Supporting Information

Σχετικά έγγραφα
Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Electronic Supplementary Information

Supporting information

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Supporting Information

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information for

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Supplementary Information for

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information for

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

The Free Internet Journal for Organic Chemistry

gem-dichloroalkenes for the Construction of 3-Arylchromones

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information. Experimental section

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Supporting Information

Aminofluorination of Fluorinated Alkenes

Supporting Information

Supporting Information

Supplementary information

Supplementary Material

Divergent synthesis of various iminocyclitols from D-ribose

Supporting information

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information for

Electronic Supplementary Information

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

Supporting Information for

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Supporting Information

The Asymmetric Synthesis of CF3- Containing. Spiro[pyrrolidin-3,2 -oxindole] through the Organocatalytic. 1, 3-dipolar Cycloaddition Reaction

Eur. J. Inorg. Chem WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2007 ISSN SUPPORTING INFORMATION

Electronic Supplementary Information (ESI)

Asymmetric Synthesis of New Chiral β-amino Acid Derivatives by Mannich-type Reactions of Chiral N- Sulfinyl Imidates with N-Tosyl Aldimines

Supporting Information

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Supporting Information

Chiral Phosphoric Acid Catalyzed Asymmetric Synthesis of 2-Substituted 2,3-Dihydro-4-Quinolones by Protecting Group-Free Approach

Supplementary Material

Acrylate Esters for Synthesis of Chiral γ-lactams and Amino Acids

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supporting Information

Experimental procedure

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

An Enantioselective Oxidative C H/C H Cross-Coupling Reaction: Highly Efficient Method to Prepare Planar Chiral Ferrocenes

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Asymmetric Allylic Alkylation of Ketone Enolates: An Asymmetric Claisen Surrogate.

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Supporting Information

KOtBu-Mediated Stereoselective Addition of Quinazolines to. Alkynes under Mild Conditions

Transcript:

Supporting Information Enantioselective Epoxidation of Olefins with H 2 O 2 Catalyzed by Bioinspired Aminopyridine Manganese Complexes Duyi Shen,, Bin Qiu,, Daqian Xu, Chengxia Miao, Chungu Xia, and Wei Sun*, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China University of Chinese Academy of Sciences, Beijing 100049, PR China wsun@licp.cas.cn Contents S1 General remarks S2 Synthesis and characterization of chiral N4 ligands and the corresponding Mn II complexes S3 General procedure for asymmetric epoxidation of olefin S4 Table S1. Screening the carboxylic acid for the AE of styrene. S5 Table S2. Asymmetric Epoxidation of Various Olefins by PMCP NMe2 Mn (C1a) and H 2 O 2. S6 The gram-scale experiment for asymmetric epoxidation of trans-stilbene S7 Characterization data of epoxides S8 References S9 Copies of HPLC spectra S10 Copies of GC spectra S11 Copies of NMR spectra

S1 General remarks All chemicals were purchased from commercial sources and used as received, unless noted otherwise. Anhydrous solvents were purified using standard methods. 1 H and 13 C NMR spectra were recorded using a Bruker Avance III 400MHz spectrometer. 1 H and 13 C NMR spectroscopic chemical shifts (δ = values) were given in ppm relative to tetramethylsilane as an internal or the solvent signal (for 1 H: CDCl 3, δ = 7.26 ppm). ESI-MS spectra were collected using an Agilent 6530 Q-TOF LC-MS. Optical rotation was recorded with a Perkin-Elmer 341 polarimeter (sodium lamp, 1-dm cuvette, c in g/100 ml, 20 o C). GC analysis for ee values and yields were determined with an Agilent 6820 GC or 7890 GC with a Beta dex TM 120 column and a CP-Chirasil-Dex CB column. HPLC analysis for ee values was performed on a Waters-Breeze system (2487 Dual λ Absorbance Detector and 1525 Binary HPLC Pump). Chiralpak OD, OB and OJ columns were purchased from Daicel Chemical Industries, LTD. The derivatives of trans-stilbene were synthesized by Wittig reactions and the racemic of epoxides were prepared with mcpba.

