Supporting Information

Σχετικά έγγραφα
Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Electronic Supplementary Information

Supporting Information

Supplementary Material (ESI) for Organic & Biomolecular Chemistry This journal is (c) The Royal Society of Chemistry 2008

Supporting Information

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Supporting Information for

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Supporting information

Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

College of Life Science, Dalian Nationalities University, Dalian , PR China.

Supporting Information for

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information for

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supplementary Information for

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information

Supporting Information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Supplementary information

Supporting Information

The Free Internet Journal for Organic Chemistry

Pd-Catalyzed Oxidative Cross-Coupling of N-Tosylhydrazones. with Arylboronic Acids

Supporting Information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Divergent synthesis of various iminocyclitols from D-ribose

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information (ESI)

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information. Experimental section

Supporting Information. Experimental section

SUPPORTING INFORMATION. 1. General... S1. 2. General procedure for the synthesis of compounds 3 and 4 in the absence of AgOAc...

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

phase: synthesis of biaryls, terphenyls and polyaryls

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Aminofluorination of Fluorinated Alkenes

Supplementary Information for. Singlet excited state of BODIPY promoted aerobic crossdehydrogenative-coupling

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information

Supporting Information

Supporting Information. for. A novel application of 2-silylated 1,3-dithiolanes for the. synthesis of aryl/hetaryl-substituted ethenes and

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

multicomponent synthesis of 5-amino-4-

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

3018 Σύνθεση του 3-φαινυλοβενζοϊκού οξέος από 3-ιωδο βενζοϊκό οξύ

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

A straightforward metal-free synthesis of 2-substituted thiazolines in air

Transcript:

Supporting Information Wiley-VCH 2008 69451 Weinheim, Germany

Ligand-Free Pd-Catalyzed Highly Selective Arylation of Allylic Esters with Retention of the Traditional Leaving Group (Supporting Information) Delin Pan, a Anjun Chen, b Yijin Su, a Wang Zhou, a Si Li, a Wei Jia, a Juan Xiao, a Qingjian Liu, b Liangren Zhang, a and Ning Jiao*,a a State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Rd. 38, Beijing 100083, China b Department of Chemistry, Shandong Normal University, Jinan 250014, China E-mail: jiaoning@bjmu.edu.cn Fax: (+86)10-82805297 Supporting Information Table of Contents Screening with different catalysts, solvents, bases and additives Analytical data for compounds 3 S2 S4 1 H NMR and 13 C NMR spectra of those compounds S12 1

Table 1. The results of different Pd catalysts catalyzed reactions between bromobenzene 1b and allylic acetate 2a in different solvent. [a] PhBr + OAc Pd cat. (5 mol%) Ag 2 CO 3 (0.6 eq.) Ph OAc 1b 2a solvent E-3a enty solvent T ( o C) Pd-catalyst yield of E-3a (%) 1 benzene reflux PdCl 2 5 2 benzene reflux Pd 2 (dba) 3 trace 3 benzene reflux Pd(O 2 CCF 3 ) 2 5 4 benzene reflux Pd(CN) 2 Cl 2 7 5 [b] benzene reflux Pd(PPh 3 ) 4 20 6 DMF 120 Pd(OAc) 2 20 7 [c] 1,4-100 Pd(OAc) 2 39 dioxane 8 [c] toluene reflux Pd(OAc) 2 67 9 toluene reflux Pd(OAc) 2 61 10 [c] CH 3 CN 80 Pd(OAc) 2 0 11 [c] H 2 O 100 Pd(OAc) 2 0 [a] The reactions were carried out with bromobenzene 1b (0.6 mmol) and allylic acetate 2a (0.5 mmol) in solvent (3 ml) in the presence of Pd-catalyst (0.025 mmol) and Ag 2 CO 3 (0.3 mmol) refluxed for 24 h under air. [b] The reaction was carried out under N 2. [c] 1b (1.0 mmol) and 2a (0.5 mmol) were used. Table 2. The effect of ligands, bases and additives in the Pd(OAc) 2 catalyzed Heck reaction of bromobenzene 1b with allylic acetate 2a. [a] Pd(OAc) 2 (5 mol%) ligand (10 mol%) PhBr + OAc additives Ph OAc 1b 2a benzene, reflux, 24 h E-3a enty ligand base (eq.) additives (eq.) 1 Ag 2 CO 3 (1.0) 59 2 [b] Ag 2 CO 3 (0.4) 37 3 [b] Ag 2 CO 3 (0.2) 28 4 N H yield of E- 3a(%) Ph Ag 2 CO 3 (0.6) trace OH Ph 5 dppe Ag 2 CO 3 (0.6) 12 6 [c] PPh 3 Ag 2 CO 3 (0.6) 10 7 bipyridine Ag 2 CO 3 (0.6) 0 8 K 2 CO 3 (2.0) <5 9 K 2 CO 3 (2.0) Ag 2 CO 3 (0.6) <5 10 KOAc (2.0) trace 11 Et 3 N (2.0) <5 12 dppe Et 3 N (2.0) 0 13 AgNO 3 (1.2) 0 [a] The reactions were carried out with bromobenzene 1b (1.0 mmol) and allylic acetate 2a (0.5 mmol) in benzene (3 ml) in the presence of Pd(OAc) 2 (0.025 mmol), ligand (0.05 mmol) and Ag 2 CO 3 (0.3 mmol) refluxed for 24 h. [b] The reaction was refluxed in toluene. [c] 0.1 mmol of PPh 3 was used. 2

