Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Σχετικά έγγραφα
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Experimental section

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Electronic Supplementary Information

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Supporting information for

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Supporting Information

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Supporting Information for

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information for

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supplementary Information for

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Electronic Supplementary Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

The Free Internet Journal for Organic Chemistry

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Supporting Information. Experimental section

Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting Information

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

SUPPORTING INFORMATION

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting information

Supporting Information

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supplementary Material for Synthesis of Compact Multidentate Ligands to Prepare Stable Hydrophilic Quantum Dot Fluorophores

Supporting Information

Supporting Information Iminophenyl Oxazolinylphenylamine for Enantioselective Cobalt-catalyzed Hydrosilylation of Aryl Ketones

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Supporting Information

A Dinuclear Zinc Catalyzed Asymmetric Alkynylation of Unsaturated Aldehydes

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Supporting Information for

SUPPORTING INFORMATION

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

The Asymmetric Synthesis of CF3- Containing. Spiro[pyrrolidin-3,2 -oxindole] through the Organocatalytic. 1, 3-dipolar Cycloaddition Reaction

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Transfer of axial chirality through the nickel-catalyzed hydrocyanation of chiral allenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Electronic Supplementary Information (ESI)

SUPPORTING INFORMATION

Supporting Information

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Aminofluorination of Fluorinated Alkenes

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Aluminium triflate as a Lewis acid catalyst for the ring opening of epoxides in alcohols

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes

Supporting Information for

Supporting information

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Trienamine-Mediated Asymmetric [4+2]-Cycloaddition of α,β-unsaturated Ester Surrogates Applying 4-Nitro-5-Styrylisoxazoles

Xiangya International Academy of Translational Medicine, Central South University, 172 Tongzipo Rd., Changsha, Hunan province, China,

Supplementary Material

Transcript:

1 Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes Gonzalo Blay, Isabel Fernández, Alícia Marco-Aleixandre, and José R. Pedro Departament de Química Orgànica, Facultat de Química, Universitat de València, Dr. Moliner, 50, E-46100-Burjassot (València), Spain SUPPORTING INFORMATION Table of Contents: General Experimental Methods Characterization data for compounds 3aa-3ce and for mandelamide V S1 S2-S8 1 H NMR and 13 C NMR for compounds 3aa-3ce and for mandelamide V S9-S40 General Experimental Methods: Glassware was oven-dried overnight at 120 C. Reactions were monitored by TLC analysis. Flash column chromatography was performed on silica gel 60, (0.040-0.063 mm). 1 H NMR were run at 299.95 MHz for 1 H and at 50.3 MHz for 13 C NMR in CDCl 3 and referenced to the solvent as internal standard. Specific optical rotations were measured in CHCl 3 using sodium light (D line 589 nm). IR spectra were recorded as thin films in NaCl disks. HPLC analyses were performed in a chromatograph equipped with a refraction index detector using chiral stationary phase columns. All alkynes 1 and aldehydes 2 were commercially available and used as purchuased without further purification. Toluene was distilled from CaH 2 and stored on 4 Å molecular sieves. Mandelamides were prepared according to procedures described in the literature. 1

