Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates Amanda Bongers, Christian Clavette, Wei Gan, Serge I. Gorelsky, Lyanne Betit, Kaitlyn Lavergne, Thomas Markiewicz, Patrick J. Moon, Nicolas Das Neves, Nimrat K. Obhi, Amy B. Toderian, André M. Beauchemin* Centre for Catalysis Research and Innovation, Department of Chemistry and Biomolecular Contents Sciences, University of Ottawa, 10 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5 *andre.beauchemin@uottawa.ca Supporting Information 1. Intermolecular Aminocarbonylation of Alkenes... 2 Additional Optimization Data... 2 2. IR Study... 3 3. Computational Studies... 4 4. X-Ray Crystallography Ellipsoid Plots... 13 5. Spectra... 21 S1
1. Intermolecular Aminocarbonylation of Alkenes Additional Optimization Data Table S1. Survey of solvents for intermolecular aminocarbonylation of norbornene with first generation reagents a Entry Solvent BG = Ot-Bu (1f) 2f NMR Yield (%) b BG = OPh (1i) 2f NMR Yield (%) b 1 PhCF3 6 63 2 PhCl 8 69 3 o-(cl2)c6h4 10 71 4 PhMe 6 70 5 Pyridine 3 26 6 Dioxane 1 41 7 DMF 1 13 8 t-buoh 0 0 9 H2O 0 0 10 neat 1 74 a Conditions: To a flame dried screw cap vial, 1 or 3 (0.2 mmol, 1 equiv) and norbornene (0.4 mmol, 2 equiv) in the solvent (1 ml). The reaction was heated at 90 ºC for 3 h. b NMR yields taken with 0.5 equiv of 1,3,5- trimethoxybenzene as an internal standard. Scheme S1. No reactivity has been achieved with various alkynes, copper (I) hexylacetylenide, or an allene. Scheme S2. No alkyne reactivity was observed with the non-planar imino-isocyanate precursor 1d. S2
2. IR Study (4) at 90 C Alkene added Product Figure S1. (a) Blue line=mixture of 4 in toluene at 90 C after 10 min. Red line = Analysis after norbornene added. Pink line =spectrum of azomethine imine 5a product in toluene. (b) Blue spectrum in closer detail. Procedure: Hydrazone 4 in toluene (0.05 M) was heated at 90 C, and the mixture became a yellow solution which then became dark ruby red. After 10 min, analysis of the sample showed a peak appeared at 2191 cm -1, corresponding to the asymmetric NCO stretch of the iminoisocyanate. This peak does not match the expected frequency of the azine (1600-1650 cm -1 ). 1 After the 20 minutes, norbornene was added to the reaction mixture. The ruby colour immediately disappeared, and the mixture returned to a pale yellow solution. Prompt analysis of the reaction mixture revealed no peak at 2191 cm -1. 1 Frederickson, L. D. Anal. Chem. 1964, 36, 1349. S3