Table 3. The effect of silver salts and additives in the Pd(OAc) 2 catalyzed Heck reaction of iodobenzene 1a with allylic acetate 2a. [a] Pd(OAc) 2 (5 mol%) PhI + OAc silver salts additives Ph OAc 1a 2a benzene, reflux, 24 h under air E-3a enty Silver salts base (eq.) additives (eq.) yield of E-3a(%) (eq.) 1 Ag 2 O (0.6) 7 2 AgOAc (1.2) 55 3 Ag 2 CO 3 (0.6) H 2 O (2.0) 84 4 [b] Ag 2 CO 3 (0.6) oxone (2.0) 46 [a] The reactions were carried out with iodobenzene 1a (0.5 mmol) and allylic acetate 2a (1.0 mmol) in benzene (3 ml) in the presence of Pd(OAc) 2 (0.025 mmol), refluxed for 24 h. [b] The reaction was carried out under N 2. PhI + OAc Pd(OAc) 2 (1 mol%) Ag 2 CO 3 (0.6 eq) benzene, reflux, 48 h Ph OAc 1a 2a yield, 59 % E-3a PhBr + 1b 0.6 mmol Pd(OAc) 2 (5 mol%) OAc AgCO 3 (0.6 eq.) toluene, reflux, 48 h 2a under O 2 (1 atm) 0.5 mmol Ph E-3a Scheme 1 Ph OAc + Ph Ph Ph + 7 OAc Ph 8 OAc 54% 7% 17% 3