2 (R)-(+)-1,3-Diphenyl-2-propyn-1-ol (3aa). 2,3,4 Ph 3aa Obtained in 95% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 13.1 min, minor enantiomer t r = 21.7 min, to be 25 89%; [α] D +6.7 (c 0.54, CHCl 3, ee 89%); MS(EI) 208 (M +, 100), 191 (30), 179 (61); HRMS 208.0866, C 15 H 12 O required 208.0888; 1 H NMR (CDCl 3 ) δ 7.61 (d, J = 6.3 Hz, 2H), 7.48-7.30 (m, 8H), 5.68 (s, 1H), 2.27 (br s, 1H); 13 C NMR (CDCl 3 ) δ 140.6 (C), 131.7 (CH), 128.64 (CH), 128.58 (CH), 128.4 (CH), 128.3 (CH), 126.7 (CH), 122.3 (C), 88.6 (C), 86.6 (C), 65.1 (CH). (S)-(+)-1-(Furan-2-yl)-3-phenyl-2-propyn-1-ol (3ab). 4 Ph O 3ab Obtained in 88% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 10.3 min, minor enantiomer t r = 21.1 min, to be 25 83%; [α] D +34 (c 0.58, CHCl 3, ee 83%); MS(EI) 198 (M +, 19), 181 (26), 141 (100); HRMS 198.0673, C 13 H 10 O 2 required 198.0681; 1 H NMR (CDCl 3 ) δ 7.50-7.40 (m, 3H), 7.35-7.25 (m, 3H), 6.51 (d, J = 3.0 Hz, 1H), 6.36 (dd, J = 5.4, 3.0 Hz, 1H), 5.68 (s, 1H), 2.50 (br s, 1H); 13 C NMR (CDCl 3 ) δ 152. 9 (C), 143.1 (CH), 131.8 (CH), 128.8 (CH), 128.3 (CH), 122.0 (C), 110.4 (CH), 107.9 (CH), 86.1 (C), 85.8 (C), 58.6 (CH). (S)-(+)-1-(Furan-3-yl)-3-phenyl-2-propyn-1-ol (3ac). 2 Ph 3ac O Obtained in 94% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 9.6 min, minor enantiomer t r = 24.7 min, to be 89%; [α] D 25 +3.0 (c 0.53, CHCl 3, ee 89%); MS(EI) 198 (M +, 57), 181 (24), 169 (42), 141 (100);

3 HRMS 198.0659, C 13 H 10 O 2 required 198.0681; 1 H NMR (CDCl 3 ) δ 7.58 (s, 1H), 7.47-7.40 (m, 3H), 7.35-7.25 (m, 3H), 6.56 (s, 1H), 5.61 (s, 1H), 2.11 (br s, 1H); 13 C NMR (CDCl 3 ) δ 143.7 (CH), 140.2 (CH), 131.7 (CH), 128.7 (CH), 126.4 (C), 122.2 (C), 109.2 (CH), 88.1 (C), 85.1 (C), 57.7 (CH). (S)-(+)-3-Phenyl-1-(thiophen-2-yl)-2-propyn-1-ol (3ad). This compound has been described in racemic form. 5 Ph 3ad S Obtained in 91% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 11.2 min, minor enantiomer t r = 23.2 min, to be 90%; [α] 25 D +20 (c 0.53, CHCl 3, ee 90%); MS(EI) 214 (M +, 23), 197 (15), 185 (30), 102 (100); HRMS 214.0456, C 13 H 10 OS required 214.0452; 1 H NMR (CDCl 3 ) δ 7.51-7.40 (m, 2H), 7.37-7.20 (m, 3H), 7.23 (dt, J = Hz), 7.00 (dd, J = 5.0, 3.5 Hz, 1H), 5.88 (br d, J = 6.0 Hz, 1H), 2.53 (br d, J = 6.0 Hz, 1H); 13 C NMR (CDCl 3 ) δ 144.6 (C), 131.8 (CH), 128.8 (CH), 128.3 (CH), 126.8 (CH), 126.1 (CH), 125.6 (CH), 122.1 (C), 87.9 (C), 86.0 (C), 60.7 (CH). (S)-(+)-3-Phenyl-1-(thiophen-3-yl)-2-propyn-1-ol (3ae). 2 Ph 3ae S Obtained in 86% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 11.5 min, minor enantiomer t r = 30.8 min, to be 88%; [α] 25 D +20 (c 0.53, CHCl 3, ee 88%); MS(EI) 214 (M +, 23), 197 (15), 185 (30), 102 (100); HRMS 214.0456, C 13 H 10 OS required 214.0452; 1 H NMR (CDCl 3 ) δ 7.51-7.40 (m, 2H), 7.39-7.20 (m, 5H), 5.71 (s, 1H), 2.18 (br s, 1H); 13 C NMR (CDCl 3 ) δ 142.0 (C), 131.7 (CH), 128.6 (CH), 128.3 (CH), 126.6 (CH), 126.4 (CH), 122.7 (CH), 122.3 (C), 88.5 (C), 85.8 (C), 61.0 (CH).