3. Computational Studies Density functional theory (DFT) calculations have been performed using the Gaussian 09 software package, 2 as described in our prior communication. 3 Optimized molecular geometries were calculated using the B3LYP exchange-correlation functional in vacuum and in methanol solution. 4 For the latter, the SMD implicit solvation model was used with the default solvent parameters. 5 The triple-zeta TZVP basis set and tight SCF convergence criteria were used for all calculations. 6 Wave function stability calculations were performed to confirm that the calculated wave functions corresponded to the ground state. Harmonic frequency calculations were performed to ensure that the stationary points were true energy minima or transition states The unscaled frequencies were used for calculating the Gibbs free energies of the species at 298 K and 1 atm. Intrinsic reaction coordinate (IRC) calculations were used to confirm the reaction pathways through the transition states for all reported reactions. 7 2 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.02; Gaussian, Inc., Wallingford, CT, 2009. 3 Clavette, C.; Gan, W.; Bongers, A.; Markiewicz, T.; Toderian, A. B.; Gorelsky, S. I.; Beauchemin, A. M. J. Am. Chem. Soc. 2012, 134, 16111. 4 a) Becke, A. D. J. Chem. Phys. 1993, 98, 5648. b) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785. 5 Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378. 6 a) Schafer, A.; Huber, C.; Ahlrichs, R. J. Chem. Phys. 1994, 100, 5829. b) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154. 7 Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523. S4
Optimized Cartesian coordinates (Å), electronic and Gibbs free energies (au), and energies of highest occupied and lowest unoccupied molecular orbitals (ev) CH3OH in vacuum E(SCF)= -115.770989 au, G= -115.742706 au ε(homo)= -7.6269 ev, ε(lumo)= 0.6699 ev C 0.666271-0.020053-0.000038 H 32157-0.540101 0.893105 H 83963 0.985825-0.003941 H 31447-0.547278-0.889126 O -0.749750 0.122045-0.000029 H -1.147196-0.754488 0.000427 CH3OH in liquid methanol E(SCF)= -115.780217 au, G= -115.751929 au ε(homo)= -7.7088 ev, ε(lumo)= 1.1418 ev C 0.672464-0.019487-0.000006 H 23286-0.548762 0.891460 H 95874 0.984709-0.000447 H 23199-0.549578-0.891000 O -0.753941 0.123667-0.000002 H -1.145616-0.758787 0.000043 Reactant in vacuum E(SCF)= -456.653794 au, G= -456.534981 au ε(homo)= -6.6045 ev, ε(lumo)= -0.3714 ev C -3.004358-1.356538-0.000057 H -3.656070-1.336345 0.879362 C -2.072769-0.180410 0.000058 H -3.655989-1.336272-0.879536 N -0.817951-0.429907 0.000028 C -2.671207 1.205910 0.000043 H -2.363725 1.775894-0.883203 H -3.758896 1.160525 0.000050 H -2.363700 1.775914 0.883263 H -2.438285-2.285995-0.000072 C 1.415291 0.490615-0.000040 O 2.151281 1.455551-0.000058 O 1.814052-0.788526-0.000022 C 3.238028-0.980562 0.000053 H 3.687516-0.536905 0.888235 H 3.379779-2.057930-0.000265 H 3.687705-0.536335-0.887743 N 0.046827 0.627048-0.000007 H -0.273055 1.587168 0.000055 S5