Ph OAc Experimental section: 1) E-3a (E)-3-(Phenyl)-2-propen-1-ol acetate (E-3a). [1] Typical procedure: To a mixture of Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) was added iodobenzene 1a (102 mg, 0.5 mmol) and allylic acetate 2a (100 mg, 1.0 mmol) subsequently. The resulting mixture was refluxed for 10 h monitored by TLC. After evaporation, the residue was carefully purified by flash chromatography on silica gel (eluent: petroleum ether/ether = 10:1) to afford 83 mg (94 %) of E-3a; The reaction of 1b (95 mg, 0.6 mmol), and 2a (50 mg, 0.5 mmol) refluxed in toluene (3 ml) afforded 57 mg (65%) of E-3a; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.20-7.43 (m, 5 H), 6.66 (d, J = 15.6 Hz, 1 H), 6.29 (dt, J = 15.6, 6.3 Hz, 1 H), 4.73 (d, J = 6.3 Hz, 2 H), 2.11 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.83, 136.15, 134.18, 128.58, 128.04, 126.57, 123.11, 65.05, 20.98; MS (70 ev): m/z (%): 176.2 (17) [M + ], 43 (100); IR (neat): ν = 1739, 1653, 1236, 1027 cm -1. OAc E-3b 2) Me (E)-3-(4 -Methylphenyl)-2-propen-1-ol acetate (E-3b). [2] The reaction of 1c (109 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 93 mg (98%) of E-3b; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.29 (d, J = 8.1 Hz, 2 H), 7.13 (d, J = 8.1 Hz, 2 H), 6.62 (d, J = 15.9 Hz, 1 H), 6.23 (dt, J = 15.9, 6.6 Hz, 1 H), 4.71 (dd, J = 6.6, 1.2 Hz, 2 H), 2.34 (s, 3 H), 2.09 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.88, 137.97, 134.25, 133.36, 129.29, 126.50, 122.00, 65.23, 21.21, 20.02; MS (70 ev): m/z (%): 190.3 (1.5) [M + ], 150.0 (100); IR (neat): ν = 1739, 1513, 1233 cm -1. CH 3 OAc 3) E-3c (E)-3-(2 -Methylphenyl)-2-propen-1-ol acetate (E-3c). The reaction of 1d (107 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in toluene (3 ml) afforded 82 mg (80%) of E-3c; The reaction of 1k (103 mg, 0.6 mmol), and 2a (50 mg, 0.5 mmol) Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in toluene (3 ml) afforded 67 mg (71%) of E-3c; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.39-7.49 (m, 1 H), 7.08-7.22 (m, 3 H), 6.87 (d, J = 15.7 Hz, 1 H), 6.17 (dt, J = 15.7, 6.4 Hz, 1 H), 4.74 (dd, J = 6.4, 1.2 Hz, 2 H), 2.35 (s, 3 H), 2.10(s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.80, 135.60, 135.24, 132.05, 130.27, 127.90, 126.08, 125.73, 124.39, 65.29, 20.99, 19.70; MS (70 ev): m/z (%): 190.1 (24.8) [M + ], 130.1 (100); IR (neat): ν = 1740, 4

1486, 1231, 1026, 966 cm -1 ; HRMS m/z (ESI) calcd for C 12 H 14 O 2 Na (M + Na) + 213.0886, found 213.0884; OAc E-3d 4) MeOOC (E)-3-(4 -Methoxycarbonylphenyl)-2-propen-1-ol acetate (E-3d). The reaction of 1e (65.5 mg, 0.25 mmol), 2a (50 mg, 0.5 mmol), Pd(OAc) 2 (2.8 mg, 0.0125 mmol) and Ag 2 CO 3 (41 mg, 0.15 mmol) in benzene (2 ml) afforded 82 mg (80%) of E-3d; The reaction of 1l (53.5 mg, 0.25 mmol), 2a (75 mg, 0.75 mmol), Pd(OAc) 2 (2.8 mg, 0.0125 mmol) and Ag 2 CO 3 (41 mg, 0.15 mmol) in toluene (5 ml) afforded 36 mg (65%) of E-3d, and 4 mg (7 %) of 1l was recovered; E-3d: solid; Mp (n-hexane/ethyl acetate): 55 56 ; 1 H NMR (CDCl 3, 300 MHz): δ = 8.00 (d, J = 8.25 Hz, 2 H), 7.45 (d, J = 8.25 Hz, 2 H), 6.69 (d, J = 16.1 Hz, 1 H), 6.40 (dt, J = 16.1, 6.15 Hz, 1 H), 4.76 (dd, J = 6.15, 0.8 Hz, 2 H), 3.91 (s, 3 H), 2.12 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.67, 166.67, 140.54, 132.67, 129.86, 129.35, 126.39, 125.87, 64.58, 52.04, 20.87; MS (70 ev): m/z (%): 234.2 (36.0) [M + ], 115.1 (100); IR (neat): ν = 1743, 1721, 1608, 1440, 1291, 1232 cm -1 ; Anal calcd for C 13 H 14 O 4 (%): C 66.66, H 6.02, Found: C 66.79, H 5.97. OAc E-3e 5) O 2 N (E)-3-(4 -Nitrylphenyl)-2-propen-1-ol acetate (E-3e). [3] The reaction of 1f (125 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 91 mg (81%) of E-3e; The reaction of 1m (101 mg, 0.5 mmol), 2a (150 mg, 1.5 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in toluene (5 ml) afforded 69 mg (62%) of E-3e, and 19 mg (19%) of 1m was recovered; E-3e: solid; 1 H NMR (CDCl 3, 300 MHz): δ = 8.20 (d, J = 8.85 Hz, 2 H), 7.53 (d, J = 8.85 Hz, 2 H), 6.72 (d, J = 15.9 Hz, 1 H), 6.46 (dt, J = 15.9, 5.85 Hz, 1 H), 4.78 (dd, J = 5.85, 1.2 Hz, 2 H), 2.14 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.52, 147.02, 142.52, 131.01, 128.16, 126.99, 123.90, 123.85, 64.13, 20.76; MS (70 ev): m/z (%): 221.2 (8.0) [M + ], 179.2 (100); IR (neat): ν = 2450, 1929, 1740, 1597, 1516, 1343, 1258, 1227, 1026, 447 cm -1. OAc E-3f 6) F (E)-3-(4 -Fluorophenyl)-2-propen-1-ol acetate (E-3f). The reaction of 1g (111 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 78 mg (80%) of E-3f; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.36 (dd, J = 8.7, 5.4 Hz, 2 H), 7.02 (t, J = 8.7 Hz, 2 H), 6.62 (d, J = 15.9 Hz, 1 H), 6.20 (dt, J = 15.9, 6.45 Hz, 1 H), 4.71 (dd, J = 6.45, 1.05 Hz, 2 H), 2.11 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.72, 162.48 (d, J = 246.87 Hz), 132.94, 5