4 (R)-(+)-1,5-Diphenyl-2-pentyn-1-ol (3ba). 2,3 PhH 2 CH 2 C 3ba Obtained in 96% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 15.7 min, minor enantiomer t r = 27.4 min, to be 25 88%; [α] D +13.0 (c 0.52, CHCl 3, ee 88%); MS(EI) 236 (M +, 98), 218 (61), 91 (100); HRMS 236.1195, C 17 H 16 O required 236.1201; 1 H NMR (CDCl 3 ) δ 7.45 (dd, J = 7.8, 2.2 Hz, 2H), 7.40-7.15 (m, 8H), 5.41 (s, 1H), 2.85 (t, J = 7.5 HZ, 2H), 2.56 (td, J = 7.5, 1.8 Hz, 2H), 2.13 (br s, 1H); 13 C NMR (CDCl 3 ) δ 141.0 (C), 140.4 (C), 128.5 (CH), 128.4 (CH), 128.2 (CH), 126.6 (CH), 126.3 (CH), 86.7 (C), 80.7 (C), 64.7 (CH), 34.8 (CH 2 ), 20.9 (CH 2 ). (S)-(+)-1-(Furan-2-yl)-5-phenyl-2-pentyn-1-ol (3bb). PhH 2 CH 2 C 3bb O Obtained in 96% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 13.9 min, minor enantiomer t r = 21.7 min, to be 90%; [α] 25 D +14.2 (c 0.54, CHCl 3, ee 90%); IR (thin film) 3397, 3120, 3062, 3028, 2927, 2227, 1603, 1497, 1453, 1008, 744 cm -1 ; MS(EI) 226 (M +, 6), 208 (3), 91 (100); HRMS 226.0994, C 15 H 14 O 2 required 226.0994; 1 H NMR (CDCl 3 ) δ 7.32 (s, 1H), 7.25-7.10 (m, 5H), 6.25 (s, 2H), 5.34 (d, J = 6.0 Hz, 1H), 2.79 (t, J = 7.5 Hz, 2H), 2.49 (td, J = 7.5, 1.8 Hz, 2H), 2.21 (d, J = 6.0 Hz); 13 C NMR (CDCl 3 ) δ 153.4 (C), 142.8(CH), 140.3 (C), 128.43 (CH), 128.38 (CH), 126.3 (CH), 110.3 (CH), 107.5 (CH), 86.0 (C), 78.2 (C), 58.2 (CH), 34.7 (CH 2 ), 20.9 (CH 2 ).

5 (S)-(+)-1-(Furan-3-yl)-5-phenyl-2-pentyn-1-ol (33bc). PhH 2 CH 2 C 3bc O Obtained in 93% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 11.9 min, minor enantiomer t r = 22.6 min, to be 92%; [α] 25 D +12.3 (c 0.52, CHCl 3, ee 92%); IR (thin film) 3383, 3132, 3062, 3022, 2933, 2216, 1597, 1494, 1453, 1002, 745 cm -1 ; MS(EI) 226 (M +, 50), 208 (11), 91 (100); HRMS 226.1000, C 15 H 14 O 2 required 226.0994; 1 H NMR (CDCl 3 ) δ 7.32 (d, J = 2.1 Hz, 1H), 7.30 (s, 2H), 7.26-7.10 (m, 5H), 6.37 (s, 2H), 5.27 (unresolved t, J = 1.5 Hz, 1H), 2.78 (t, J = 7.5 Hz, 2H), 2.49 (td, J = 7.5, 1.8 Hz, 2H), 1.88 (br s, 1H); 13 C NMR (CDCl 3 ) δ 143.5 (CH), 140.4 (C), 140.1(CH), 128.45 (CH), 128.40 (CH), 126.8 (C), 126.4 (CH), 109.14 (CH), 85.1 (C), 80.2 (C), 57.4 (CH), 34.8 (CH 2 ), 20.8 (CH 2 ). (S)-(+)-5-Phenyl-1-(thiophen-2-yl)-2-pentyn-1-ol (3bd) PhH 2 CH 2 C S 3bd Obtained in 89% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 14.7 min, minor enantiomer t r = 30.6 min, to be 91%; [α] 25 D +27.5 (c 0.57, CHCl 3, ee 91%); IR (thin film) 3390, 3062, 3026, 2927, 2229, 1603, 1495, 1452, 1015, 699 cm -1 ; MS(EI) 242 (M +, 10), 110 (100); HRMS 242.0758, C 15 H 14 OS required 242.0765; 1 H NMR (CDCl 3 ) δ 7.25-7.15 (m, 6H), 6.99 (d, J = 3.3 Hz, 1H), 6.87 (dd, J = 5.4, 3.3 Hz, 1H), 5.54 (s, 1H), 2.79 (t, J = 7.5 Hz, 2H), 2.50 (td, J = 7.5, 1.8 Hz, 2H), 2.28 (d, J = 6.0 Hz); 13 C NMR (CDCl 3 ) δ 145.2 (C), 140.4 (C), 128.44 (CH), 128.39 (CH), 126.6 (CH), 126.3 (CH), 125.8 (CH), 125.4 (CH), 86.2 (C), 80.2 (C), 60.4 (CH), 34.7 (CH 2 ), 20.8 (CH 2 ).