Reactant in liquid metanol E(SCF)= -456.671595 au, G= -456.553806 a.u. ε(homo)= -6.6489 ev, ε(lumo)= -0.3586 ev C -3.002973-1.351794-0.000078 H -3.655117-1.318770 0.878462 C -2.070102-0.181793-0.000035 H -3.655194-1.318635-0.878555 N -0.813037-0.436799-0.000089 C -2.666698 1.198652 0.000077 H -2.354821 1.766046-0.883160 H -3.754118 1.147894 0.000132 H -2.354724 1.765944 0.883345 H -2.454409-2.293400-0.000174 C 1.401479 0.494679-0.000054 O 2.155472 1.462366 0.000109 O 1.808259-0.780167-0.000042 C 3.238444-0.993032 0.000073 H 3.689555-0.563444 0.893855 H 3.362805-2.072685 0.000054 H 3.689706-0.563392-0.893607 N 0.050561 0.636777-0.000032 H -0.287101 1.592724 0.000060 Isocyanate intermediate in vacuum E(SCF)= -340.847815 au, G= -340.781706 au ε(homo)= -7.2508 ε(lumo)= -0.7905 ev C 2.479549-0.959764 0.002339 H 3.091210-0.787970-0.888077 C 1.283270-0.053867-0.002535 H 3.112157-0.751508 0.870013 N 0.141983-0.636317-0.002518 N -0.957085 0.227138-0.004874 C -2.137000-0.047158-0.000443 O -3.301534-0.147669 0.003699 C 1.527168 1.425578-0.000221 H 2.207432 1.694508-0.812301 H 0.601736 1.986377-0.102576 H 2.017076 1.718167 0.933294 H 2.170453-2.002704 0.026962 S6
Isocyanate intermediate in liquid methanol E(SCF)= -340.851003 au, G= -340.785110 au ε(homo)= -7.2318 ev, ε(lumo)= -0.6207 ev C 2.504458-0.924260 0.003528 H 3.110113-0.725764-0.885415 C 1.289034-0.051830-0.002584 H 3.126544-0.692225 0.872768 N 0.158512-0.662394-0.004201 N -0.960608 0.178473-0.008051 C -2.139688-0.054865-0.000580 O -3.314025-0.123808 0.005964 C 1.499462 1.426445 0.000274 H 2.180185 1.702256-0.809094 H 0.568593 1.978922-0.105171 H 1.985159 1.721583 0.935466 H 2.236683-1.979805 0.025666 Norbornene in vacuum E= -272.817873 au, G= -272.693701 au ε(homo)= -6.5912 ev, ε(lumo)= 0.1690 ev C 1.188642 0.779888-0.515861 C 1.189134-0.779035-0.516125 C -0.088226 1.126607 0.323431 C -0.087707-1.126916 0.322628 H 1.142120 1.204318-1.518783 H 2.082206 1.175666-0.028650 H 1.143194-1.203095-1.519220 H 2.082862-1.174424-0.028856 C -0.040312-0.000528 1.379153 H -0.121796 2.151996 0.687268 H -0.907856-0.001045 2.039949 H 0.877250-0.000578 1.973069 H -0.120894-2.152558 0.685803 C -1.276091 0.667742-0.506925 C -1.275867-0.667820-0.507281 H -1.917479 1.322635-81969 H -1.917043-1.322543-82736 S7
Norbornene in liquid methanol E(SCF)= -272.824369 au, G= -272.700724 au ε(homo)= -6.5414 ev, ε(lumo)= 0.2199 ev C 1.185692 0.779138-0.518827 C 1.185673-0.779075-0.518957 C -0.087853 1.127605 0.324738 C -0.087905-1.127680 0.324504 H 1.137006 1.204938-1.521920 H 2.080324 1.173891-0.032567 H 1.137007-1.204698-1.522124 H 2.080303-1.173921-0.032759 C -0.035830-0.000155 1.379707 H -0.119596 2.153711 0.686749 H -0.898876-0.000225 2.048422 H 0.885050-0.000252 1.968064 H -0.119696-2.153855 0.686314 C -1.276054 