132.28 (d, J = 3.70 Hz), 128.09 (d, J = 8.15 Hz), 122.84 (d, J = 2.49 Hz), 115.46 (d, J = 21.81 Hz), 64.87, 20.88; MS (70 ev): m/z (%): 194.2 (15.3) [M + ], 133.1 (100); IR (neat): ν = 1740, 1602, 1510, 1230, 1026, 967, 849 cm -1 ; HRMS m/z (ESI) calcd for C 11 H 11 F 1 O 2 Na (M + Na) + 217.0635, found 217.0636. OAc E-3g 7) Ph (E)-3-(4 -Phenylphenyl)-2-propen-1-ol acetate (E-3g). [2] The reaction of 1h (70 mg, 0.25 mmol), 2a (50 mg, 0.5 mmol), Pd(OAc) 2 (2.8 mg, 0.0125 mmol) and Ag 2 CO 3 (41 mg, 0.15 mmol) in benzene (3 ml) afforded 50 mg (79 %) of E-3g: solid; Mp: 94 97 (n-hexane/ethyl acetate); 1 H NMR (CDCl 3, 300 MHz): δ = 7.52-7.63 (m, 4 H), 7.40-7.50 (m, 4 H), 7.30-7.39 (m, 1 H), 6.69 (d, J = 15.75 Hz, 1 H), 6.33 (dt, J = 15.75, 6.53 Hz, 1 H), 4.75 (dd, J = 6.53, 1.05 Hz, 2 H), 2.12 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.83, 140.75, 140.48, 135.14, 133.71, 128.76, 127.37, 127.23, 127.00, 126.90, 123.15, 65.07, 21.00; MS (70 ev): m/z (%): 252.1 (93.5) [M + ], 178.0 (100); IR (neat): ν = 1736, 1488, 1384, 1362, 1252, 760 cm -1. OAc O E-3h 8) (E)-3-(4 -Acetylphenyl)-2-propen-1-ol acetate (E-3h). The reaction of 1i (58 mg, 0.25 mmol), 2a (50 mg, 0.5 mmol), Pd(OAc) 2 (2.8 mg, 0.0125 mmol) and Ag 2 CO 3 (41 mg, 0.15 mmol) in benzene (2 ml) afforded 45 mg (82 %) of E-3h: liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.92 (dd, J = 8.4, 1.65 Hz, 2 H), 7.47 (d, J = 8.4 Hz, 2 H), 6.69 (d, J = 15.9 Hz, 1 H), 6.41 (dt, J = 15.9, 6.25 Hz, 1 H), 4.76 (dd, J = 6.25, 1.2 Hz, 2 H), 2.60 (d, J = 2.7 Hz, 3 H), 2.13 (d, J = 3.0 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 197.42, 170.65, 140.69, 136.27, 132.51, 128.71, 126.57, 126.10, 64.54, 26.52, 20.87; MS (70 ev): m/z (%): 218.2 (34.5) [M + ], 176.1 (100); IR (neat): ν = 1740, 1681, 1603, 1361, 1267, 1232 cm -1 ; HRMS m/z (ESI) calcd for C 13 H 14 O 3 Na (M + Na) + 241.0835, found 241.0832. OAc E-3i 9) MeO (E)-3-(4 -Methoxyphenyl)-2-propen-1-ol acetate (E-3i). [4] The reaction of 1j (117 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in toluene (3 ml) afforded 83 mg (81%) of E-3i; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.33 (d, J = 8.7 Hz, 2 H), 6.86 (d, J = 8.7 Hz, 2 H), 6.61 (d, J = 15.7 Hz, 1 H), 6.16 (dt, J = 15.7, 6.64 Hz, 1H), 4.71 (d, J = 6.64 Hz, 2 H), 3.81 (s, 3 H), 2.10 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.83, 159.52, 133.98, 128.87, 127.80, 120.76, 113.94, 65.30, 55.20, 20.98; MS (70 ev): m/z (%):206.2 (97.3) [M + ], 163.2 (100); IR (neat): ν = 6