S2 Synthesis and characterization of chiral N4 ligands and the corresponding Mn II complexes Scheme S1. Synthesie of the Ligands. Intermediates 2 1, 3 1, 4 2, 5 3 were prepared according to the reported methods. The ligands L1a-1c were synthesized from 5 and corresponding Grignard reagents as our previously reported procedures. 3 Ligand (R,R)-PMCP (L2a) was synthesized according to our previously reported procedures. 3 Ligand L2b was prepared from (1R,2R)-N 1,N 2 -dimethylcyclohexane-1,2-diamine from and 3 according to the reported method. 4 (1R,2R)-N 1,N 2 -bis((4-(dimethylamino)pyridin-2-yl)methyl)-n 1,N 2 -dimethylcyclohexane-1,2-diami ne (L2a, MCP NMe 2 ) Light yellow solid; [α] 20 D = -71 (c = 0.11, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.11 (d, J = 6.0 Hz, 2H), 6.92 (d, J = 2.6 Hz, 2H), 6.35 (dd, J = 6.0, 2.7 Hz, 2H), 3.75 (dd, J = 61.3, 14.2 Hz, 4H), 2.85 (s, 12H), 2.70-2.62 (m, 2H), 2.33 (s, 6H), 1.97 (d, J = 12.6 Hz, 2H), 1.79-1.71 (m, 2H), 1.26 (t, J = 10.2 Hz, 2H), 1.21-1.07 (m, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 161.2, 154.0, 148.6, 105.5, 105.1, 64.4, 60.7, 39.0, 36.8, 25.9, 25.7. HRMS calcd. for C24H39N6 [M+H] + : 411.3236, found: 411.3244.

(1R,2R,N 1 E,N 2 E)-N 1,N 2 -bis((4-(dimethylamino)pyridin-2-yl)methylene)cyclohexane-1,2-diamine (5) Yellow solid. 1 H NMR (400 MHz, CDCl 3 ) δ 8.25 (s, 2H), 8.17 (d, J = 5.9 Hz, 2H), 7.09 (d, J = 2.7 Hz, 2H), 6.42 (dd, J = 6.0, 2.8 Hz, 2H), 3.56-3.43 (m, 2H), 2.97 (s, 12H), 1.84 (dt, J = 21.6, 10.9 Hz, 6H), 1.58-1.41 (m, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 162.3, 154.7, 149.2, 107.5, 103.7, 73.5, 39.2, 32.8, 24.5. (1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(phenyl)methyl)cyclohexane-1,2-diamine (6a) Orange solid. 1 H NMR (400 MHz, CDCl 3 ) δ 8.16 (d, J = 5.9 Hz, 2H), 7.55 (d, J = 7.2 Hz, 4H), 7.26 (t, J = 7.5 Hz, 4H), 7.17 (t, J = 7.3 Hz, 2H), 6.68 (d, J = 2.5 Hz, 2H), 6.32 (dd, J = 5.9, 2.6 Hz, 2H), 4.97 (s, 2H), 2.95 (s, 12H), 2.29-2.23 (m, 2H), 2.05 (d, J = 12.6 Hz, 2H), 1.57 (d, J = 7.8 Hz, 2H), 1.05 (t, J = 10.1 Hz, 2H), 0.94 (ddd, J = 17.3, 10.2, 4.9 Hz, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 163.8, 154.9, 149.1, 143.5, 128.3, 127.8, 126.8, 105.1, 104.3, 65.9, 59.2, 39.1, 31.6, 24.9. (1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(phenyl)methyl)-n 1,N 2 -dimethylcyclohexa ne-1,2-diamine (L1a, PMCP NMe 2 ) Yellow solid; [α] 20 D = -100 (c = 0.2, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.13 (d, J = 5.9 Hz, 2H), 7.63 (d, J = 7.3 Hz, 4H), 7.24 (t, J = 7.5 Hz, 4H), 7.17 (t, J = 7.3 Hz, 2H), 7.04 (d, J = 2.3 Hz, 2H), 6.35 (dd, J = 5.9, 2.4 Hz, 2H), 4.88 (s, 2H), 3.02 (s, 12H), 2.61 (d, J = 8.9 Hz, 2H), 2.20 (s, 6H), 1.86 (d, J = 12.4 Hz, 2H), 1.52 (d, J = 7.6 Hz, 2H), 1.08 (d, J = 8.8 Hz, 2H), 0.78 (t, J = 9.5 Hz, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 163.1, 155.0, 148.9, 142.1, 128.8, 128.1, 127.0, 105.3, 105.1, 77.4, 77.0, 76.7, 75.6, 65.9, 59.7, 39.2, 34.2, 25.5, 24.3. HRMS calcd. for C36H47N6 [M+H] + : 563.3862, found: 563.3834. (1R,2R)-N 1,N 2 -bis((r)-(4-(tert-butyl)phenyl)(4-(dimethylamino)pyridin-2-yl)methyl)-n 1,N 2 -dimet

