67 6.83 6.9 6.93 7.3 7.7 7.3 7.35 H 2 N 2 3 4 5 6 7 8 9 2 3 4 5 6-2 - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 24.82 83.32 3.4 5.93 7.97 29.46 38.57 46.45 49.72 H 2 N

S2 3i..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 2.33 2.27. 2.2.9 2.7.33 3.76 6.7 6.22 7.3 7.32 7.36 7.4 7.49 N 2 3 4 5 6 7 8 9 2 3 4 5 6-5 5 5 2 25 3 35 4 45 5 23.45 24.83 83.48 7.69 27.7 28.2 3.34 32.82 37.35 48.32 N

S2 3j..5..5 2. 3. 4. 5. 6. 7. -5 5 5 2 25 3 35 4 45 5 55 6 65 7.7..95.96.94..42.34 6.6 6.2 7. 7. 7.8 7.2 7.25 7.27 7.29 7.3 7.3 7.33 7.34 7.39 F 2 3 4 5 6 7 8 9 2 3 4 5 6 7-2 3 4 5 6 7 8 9 2 3 4 5 6 7 24.82 82 3.8 3.4 8 5.79 22.99 23. 29.98 3.7 39.8 39.88 48.6 48.9 6.85 64.29 F

S22 3k..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2.33..67.56.3.2.98.34 6.7 6.22 7.23 7.23 7.24 7.25 7.26 7.26 7.36 7.37 7.38 7.64 7.66 7.66 7.78 7.83 Cl 2 3 4 5 6 7 8 9 2 3 4 5-5 5 5 2 25 3 35 4 45 5 24.84 8 26.87 27. 29.7 29.79 33.85 38 44.96 Cl

S23 3l..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 2.33..3 2.3.33 6.27 6.32 7.35 7.4 5 7 7.63 7.65 N 2 3 4 5 6 7 8 9 2 3 4 5-2 - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2 2 22 24.8 83.74.97 8.8 27.42 32.45 4.65 47.2 N

S24 3m..5..5 2. 3. 4. 5. 6. 7. 8. 8.5 2 3 4 5 6 7 8 9 2.28 3.4..2 2.9 2.8.34 2.6 6.28 6.33 7.4 7.45 6 8 7.94 7.96 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 9 2-5 5 5 2 25 3 35 4 24.83 26.7 83.62 27.2 28.74 36.98 4.82 48. 97.64

S25 3n..5..5 2. 3. 4. 5. 6. 7. 8. -5 5 5 2 25 3 35 4 45 5 2.38.97. 2.33.8.6..34 3. 6.7 6.22 7.2 7.3 7.32 7.34 7.38 7.43 7.45 7.48 7.62 2 3 4 5 6 7 8 9 2 3 4 5 6-2 3 4 5 6 7 8 9 2 3 4 5 6 7 24.82 83.48 22.43 27.38 28.6 3.75 32.37 37.66 48.3

S26 3o..5..5 2. 3. 4. 5. 6. 7. 8. 8.5 9. -5 5 5 2 25 3 35 4 45 5 55 6 65 7 75 2.6. 4.4.9 3.2.3.38 6.27 6.32 2 4 4 6 7.75 7.84 7.86 7.87 7.87 8.22 8.26 8.28 8.3 2 3 4 5 6 7 8 9 2 3 4 5 6-2 3 4 5 6 7 8 9 2 3 4 5 24.88 83.43 23.79 24.8 29 25.79 26.7 28.49 29.2 3. 33.62 35.37 46.45

S27 3p..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 5 6 7 2...3 2..7.33 5.94 5.99 7.28 7.28 7.29 7.3 7.32 7.33 7.34 7.38 7.43 S 2 3 4 5 6 7 8 9 2 3 4 5-2 3 4 5 6 7 8 9 2 3 4 5 6 24.8 83.33 24.89 25.3 26.3 4.22 43.6 S

S28 3q..5..5 2. 3. 4. 5. 6. 7. 8. - 2 3 4 5 6 7 8 9 2 3 4 5 6 2.4..95 3.8.97.28 5.45 5.49 6.75 6.76 6.78 6.79 6.8 6.83 7.9 7.2 7.22 7.24 7.29 7.3 7.33 2 3 4 5 6 7 8 9 2 3 4 5 6-2 3 4 5 6 7 8 9 2 3 4 5 6 7 8 24.8 42.29 83.3 26.5 28.44 28.94 39.7 52.47

S29 3r..5..5 2. 3. 4. 5. 6. 7. -5 5 5 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 9.3 4.2...27 5.32 5.37 6.6 6.66 2 3 4 5 6 7 8 9 2 3 4 5 6 7 8-2 3 4 5 6 7 8 9 2 3 24.79 28.78 34.98 82.95 64.36

S3 3s..5..5 2. 3. 4. 5. 6. 7. 8. -5 5 5 2 25 3 35 4 45 5 55 6 65 7 2.45 2.6 2.33.85.3 2.2.7 2.3..99..2.4.5.7.9.29.5.52.53.56.59.6.63.73.75.76.78.79.8.89.9.92.94.96 2.6 2.8 2.2 5.4 5.46 6.6 6.62 6.63 6.65 6.66 6.68 2 3 4 5 6 7 8 9 2 3 4 5 6 7-2 3 4 5 6 7 8 9 24.79 25.7 32.42 39. 42.48 82.98 54.2

3t S3

S32 3s 5.2 5.3 5.4 5.6 5.7 5.8 5.9 6. 6. 6.2 6.3 6.4 6.6 6.7 6.8 6.9 5 5 2 25 4.9. β:α=82:8 3t 5. 5. 5.2 5.3 5.4 5.6 5.7 5.8 5.9 6. 6. 6.2 6.3 6.4-5 5 5 2 25 3 35 4 45 5 55 6.99.99 4.6 β:α=93:7