0.668765-0.504643 C -1.276148-0.668585-0.504691 H -1.913398 1.324629-85517 H -1.913573-1.324299-85639 Transition state with norbornene in vacuum, one imaginary frequency at i307 cm -1 E(SCF)= -613.642416 au, G= -613.429403 au ε(homo)= -6.3414 ev, ε(lumo)= -1.3233 ev C -2.749243-1.644570-0.161861 C -3.377616-0.217932-0.119076 C -1.266601-1.392845 0.292111 C -2.183632 0.671378 0.339215 H -2.805415-2.107396-1.147936 H -3.236566-2.318874 0.545160 H -3.774500 0.097922-84431 H -4.193653-0.169101 0.604989 C -1.487272-0.276839 1.335828 H -0.737829-2.288962 0.610545 H -0.557595 0.119333 1.742834 H -2.137097-0.590662 2.154818 H -2.458550 1.659290 0.700969 C -0.659530-0.617051-0.848229 C -1.169956 0.660496-0.808057 H -0.207740-87388 -1.708715 H -1.301465 1.264521-1.697596 C 2.733527-2.106875-0.209940 H 3.459579-2.353293-0.990988 C 2.658109-0.623289-0.010660 H 3.076867-2.599468 0.705196 N 1.525391-0.046136-0.182176 S8
N 1.446678 1.281571-0.005353 C 0.359899 1.937399-0.141329 O -0.112530 3.022251-0.045453 C 3.903103 0.123113 0.379810 H 4.121897 0.903839-0.352624 H 3.757493 0.630692 1.336554 H 4.760310-0.545255 0.457760 H 1.765281-2.519159-0.487080 Transition state with norbornene in liquid methanol, one imaginary frequency at i313 cm -1 E= -613.656629 au, G= -613.444760 au ε(homo)= -6.5727 ev, ε(lumo)= -1.4458 ev C -2.861871-1.613869-0.133003 C -3.446326-0.170429-0.127507 C -1.370136-1.395752 0.316044 C -2.226849 0.695254 0.315247 H -2.929742-2.101532-1.106373 H -3.364837-2.253889 0.594384 H -3.829688 0.135315-1.102130 H -4.260744-0.077773 0.594108 C -1.560754-0.250411 1.334135 H -0.867869-2.300817 0.649451 H -0.619920 0.129428 1.734967 H -2.221069-0.526604 2.158244 H -2.480638 1.697222 0.655081 C -0.751801-0.665413-0.844721 C -1.216304 0.622698-0.831072 H -0.272931-1.160413-1.676184 H -1.289764 1.232747-1.724009 C 2.902347-2.086805-0.212030 H 3.658796-2.285973-0.977860 C 2.758426-0.612841-0.007206 H 3.254811-2.562603 0.708451 N 1.599739-0.094481-0.200233 N 1.477261 1.246721-0.022627 C 0.406306 1.893593-0.143905 O -0.087095 2.981655-0.048820 C 3.967330 0.174196 0.405009 H 4.202496 0.933528-0.345984 H 3.780407 0.701239 1.344486 H 4.834016-0.473646 0.531183 H 1.962222-2.546471-0.513176 S9
Product with norbornene in vacuum E= -613.697988 au, G= -613.477073 au ε(homo)= -5.7672 ev, ε(lumo)= -1.2052 ev C -2.073420-1.893468-0.205038 C -3.007899-0.645669-0.313521 C -0.796936-1.325550 0.463229 C -2.145316 0.485355 0.285109 H -1.865349-2.352775-1.173880 H -2.513854-2.664585 0.428613 H -3.308904-0.433248-1.340663 H -3.919467-0.787832 0.269673 C -1.391355-0.258504 1.405174 H -0.159408-2.080942 0.919207 H -0.643190 0.354058 1.908969 H -2.055417-0.691091 2.155511 H -2.690998 1.381224 0.572774 C -0.102841-0.461488-0.611929 C -0.994894 