hylcyclohexane-1,2-diamine (L1b, BPMCP NMe 2 ) Yellow solid; [α] 20 D = -184 (c = 0.1, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.13 (d, J = 5.9 Hz, 2H), 7.50 (d, J = 8.2 Hz, 4H), 7.24 (d, J = 8.3 Hz, 4H), 7.08 (d, J = 2.3 Hz, 2H), 6.34 (dd, J = 5.8, 2.3 Hz, 2H), 4.88 (s, 2H), 3.01 (s, 12H), 2.64 (d, J = 8.8 Hz, 2H), 2.23 (s, 6H), 1.79 (d, J = 11.8 Hz, 2H), 1.50 (d, J = 7.2 Hz, 2H), 1.26 (s, 18H), 1.09 (d, J = 4.1 Hz, 2H), 0.79 (p, J = 10.8 Hz, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 163.9, 155.0, 149.4, 148.9, 138.8, 128.5, 124.9, 105.3, 104.9, 75.4, 60.0, 39.2, 34.4, 34.1, 31.4, 25.6, 25.4. HRMS calcd. for C44H63N6 [M+H] + : 675.5114, found: 675.5120. (1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(naphthalen-1-yl)methyl)-n 1,N 2 -dimethylc yclohexane-1,2-diamine (L1c, 1-NMCP NMe 2 ) Yellow solid; [α] 20 D = -154 (c = 0.13, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.73 (d, J = 6.9 Hz, 2H), 8.60 (d, J = 8.5 Hz, 2H), 8.17 (d, J = 6.0 Hz, 2H), 7.79 (d, J = 7.7 Hz, 2H), 7.68 (d, J = 8.1 Hz, 2H), 7.48-7.39 (m, 6H), 6.98 (d, J = 2.3 Hz, 2H), 6.33 (dd, J = 6.0, 2.4 Hz, 2H), 5.80 (s, 2H), 2.94 (s, 12H), 2.72 (d, J = 8.9 Hz, 2H), 2.13 (s, 6H), 2.00 (d, J = 12.5 Hz, 2H), 1.49-1.41 (m, 2H), 1.20-1.08 (m, 2H), 0.69 (t, J = 9.8 Hz, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 163.2, 154.7, 148.6, 139.1, 133.8, 132.1, 128.6, 127.1, 126.6, 125.8, 125.7, 125.1, 124.3, 106.1, 105.4, 69.4, 60.0, 39.0, 35.5, 25.4, 24.4. HRMS calcd. for C44H51N6 [M+H] + : 663.4175, found: 663.4178. Scheme S2. Synthesis of the corresponding manganese (II) complexes C1a-c.