6 (S)-(+)-5-Phenyl-1-(thiophen-3-yl)-2-pentyn-1-ol (3be) PhH 2 CH 2 C S 3be Obtained in 94% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 14.7 min, minor enantiomer t r = 29.9 min, to be 89%; [α] 25 D +15.4 (c 0.51, CHCl 3, ee 89%); IR (thin film) 3385, 3100, 3062, 3024, 2930, 2225, 1600, 1494, 1452, 1013, 701 cm -1 ; MS(EI) 242 (M +, 100), 224 (10), 91 (61); HRMS 242.0771, C 15 H 14 OS required 242.0765; 1 H NMR (CDCl 3 ) δ 7.35-7.10 (m, 7H), 7.05 (d, J = 5.1 Hz 1H), 5.37 (s, 1H), 2.79 (t, J = 7.5 Hz, 2H), 2.50 (td, J = 7.5, 1.8 Hz, 2H), 1.96 (br s, 1H); 13 C NMR (CDCl 3 ) δ 142.5 (C), 140.4 (C), 128.5 (CH), 128.4 (CH), 126.35 (CH), 126.30 (CH), 122.5 (CH), 85.8 (C), 80.6 (C), 60.6 (CH), 34.8 (CH 2 ), 20.8 (CH 2 ). (+)-4,4-Dimethyl-1-phenyl-2-pentyn-1-ol (3ca). This compound has been described in racemic form. 5 t-bu 3ca Obtained in 93% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 5.8 min, minor enantiomer t r = 4.7 min, to be 67%; [α] 25 D +18.8 (c 0.51, CHCl 3, ee 67%); MS(EI) 188 (M +, 100), 173 (16), 158 (21); HRMS 188.1191, C 13 H 16 O required 188.1201; 1 H NMR (CDCl 3 ) δ 7.53 (d, J = 6.3, Hz, 2H), 7.40-7.25 (m, 3H, 5.42 (s, 1H), 2.08 (br s, 1H), 1.24 (s, 9H); 13 C NMR (CDCl 3 ) δ 141.3 (C), 128.4 (CH), 128.1 (CH), 126.7 (CH), 95.8 (C), 78.3 (C), 64.7 (CH), 30.9 (CH 3 ), 27.5 (C). (+)-1-(Furan-2-yl)-4,4-dimethyl-2-pentyn-1-ol (3cb) t-bu 3cb O