0.783482-0.702792 H 0.056063-0.990270-1.549594 H -1.352053 11680-1.707150 C 2.423991-2.006397-0.342115 H 3.265871-2.185529-17124 C 2.328631-0.545192-0.041872 H 2.632502-2.573680 0.571494 N 1.221476 0.128341-0.178041 N 1.178638 1.463400 0.067049 C -0.075127 1.921867-0.220930 O -0.445619 3.077303-0.104293 C 3.543457 0.191637 0.414423 H 3.789696 0.994053-0.286958 H 3.356926 0.687180 1.370532 H 4.392694-0.484194 0.509880 H 1.529300-2.421091-0.798432 Product with norbornene in liquid methanol E(SCF)= -613.733792 au, G= -613.513296 au ε(homo)= -6.1509 ev, ε(lumo)= -751 ev C -2.074080-1.891066-0.218361 C -3.005144-0.642208-0.324656 C -0.802118-1.332107 0.463442 C -2.148423 0.482390 0.294960 H -1.855751-2.340206-1.188978 H -2.519980-2.664350 0.408720 H -3.292767-0.417046-1.353197 H -3.921782-0.785321 0.250497 C -1.401424-0.273884 1.410768 S10
H -0.165409-2.091375 0.911534 H -0.655248 0.329468 1.930806 H -2.073317-0.712352 2.150603 H -2.705921 1.370010 0.588951 C -0.102924-0.464494-0.605354 C -0.994079 0.787529-0.691864 H 0.052011-0.985880-1.545778 H -1.352358 11599-1.697013 C 2.433196-1.992751-0.347887 H 3.286383-2.148539-13951 C 2.329842-0.539669-0.040248 H 2.649900-2.547825 0.570579 N 1.219451 0.115859-0.171647 N 1.161411 1.479501 0.069684 C -0.072880 1.904624-0.220010 O -0.439780 3.094107-0.110300 C 3.551118 0.184450 0.414408 H 3.833105 0.950715-0.313673 H 3.368620 0.700723 1.359577 H 4.379805-0.510637 0.536369 H 1.546421-2.416240-0.810091 C2H4 in vacuum E= -78.621545 au, G= -78.591454 au ε(homo)= -7.6511 ev, ε(lumo)= -0.1431 ev C 0.000000 0.000000 0.662898 H 0.000000 0.921589 1.233555 H 0.000000-0.921589 1.233555 C 0.000000 0.000000-0.662898 H 0.000000-0.921589-1.233555 H 0.000000 0.921589-1.233555 Transition state with C2H4 in vacuum, one imaginary frequency at i370 cm -1 E(SCF)= -419.443774 au, G= -419.326270 au ε(homo)= -6.5028 ev, ε(lumo)= -1.3747 ev C 2.093506 1.261541-0.000003 H 2.664802 1.193940 0.917030 H 2.664798 1.193936-0.917038 C 0.884186 1.902143-0.000001 H 0.437450 2.262099 0.916480 H 0.437446 2.262097-0.916481 C -2.618267 82284 0.000002 H -3.271111 60239-0.878013 C -1.701842-0.103279 0.000000 H -3.271113 60232 0.878016 N -0.435874 0.101871 0.000002 S11
N 0.407572-0.929984 0.000002 C 1.678816-0.779219 0.000001 O 2.703747-1.374140 0.000001 C -2.293482-1.484429-0.000003 H -3.382535-1.450179-0.000023 H -1.952202-2.042864-0.875093 H -1.952235-2.042853 0.875106 H -2.064662 2.019014 0.000007 Product with C2H4 in vacuum E(SCF)= -419.493153 au, G= -419.370094 au ε(homo)= -5.8535 ev, ε(lumo)= -1.2855 ev C 1.766563 1.182127 0.001508 H 2.278542 1.561179 0.884956 H 2.281666 1.563819-0.878945 C 0.280813 1.473280-0.000511 H -0.066911 2.000548 0.885747 H -0.064575 1.998814-0.888742 C -2.624373 0.928035-0.000066 H -3.273535 0.833753-0.876524 C -1.602864-0.162558 0.000258 H -3.272354 0.835411 0.877443 N -0.324024 0.083887-0.000220 N 0.592012-0.912366-0.000710 C 1.842591-0.362548-0.000314 O 2.888882-0.981983-0.001133 C -2.040350-1.588584 0.000824 H -3.127515-1.659470 0.001757 H -1.638403-2.113430-0.870111 H -1.636855-2.113257 0.871129 H -2.201302 1.929339-0.001332 S12