C1a, PMCP NMe 2 Mn, brown solid; [Mn II (L1a)(OTf) 2 ] HRMS calcd. for C37H46F3MnN6O3S [M-OTf] + : 766.2681, found: 766.2685. C1b, BPMCP NMe 2 Mn, brown solid; [Mn II (L1b)(OTf) 2 ] HRMS calcd. for C45H62F3MnN6O3S [M-OTf] + : 878.3937, found: 878.3940. C1c, NMCP NMe 2 Mn, brown solid; [Mn II (L1c)(OTf) 2 ] HRMS calcd. for C46H50F3MnN6O3S [M-OTf] + : 866.2998, found: 866.3003. C2b, MCP NMe 2 Mn, brown solid; [Mn II (L2b)(OTf) 2 ] HRMS calcd. for C24H38MnN6 [M-2OTf] 2+ : 232.6269, found: 232.6285.

S3 General procedure for asymmetric epoxidation of olefin. In a typical reaction, a MeCN (1 ml) solution of substrate (0.5 mmol), Mn catalyst (0.05 0.40 mol%) and carboxylic acid (25 100 mol%) was added in a 10 ml flask at room temperature without any inert-gas protection. Then H 2 O 2 (1.3 2.0 equiv, diluted from a 30% aqueous solution in 0.5 ml of MeCN) was added via a syringe pump over 1 h with stirring at 30 o C. At this point, decane was added to the mixture as internal standard. The reaction was quenched with saturated NaHCO 3 aqueous solution, saturated Na 2 S 2 O 3 aqueous solution and extracted with ether. The organic layer was dried over anhydrous Na 2 SO 4 and then determined by GC and GC-MS or directly loaded on a column chromatography with silica gel to get pure products (Table 2, entries 4, 9-11 and 14; Table S2 and 1-7.). Specially, 0.3 mmol substrates and mixed solvent of MeCN and CH 2 Cl 2 (v: v = 1: 1) were adopted in the cases of stilbene, chalcone and their derivatives. S4 Table S1. Screening the Carboxylic Acid (CA) for the AE of Styrene. a entry CA GC conv (%) GC yield (%) ee (%) 1 AA 16 12 63 2 4-MVA 69 55 67 3 4-PBA 99 84 65 4 CHA 75 59 71 5 EBA 99 82 77 6 EHA 99 84 77 7 PVA 99 83 76 8 ACA 99 81 74 9 DMBA 99 84 78 10 rac-ibu 51 39 65 11 S-Ibu 82 68 65 12 b D-CPA 99 83 75 13 Boc-L-Pro 81 68 63 a Reaction conditions: H 2 O 2 (30% aqueous solution, 1.3 equiv.) diluted with 0.5 ml of MeCN was delivered through syringe pump over 1 h to a stirred solution of PMCP NMe2 Mn, C1a catalyst (0.1 mol %), acid additives (25 mol %), internal standard (decane) and substrate (0.5 mmol) in 1.0 ml of MeCN at 30 o C. b The amount of CPA was 15 mol %.