7 Obtained in 79% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 5.6 min, minor enantiomer t r = 5.3 min, to be 85%; [α] 25 D +16.8 (c 0.53, CHCl 3, ee 85%); IR (thin film) 3425, 2968, 2239, 1643, 1081, 1009 cm - 1 ;MS(EI) 178 (M +, 85), 163 (82), 135 (66) 121 (97), 91 (100); HRMS 178.1003, C 11 H 14 O 2 required 178.0994; 1 H NMR (CDCl 3 ) δ 7.38 (m, 1H), 6.40 (d, J = 3.0 Hz), 6.32 (dd, J = 3.0, 2.1 Hz, 1H), 5.41 (s, 1H), 2.23 (br s, 1H), 1.24 (s, 9H); 13 C NMR (CDCl 3 ) δ 153.8 (C), 142.8 (CH), 110.2 (CH), 107.5 (CH), 94.8 (C), 75.9 (C), 58.2 (CH), 30.8 (CH 3 ), 27.4 (C). (+)-1-(Furan-3-yl)-4,4-dimethyl-2-pentyn-1-ol (3cc) t-bu O 3cc Obtained in 98% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 0.5 ml/min, major enantiomer t r = 9.5 min, minor enantiomer t r = 9.1 min, to be 90%; [α] 25 D +16.2 (c 0.56, CHCl 3, ee 90%); IR (thin film) 3366, 2970, 2235, 1027, 753 cm -1 ; MS(EI) 178 (M +, 84), 163 (1), 121 (72), 91 (100); HRMS 178.1003, C 11 H 14 O 2 required 178.0984; 1 H NMR (CDCl 3 ) δ 7.47 (s, 1H), 7.36 (unresolved t, 1H), 6.47 (unresolved d, 1H), 5.34 (s, 1H), 1.94 (br s, 1H), 1.23 (s, 9H); 13 C NMR (CDCl 3 ) δ 143.5 (CH), 140.1 (CH), 127.1 (C), 109.3 (CH), 94.1 (C), 77.9 (C), 57.4 (CH), 30.8 (CH 3 ), 27.4 (C). (+)-1-(Thiophen-2-yl)-4,4-dimethyl-2-pentyn-1-ol (3cd) S t-bu 3cd Obtained in 95% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 5.7 min, minor enantiomer t r = 5.1 min, to be 90%; [α] 25 D +38.4 (c 0.51, CHCl 3, ee 90%); IR (thin film) 3381, 3105, 2969, 2238, 976, 702 cm -1, MS(EI) 194 (M +, 100), 179 (17); HRMS 194.0759, C 11 H 14 OS required 194.0765; 1 H NMR (CDCl 3 ) δ 7.26 (dd, J = 4.8, 1.5 Hz, 1H), 7.13 (dt, J = 3.5, 1.5 Hz, 1H), 6.95 (dd, J = 4.8, 3.5 Hz, 1H), 5.60 (d, J = 5.6 Hz), 2.33 (d, J = 5.6Hz, 1H), 1.25 (s, 9H); 13 C NMR (CDCl 3 ) δ 145.7 (C), 126.7 (CH), 125.8 (CH), 125.3 (CH), 95.1 (C), 78.0 (C), 60.3 (CH), 30.7 (CH 3 ), 27.4 (C).