4. X-Ray Crystallography Ellipsoid Plots Figure S2. Ellipsoid plot and acquisition data for compound 2f. The raw data (cif file) is available at http://dx.doi.org/10.1021/ja305491t. S13
Figure S3. Ellipsoid plot and acquisition data for compound 3f. The raw data (cif file) is available at http://dx.doi.org/10.1021/ja305491t. S14
Figure S4. Ellipsoid plot and acquisition data for compound 5a. The raw data (cif file) is available at http://dx.doi.org/10.1021/ja305491t. S15
Figure S5. Ellipsoid plot and acquisition data for compound 5r. The raw data (cif file) is available as Supporting Information for this article. S16
Figure S6. Ellipsoid plot and acquisition data for compound 5ab. The raw data (cif file) is available as Supporting Information for this article. S17
Figure S7. Ellipsoid plot and acquisition data for compound 12j. The raw data (cif file) is available as Supporting Information for this article. S18
Figure S8. Ellipsoid plot and acquisition data for compound 18. The raw data (cif file) is available at http://dx.doi.org/10.1021/ol400542b. S19
Figure S9. Ellipsoid plot and acquisition data for compound 20a. The raw data (cif file) is available at http://dx.doi.org/10.1021/ja305491t. S20
5. Spectra 9.15 7.97 7.75 7.62 7.44 7.42 7.41 7.41 7.39 7.30 7.28 7.26 4 0.8 8.1 10 9 8 7 6 5 4 3 2 1 0 150.71 142.78 139.55 131.58 130.40 129.67 128.53 128.19 126.13 125.64 121.17 119.80 220 200 180 160 140 120 100 80 60 40 20 0 S21
182.4 160.6 141.7 141.2 140.2 139.4 132.2 131.7 13 130.9 129.4 129.2 128.0 125.8 120.8 119.7 116.8 113.5 110.8 72.0 55.3 40.7 9.15 9.12 7.60 7.59 7.58 7.46 7.39 7.36 7.30 7.28 7.28 7.26 7.07 6.82 6.80 6.32 6.32 6.29 6.28 3.74 3.51 3.48 3.46 3.43 2.77 2.76 2.72 2.71 5h 2.1 3.43.0 3.0 3.1 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0-0.5 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S22
9.13 9.11 7.54 7.54 7.52 7.42 7.26 7.24 7.22 7.22 7.16 6.97 6.95 6.94 6.78 6.50 6.48 4.02 3.46 3.44 3.42 3.39 2.59 2.58 2.55 2.54 5i 2.0 2.1 2.2 3.0 3.0 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0 183.1 155.0 141.5 140.4 140.1 132.0 131.4 130.7 130.0 129.0 127.9 125.3 124.1 121.8 120.6 119.6 110.5 67.6 55.8 39.4 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S23
9.17 9.15 7.61 7.60 7.59 7.47 7.39 7.37 7.31 7.26 7.16 6.34 6.34 6.32 3.53 3.51 3.49 3.47 2.79 2.79 2.75 2.30 5k 1 2 3 14 1 1 1 1 3 10 9 8 7 6 5 4 3 2 1 0 182.7 138.8 135.1 132.4 131.9 130.5 129.4 128.1 126.2 124.7 120.9 119.8 72.2 4 21.2 200 180 160 140 120 100 80 60 40 20 0 S24