1738, 1608, 1513, 1248, 1032 cm -1. OAc S 10) E-3j (E)-3-(2 -Thienyl)-2-propen-1-ol acetate (E-3j). [5] The reaction of 1n (105 mg, 0.5 mmol), 2a (100 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 68 mg (75%) of E-3j; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.18 (d, J = 4.8 Hz, 1 H), 6.82-7.02 (m, 2 H), 6.78 (d, J = 15.6 Hz, 1 H), 6.11 (dt, J = 15.6, 6.52 Hz, 1 H), 4.68 (dd, J = 6.52, 1.35 Hz, 2 H), 2.09 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.77, 141.09, 127.35, 126.47, 124.89, 122.49, 64.69, 20.94; MS (70 ev): m/z (%): 182.2 (1.0) [M + ], 43.2 (100); IR (neat): ν = 2927, 1738, 1653, 1235, 1027 cm -1. C 4 H 9 OAc 11) E-3k (2E, 4E)-2,4-Nonadienyl-1-ol acetate (E-3k). [6] The reaction of 1o (105 mg, 0.5 mmol), 2a (150 mg, 1.5 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (10 ml) afforded 50 mg (55%) of E-3k; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 6.26 ( dd, J = 15.3, 10.5 Hz,1 H), 6.04 (dd, J = 15.3, 10.5 Hz 1 H), 5.59-5.82 (m, 2 H), 4.57 (d, J = 6.6 Hz, 2 H), 2.06 (s, 3 H), 2.00-2.15 (m, 2 H), 1.25-1.45 (m, 4 H), 0.89 (t, J = 6.9 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.86, 136.94, 135.10, 128.96, 123.73, 65.00, 32.28, 31.22, 22.18, 21.01, 13.89; MS (70 ev): m/z (%): 182.2 (1.1) [M + ], 81.0 (100); IR (neat): ν = 3431, 2960, 2927, 2858, 1742, 1661, 1261, 1097, 1025, 804 cm -1. Ph OAc 12) E-3l (2E, 4E)-5-Phenylpenta-2,4-dienyl-1-ol acetate (E-3l). [6] The reaction of 1p (105 mg, 0.46 mmol), 2a (150 mg, 1.5 mmol) Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (10 ml) afforded 61 mg (60%) of E-3l; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.12-7.45 (m, 5 H), 6.77 (dd, J = 15.6, 10.35 Hz, 1 H), 6.58 (d, J = 15.6 Hz, 1 H), 6.45 (dd, J = 15.45, 10.35 Hz, 1 H), 5.87 (dt, J = 15.45, 6.4 Hz, 1 H), 4.65 (d, J = 6.4 Hz, 2 H), 2.09 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.77, 136.83, 134.51, 133.74, 128.59, 127.78, 127.62, 126.81, 126.43, 64.73, 20.96; MS (70 ev): m/z (%): 202.1 (42.5) [M + ], 142.1 (100); IR (neat): ν = 1741, 1678, 1450, 1366, 1236, 991, 750, 694 cm -1. Ph OAc 13) E-3m (E)-4-Phenyl-3-buten-2-ol acetate (E-3m). [7] The reaction of 1a (102 mg, 0.5 mmol), 2b (114 mg, 1.0 7

mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 43 mg (45%) of E-3m; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.11-7.32 (m, 5 H), 6.52 (d, J = 15.98 Hz, 1 H), 6.11 (dd, J = 15.98, 6.75 Hz, 1 H), 5.38-5.50 (m, 1 H), 1.99 (s, 3 H), 1.33 (d, J = 6.6 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.30, 136.25, 131.49, 128.72, 128.52, 127.85, 126.50, 70.95, 21.36, 20.33; MS (70 ev): m/z (%): 190.1 (13.5) [M + ], 43.1 (100); IR (neat): ν = 2981, 1737, 1372, 1242, 1042, 749 cm -1. Et Ph OAc 14) E-3n (E)-1-Phenyl-1-penten-3-ol acetate (E-3n). [8] The reaction of 1a (102 mg, 0.5 mmol), 2c (128 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 89 mg (87%) of E-3n; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.11-7.35 (m, 5 H), 6.53 (d, J = 16.05 Hz, 1 H), 6.05 (dd, J = 16.05, 7.05 Hz, 1 H), 5.27 (q, J = 6.8 Hz, 1 H), 2.01 (s, 3 H), 1.55-1.75 (m, 2 H), 0.87 (t, J = 7.35 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.32, 136.27, 132.48, 128.46, 127.79, 127.41, 126.46, 75.90, 27.51, 21.22, 9.49; MS (70 ev): m/z (%): 204.3 (12.2) [M + ], 43.1 (100); IR (neat): ν = 2969, 1738, 1452, 1371, 1240, 1021, 965, 749 cm -1. Ph OAc 15) E-3o (E)-4-Methyl-1-phenyl-1-penten-3-ol acetate (E-3o). [9] The reaction of 1a (102 mg, 0.5 mmol), 2d (142 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 107 mg (98%) of E-3o; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.11-7.31 (m, 5 H), 6.51 (d, J = 15.9 Hz, 1 H), 6.03 (dd, J = 15.9, 7.3 Hz, 1 H), 5.12 (t, 7.3 Hz, 1 H), 1.99 (s, 3 H), 1.79-1.92 (m, 1 H), 0.88 (d, J = 6.6 Hz, 3 H), 0.86 (d, J = 6.6 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.25, 136.34, 133.21, 128.44, 127.74, 126.44, 126.01, 79.29, 32.21, 21.16, 18.15, 18.06; MS (70 ev): m/z (%): 218.0 (5.5) [M + ], 133.1 (100); IR (neat): ν = 2965, 1737, 1240, 1019, 970 cm -1. Ph Ph OAc 16) E-3p (E)-1,3-Diphenyl-2-propen-1-ol acetate (E-3p). [10] The reaction of 1a (212 mg, 2.0 mmol), 2e (378 mg, 2.10 mmol), Pd(OAc) 2 (22.4 mg, 0.1 mmol) and Ag 2 CO 3 (332 mg, 1.2 mmol) in toluene (10 ml) afforded 370 mg (73%) of E-3p; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.35-7.15 (m, 10 H), 6.55 (d, J = 15.6 8