8 (+)-1-(Thiophen-3-yl)-4,4-dimethyl-2-pentyn-1-ol (3ce) t-bu S 3ce Obtained in 90% yield; enantiomeric excess was determined by HPLC (Chiralcel OD-H), hexane:i- Pr 90:10, 1 ml/min, major enantiomer t r = 5.5 min, minor enantiomer t r = 5.0 min, to be 77%; [α] 25 D +17.7 (c 0.57, CHCl 3, ee 77%); IR (thin film) 3351, 3106, 2969, 2238, 995, 793 cm - 1, MS(EI) 194 (M +, 100), 179 (24), 164 (13); HRMS 194.0753, C 11 H 14 OS required 194.0765; 1 H NMR (CDCl 3 ) δ 7.35 (dt, J = 3.0, 1.2 Hz, 1H), 7.28 (dd, J = 4.8, 3.0 Hz, 1H), 7.17 (dd, J = 4.8, 1.2 Hz, 1H), 5.44 (s, 1H), 1.25 (s, 9H); 13 C NMR (CDCl 3 ) δ 142.9 (C), 126.5 (CH), 126.2 (CH), 122.4 (CH), 94.9 (C), 78.3 (C), 60.6 (CH), 30.9 (CH 3 ), 27.4 (C). (S)-N-(2-methoxybenzyl)-2-hydroxy-2-phenylacetamide (V) O HO V HN MeO [α] 25 D +56.7 (c 0.53, CHCl 3 ); IR (thin film) 3338, 3064, 2938, 1659, 1531, 1494, 1244, 754 cm - 1 MS(EI) 271 (M +, 16), 253 (20), 121 (100); HRMS 271.1187, C 16 H 17 NO 3 required 271.1208; 1 H NMR (CDCl 3 ) δ 7.36-7.32 (m, 5H); 7.26 (td, J = 7.6, 1.6 Hz, 1H), 7.17 (dd, J = 7.5, 1.6 Hz, 1H), 6.88 (t, J = 7.5 Hz, 1H), 6.83 (d, J = 7.5 Hz, 1H), 6.52 (br s, 1H), 5.00 (d, J = 3.3 Hz, 1H), 4.42 (AB system, 2H), 3.73 (s, 3H); 13 C NMR (CDCl 3 ) δ 171.9 (C), 157.4 (C), 139.5 (C), 129.4 (CH), 128.9 (CH), 128.6 (2 x CH), 128.4 (CH), 126.8 (2 x CH), 125.6 (C), 120.5 (CH), 110.2 (CH), 74.0 (CH), 55.1 (CH 3 ), 39.6 (CH 2 ). 1. Blay, G.; Fernández, I.; Hernández-Olmos, V.; Marco-Aleixandre, A.; Pedro, J. R. Tetrahedron: Asymmetry 2005, 16, 1953-1958. 2. Takita, R.; Yakura, K.; Ohshima, T.; Shibashaki, M. J. Am. Chem. Soc. 2005, 127, 13760-13761. 3. Frantz, D. E.; Fässler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122, 1806-1807. 4. Li. Z. B.; Pu, L. Org. Lett. 2004, 6, 1065-1068. 5. Sakai, N.; Kanada, R.; Hirasawa, M.; Konakahara, T. Tetrahedron 2005, 61, 9298-9304.

9 Ph 3aa 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0

10 Ph 3aa 150 140 130 120 110 100 90 80 70 60 50 40 30

11 Ph 3ab O 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

12 Ph 3ab O 160 150 140 130 120 110 100 90 80 70 60 50 40 30

13 Ph 3ac O 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

14 Ph 3ac O 150 140 130 120 110 100 90 80 70 60 50

15 Ph 3ad S 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

16 Ph 3ad S 150 140 130 120 110 100 90 80 70 60 50

17 Ph 3ae S 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

18 Ph 3ae S 150 140 130 120 110 100 90 80 70 60 50 40

19 PhH 2 CH 2 C 3ba 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

20 PhH 2 CH 2 C 3ba 140 130 120 110 100 90 80 70 60 50 40 30 20 10

21 PhH 2 CH 2 C 3bb O 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

22 PhH 2 CH 2 C 3bb O 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

23 PhH 2 CH 2 C 3bc O 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5

24 PhH 2 CH 2 C 3bc O 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

25 PhH 2 CH 2 C 3bd S 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

26 PhH 2 CH 2 C 3bd S 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

27 PhH 2 CH 2 C 3be S 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

28 PhH 2 CH 2 C 3be S 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10

29 t-bu 3ca 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

30 t-bu 3ca 150 140 130 120 110 100 90 80 70 60 50 40 30 20

31 t-bu 3cb O 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

32 t-bu 3cb O 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20

33 t-bu 3cc O 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

34 t-bu 3cc O 140 130 120 110 100 90 80 70 60 50 40 30 20

35 t- Bu 3cd S 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0

36 t- Bu 3cd S 150 140 130 120 110 100 90 80 70 60 50 40 30 20

37 t-bu 3ce S 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

38 t-bu 3ce S 140 130 120 110 100 90 80 70 60 50 40 30 20

39 O HO V HN MeO 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0

40 O HO V HN MeO 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30