9.15 9.13 7.67 7.60 7.58 7.48 7.26 7.21 7.20 7.19 7.10 7.08 6.51 6.50 3.59 3.57 3.55 3.53 2.70 2.69 2.65 2.65 5l 2.1 2.4 1.1 2.0 2.9 1.1 1.1 10 9 8 7 6 5 4 3 2 1 0 182.15 141.90 141.32 133.51 132.62 131.86 130.57 129.42 129.28 125.54 125.39 123 119.93 72.34 39.34 220 200 180 160 140 120 100 80 60 40 20 0 S25
9.10 9.08 7.59 7.57 7.45 7.44 7.44 7.31 7.28 7.26 7.21 7.09 6.33 6.31 3.53 3.50 3.49 3.46 2.74 2.70 2.69 5m 0.9 1.9 3.0 2.1 2.0 10 9 8 7 6 5 4 3 2 1 0 182.13 142.02 140.17 132.64 132.21 131.87 131.51 129.41 128.23 127.95 125.81 123.44 121.10 71.49 40.74 220 200 180 160 140 120 100 80 60 40 20 0 S26
4.1 4.3 1.1 1.8 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0 132.5 131.2 130.8 130.5 181.8 131.6 131.3 129.0 129.2 127.5 126.9 126.8 126.8 126.8 128.0 125.5 124.8 122.1 12 141.8 141.4 140.2 132.5 131.6 131.4 131.3 129.2 129.0 128.0 126.8 125.5 125.3 12 119.8 71.4 9.11 9.09 40.4 120.3 119.8 125.3 7.63 7.61 7.59 7.57 7.45 7.42 7.40 7.40 7.30 7.24 7.06 7.06 6.45 6.43 3.59 3.56 3.54 3.52 2.75 2.74 2.71 2.70 132 130 128 126 124 122 120 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S27
-62.82 19F NMR 20 0-20 -40-60 -80-100 -120-140 -160-180 -200-220 S28
183.46 142.09 140.27 132.57 131.68 131.40 131.22 128.51 128.44 126.36 125.65 121.49 120.10 64.50 47.53 9.01 8.99 7.70 7.65 7.63 7.62 7.60 7.49 7.47 7.46 7.46 7.26 5.41 5.39 5.38 5.35 4.89 4.87 4.85 4.84 4.38 4.37 4.36 4.35 1 1 4 41 1 1 1 1 10 9 8 7 6 5 4 3 2 1 0 200 180 160 140 120 100 80 60 40 20 0 S29
9.03 9.01 7.72 7.70 7.63 7.61 7.45 7.44 7.36 7.36 7.26 5.39 5.36 5.34 3.12 3.10 3.08 2.78 2.74 2.00 1.98 1.97 1.92 1.86 1.83 1.82 1.16 1.15 1 0.99 5o 0.9 0.9 1.9 1.9 1.8 0.9 0.9 0.9 2.5 2.8 2.9 10 9 8 7 6 5 4 3 2 1 0 183.41 142.17 140.15 139.97 132.13 131.97 131.71 131.20 129.40 128.12 125.53 121.27 119.75 67.95 42.81 35.79 26.13 23.69 21.48 220 200 180 160 140 120 100 80 60 40 20 0 S30
9.05 9.03 7.73 7.71 7.63 7.46 7.44 7.44 7.36 7.36 7.34 7.26 5.31 5.30 5.29 5.29 2.98 2.95 2.93 2.91 2.74 2.74 2.70 2.70 1.85 1.26 1.26 1.20 1.17 1.16 5 0.99 5p 2.1 3.1 2.0 2.1 2.3 1.1 5.4 10 9 8 7 6 5 4 3 2 1 0 183.85 142.07 131.90 131.87 131.54 130.87 129.99 129.32 128.37 124.95 121.25 119.68 72.56 40.78 32.16 29.65 26.13 25.93 25.37 24.10 220 200 180 160 140 120 100 80 60 40 20 0 S31
9.13 9.11 7.78 7.61 7.45 7.45 7.40 7.40 7.38 7.36 7.36 7.26 5.51 5.49 3.05 3.03 3.01 2.99 2.75 2.71 8 5q 1.1 2.03.1 0.9 9.0 10 9 8 7 6 5 4 3 2 1 0 183.46 142.84 142.18 139.97 132.18 131.34 130.96 129.27 127.68 126.33 129 119.64 76.25 38.48 35.26 27.11 220 200 180 160 140 120 100 80 60 40 20 0 S32