Hz, 1 H), 6.36 (d, J = 6.9 Hz, 1 H), 6.26 (dd, J = 15.6, 6.9 Hz, 1 H), 2.05 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 169.97, 139.18, 136.09, 132.52, 128.53, 128.02, 127.43, 126.99, 126.64, 76.09, 21.30; MS (70 ev): m/z (%): 252.1 (17.8) [M + ], 105.1 (100); IR (neat): ν = 1739, 1494, 1370, 1232, 1019, 965, 747, 698 cm -1. Ph OAc 17) E-3q (E)-3-Phenyl-2-methyl-2-propen-1-ol acetate (E-3q). [11] The reaction of 1a (102 mg, 0.5 mmol), 2f (114 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 69 mg (73%) of 3q (E-3q/Z-3q = 80:20), they were difficult to separate and purify; E-3q: liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.20-7.41 (m, 5 H), 6.53 (s, 1 H), 4.64 (s, 2 H), 2.13 (s, 3 H), 1.90 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.90, 136.97, 132.70, 128.88, 128.21, 128.12, 126.74, 70.13, 21.00, 15.52; MS (70 ev): m/z (%): 190.1 (7.8) [M + ], 91.1 (100); IR (neat): ν = 1740, 1493, 1231, 1024, 700 cm -1. Ph O 2 N OAc 18) Z-3r (E)-3-(4 -Nitrylphenyl)-2-phenyl-2-propen-1-ol acetate (Z-3r). The reaction of 1f (124 mg, 0.5 mmol), 2g (180 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 138 mg (92%) of 3r (Z-3r/E-3r = 81:19), they were difficult to separate and purify; Z-3r: solid; Mp: 92 94 (n-hexane/ethyl acetate); 1 H NMR (CDCl 3, 300 MHz): δ = 8.26 (d, J = 8.7 Hz, 2 H), 7.47-7.59 (m, 4 H), 7.33-7.47 (m, 3 H), 7.09 (s, 1 H), 5.11 (s, 2 H), 2.03 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 170.71, 146.84, 143.21, 139.27, 130.82, 129.62, 128.68, 128.49, 126.45, 123.80, 61.42, 20.86; MS (70 ev): m/z (%):297.1 (16.5) [M + ], 255.1 (100); IR (neat): ν = 1722, 1593, 1514, 1342, 1249, 759 cm -1 ; HRMS m/z (ESI) calcd for C 17 H 15 NO 4 Na (M + Na) + 320.0893, found 320.0897. O 2 N Ph OAc E-3r (Z)-3-(4 -Nitrylphenyl)-2-phenyl-2-propen-1-ol acetate (E-3r). 1 H NMR (CDCl 3, 300 MHz): δ = 7.97 (d, J = 8.6 Hz, 2 H), 7.30-7.47 (m, 3 H), 7.16-7.23 (m, 2 H), 7.11 (d, J = 8.6 Hz, 2 H), 6.72 (s, 1 H), 4.94 (s, 2 H), 2.10 (s, 3 H). 9