9.20 9.18 7.99 7.83 7.58 7.56 7.54 7.48 7.42 7.31 7.26 7.22 7.19 6.87 6.73 3.75 3.73 3.71 3.68 2.82 2.82 2.78 2.77 5s 2.1 2.2 6.13.9 2.2 1.1 1.3 1.2 10 9 8 7 6 5 4 3 2 1 0 182.74 141.88 140.51 132.63 129.94 129.66 129.44 128.29 127.88 126.76 121.70 120.92 119.92 70.35 40.11 220 200 180 160 140 120 100 80 60 40 20 0 S33
9.22 9.20 7.90 7.68 7.49 7.48 7.47 7.44 7.43 7.39 7.27 7.26 7.01 6.55 6.53 3.67 3.64 3.63 3.60 2.92 2.92 2.88 2.88 5t 1.1 2.1 1.1 2.1 6.1 2.9 1.1 1.2 10 9 8 7 6 5 4 3 2 1 0 182.46 142.15 140.69 132.18 130.36 129.52 128.30 127.92 127.21 127.06 126.30 123.55 124 72.45 40.91 220 200 180 160 140 120 100 80 60 40 20 0-20 S34
5v S35
185.4 141.8 139.4 139.1 131.7 131.6 131.2 130.6 129.6 129.0 128.1 125.1 12 119.4 73.5 45.5 3 30.6 26.5 26.5 8.93 8.93 8.91 8.91 7.62 7.55 7.55 7.40 7.39 7.38 7.37 7.30 7.28 7.26 5.49 5.49 5.47 5.45 5.45 3.43 3.41 3.39 2.49 2.46 2.44 2.28 2.27 2.25 2.24 1.87 1.84 1.84 1.82 1.82 1.79 1.58 1.55 5w 3.02.0 2.2 2.0 2.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S36
9.01 8.99 7.67 7.65 7.59 7.57 7.43 7.42 7.40 7.38 7.32 7.32 5.35 5.32 5.31 5.29 3.36 3.34 3.34 3.33 3.32 3.32 3.31 2.39 2.35 2.19 2.18 2.17 2.16 1.98 1.96 1.85 1.84 1.82 1.81 1.51 1.47 1.45 5y 3.0 2.0 2.0 1.92.0 3.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0 186.4 141.6 139.5 138.9 131.7 131.5 130.9 130.8 129.9 129.0 127.9 124.9 120.9 119.5 73.0 47.2 36.0 30.3 23.1 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S37
9.03 9.01 7.65 7.60 7.59 7.58 7.57 7.40 7.40 7.39 7.33 7.31 5.40 5.38 5.36 2.88 2.86 2.86 2.85 2.83 2.47 2.15 2.06 2.04 2.03 2.02 2.02 2.01 2.00 1.68 1.67 1.62 1.26 1.12 1.10 8 5z 2.0 2.2 2.2 3.1 5.3 1.1 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 0.5 0 185.0 141.7 139.5 139.3 132.0 131.7 131.4 130.8 129.9 129.2 128.0 124.7 12 119.5 73.8 45.6 31.9 29.7 28.1 26.0 24.8 21.8 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0-10 S38
7.71 7.69 7.61 7.39 7.37 7.31 7.30 7.30 7.26 5.78 4.94 3.19 3.19 3.17 2.44 2.43 2.42 2.07 2.06 1.71 1.70 1.68 1.61 1.58 1.56 1.45 7c 2.9 2.02.0 2.0 2.41.1 5.3 10 9 8 7 6 5 4 3 2 1 0 177.10 146.04 145.32 140.78 140.64 128.42 128.34 127.46 125.24 124.90 120.11 120.04 62.56 58.34 48.14 32.24 27.73 21.30 220 200 180 160 140 120 100 80 60 40 20 0 S39
8.91 5.32 2.42 2.40 2.34 2.33 2.13 2.12 1.47 1.44 1.39 1.35 1.10 1.10 8 10a 0.8 0.9 0.9 0.9 2.9 0.9 10 9 8 7 6 5 4 3 2 1 0 173.60 61.37 50.37 43.64 38.59 32.56 27.18 24.51 220 200 180 160 140 120 100 80 60 40 20 0 S40
11a S41
11b S42
11c S43
11d S44
11e S45
9.77 7.85 7.83 7.64 7.42 7.41 7.29 7.29 7.27 7.27 7.12 7.09 6.17 5.69 3.81 15b 1 2 2 24 2 1 1 3 10 9 8 7 6 5 4 3 2 1 0 161.2 159.6 146.7 143.5 140.1 130.3 128.6 127.5 124.4 122.7 120.3 114.5 92.0 62.2 55.3 200 180 160 140 120 100 80 60 40 20 0 S46
17c S47
S48 19b
S49 13c
20b S50
20c S51
20d S52
20e S53
20f S54