O 2 N OAc Ph 19) E-3s (E)-3-(4 -Nitrylphenyl)-1-phenyl-2-propen-1-ol acetate (E-3s). The reaction of 1f (124 mg, 0.5 mmol), 2e (180 mg, 1.0 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 130 mg (87%) of E-3s: solid; Mp: 93 96 (n-hexane/ethyl acetate); 1 H NMR (CDCl 3, 300 MHz): δ = 8.17 (d, J = 8.8 Hz, 2 H), 7.51 (d, J = 8.8 Hz, 2 H), 7.31-7.46 (m, 5 H), 6.69 (d, J = 15.3 Hz, 1 H), 6.55 (d, J = 6.3 H, 1 H), 6.47 (dd, J = 15.3, 6.3 Hz, 1 H), 2.16 (s, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 169.83, 147.07, 142.53, 138.26, 132.30, 129.81, 128.73, 128.47, 127.17, 127.04, 123.93, 75.48, 21.18; MS (70 ev): m/z (%): 297.1 (2.1) [M + ], 191.1 (100); IR (neat): ν = 1739, 1598, 1513, 1343, 1238 cm -1 ; Anal calcd for C 17 H 15 NO 4 (%): C 68.68, H 5.09, N 4.71, Found: C 68.17, H 5.05, N 4.74. Ph Ph & OAc OAc 20) 3t 4 2-Cyclohexylidene-2-phenyl-ethanol acetate (3t) and 2-(1 -Cyclohexenyl)-2- phenyl-ethanol acetate (4). The reaction of 1a (102 mg, 0.5 mmol), 2h (252 mg, 1.5 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (10 ml) afforded 79 mg (65%) of 3t and 4 (3t/4 = 12:88), they were difficult to separate and purify; 4: liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.09-7.40 (m, 5 H), 5.59 (brs, 1 H), 4.47 (dd, J = 11.0, 7.5 Hz, 1H), 4.33 (dd, J = 11.0, 7.5 Hz, 1 H), 3.50 (t, J = 7.5 Hz, 1 H), 1.88-2.00 (m, 4 H), 1.98 (s, 3 H), 1.44-1.66 (m, 4 H); MS (70 ev): m/z (%): 245.1 (2.0) [M+1] +, 91.0 (100); IR (neat): ν = 2928, 1740, 1369, 1241, 1032, 702 cm -1. HRMS m/z (ESI) calcd for C 16 H 20 O 2 Na (M + Na) + 267.1356, found 267.1353. O O OMe 21) E-6 (E)-3-(Phenyl)-2-propen-1-ol mythyl carbonate (E-6). [2] The reaction of 1a (102 mg, 0.5 mmol), 5 (150 mg, 1.3 mmol), Pd(OAc) 2 (5.6 mg, 0.025 mmol) and Ag 2 CO 3 (83 mg, 0.3 mmol) in benzene (3 ml) afforded 90 mg (94%) of E-6; liquid; 1 H NMR (CDCl 3, 300 MHz): δ = 7.22-7.43 (m, 5 H), 6.69 (d, J = 15.7 Hz, 1 H), 6.31 (dt, J = 15.7, 6.3 Hz, 1 H), 4.79 (dd, J = 6.3, 1.2 Hz, 2 H), 3.80 (d, J = 1.2 Hz, 3 H); 13 C NMR (CDCl 3, 75.4 MHz): δ = 155.61, 135.97, 134.73, 128.57, 128.15, 126.63, 122.35, 68.36, 54.79; MS (70 ev): m/z (%): 192.0 (28.1) [M + ], 115.1 (100); IR (neat): ν = 1749, 1446, 1267, 968, 949 cm -1 10

References [1] I. S. Kim, G. R. Dong, Y. H. Jung, J. Org. Chem. 2007, 72, 5424-5426. [2] J. Lehmann, G. C. Lloyd-Jones, Tetrahedron. 1995, 51, 8863-8874. [3] K. Atsushi, T. Shigemitsu, Y. Kazumi, A. Hitoshi, H. Takashi, Chem. Pharm. Bull. 2002, 50,1060-1065. [4] M. Al-Masum, Y. Yamamoto, J. Am. Chem. Soc. 1998, 120, 3809-3810. [5] M. Iwasaki, Y. Kobayashi, J-P. Li, H. Matsuzaka, Y. Ishii, M. Hidai, J. Org. Chem. 1991, 56, 1922-1927. [6] Y. Ishii, C. Gao, W-X. Xu, M. Iwasaki, M. Hidai, J. Org. Chem. 1993, 58, 6818-6825. [7] M. B. Onaran, C. T. Seto, J. Org. Chem. 2003, 68, 8136-8141. [8] U. Kazmaier, F. L. Zumpe, Eur. J. Org. Chem. 2001, 4067-4076. [9] R. S. Atkinson, S. Ulukanli, P. J. Williams, J. Chem. Soc., Perkin Trans. 1, 1999, 2121-2128. [10] I. D. G. Watson, A. K. Yudin, J. Am. Chem. Soc. 2005, 127, 17516-17529. [11] M. Takashi, H. Masao, K. Tsuyoshi, J. Chem. Soc., Perkin Trans. 2, 1985, 1109-1116. 11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55