S5 Table S2. Asymmetric epoxidation of various olefins by PMCP NMe2 Mn (C1a) and H 2 O 2. a entry substrate conv (%) Yield (%) b ee (%) c 1 99 78 42 2 d R 1 = H, R 2 = Me 99 95 93 3 d R 1 = Me, R 2 = H 99 90 98 4 d R 1 = H, R 2 = Cl 99 94 90 a Reaction conditions: For styrene derivatives, H 2 O 2 (30% aqueous solution, 1.3 equiv) diluted with 0.5 ml of MeCN was delivered through syringe pump over 1 h to a stirred solution of C1a (0.1 mol %), DMBA (25 mol %), internal standard (decane) and substrate (0.5 mmol) in 1.0 ml of MeCN at 30 o C; For stilbene derivatives, the scale of substrates were 0.3 mmol while the solvent was a mixture of MeCN and CH 2 Cl 2 (v:v = 1:1). b Isolated yields. c The ee values were measured by HPLC with chiral columns. d The reaction conditions were as follow, H 2 O 2 (30% aqueous solution, 2 equiv) diluted with 0.5 ml of MeCN was delivered through syringe pump over 1 h to a stirred solution of C1a (0.4 mol %), DMBA (100 mol %) and substrate (0.5 mmol) in 1.0 ml of MeCN in the air at -30 o C. S6 The gram-scale experiment for asymmetric epoxidation of trans-stilbene Substrate trans-stilbene (6 mmol, 1.08 g), Mn catalyst C1a (0.1 mol %), DMBA (25 mol %) were dissolved in a mixed solution (15 ml, MeCN:CH 2 Cl 2 = 1:2) and stirred at -30 o C. Then H 2 O 2 solution (1.3 equiv, diluted from a 30% aqueous solution in 5 ml MeCN) was added via a syringe pump over 1 h. After the dropping was completed, the reaction mixture was dried over anhydrous Na 2 SO 4. The solvent was eliminated at reduced pressure while the residue was purified by silica gel column chromatography to afford trans-stilbene oxide (68% yield, 88% ee) as white solid. Recrystallization of the crude product from hot petroleum ether afforded the epoxide with a 93% ee.

S7 Characterization data of epoxides 2-(p-Tolyl)oxirane (Table 2, entry 4) 5 O Oil (46.9 mg, 70% yield, 67% ee); [α] 20 D = +20 (c = 0.18, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.17 (s, 4H), 3.84 (dd, J = 4.0, 2.6 Hz, 1H), 3.14 (dd, J = 5.4, 4.1 Hz, 1H), 2.80 (dd, J = 5.4, 2.6 Hz, 1H), 2.35 (s, 3H). 13 C NMR (101 MHz, CDCl 3 ) δ 138.0, 134.5, 129.2, 125.5, 52.4, 51.2, 21.2. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 99:1, flow rate: 0.5 ml/min, 220 nm, t r = 12.706 min and 14.309 min). trans-stilbene oxide (Table 2, entry 10) 6 Solid (50.6 mg, 86% yield, 88% ee); [α] 20 D = +273 (c = 0.31, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.42-7.31 (m, 10H), 3.87 (s, 2H). 13 C NMR (100 MHz, CDCl 3 ) δ 137.1, 128.6, 128.3, 125.5, 62.9. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 7.572 min and 11.534 min). 2-(4-Fluorophenyl)-3-phenyloxirane (Table 2, entry 11) 7 Solid (51.4 mg, 80% yield, 88% ee); [α] 20 D = +205.5 (c = 0.56, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.34 (tdd, J = 14.0, 6.8, 1.6 Hz, 7H), 7.07 (t, J = 8.7 Hz, 2H), 3.84 (dd, J = 9.3, 1.6 Hz, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 141.0, 135.8, 135.5, 129.2, 128.4, 127.9, 127.8, 127.7, 127.6, 126.8, 126.4 126.8, 126.4, 68.7, 68.1. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 7.905 min and 9.970 min). 2-Phenyl-3-(p-tolyl)oxirane (Table 2, entry 12) 7 Solid (35.9 mg, 57% yield, 80% ee); [α] 20 D = +200 (c = 0.27, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.43-7.28 (m, 5H), 7.21 (dd, J = 21.3, 8.0 Hz, 4H), 3.89-3.79 (m, 2H), 2.36 (s, 3H). 13 C NMR (101 MHz, CDCl 3 ) δ 138.2, 137.3, 134.2, 129.3, 128.6, 128.3, 127.7, 127.6, 126.6, 125.2, 67.2, 63.1, 21.3. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 6.939 min and 8.263 min).

2-Phenyl-3-(o-tolyl)oxirane (Table 2, entry 13) 8 Oil (49.2 mg, 78% yield, 90% ee); [α] 20 D = +74 (c = 0.14, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.33-7.26 (m, 6H), 7.18-7.15 (m, 2H), 7.11-7.09 (m, 1H), 3.92 (d, J = 1.9 Hz, 1H), 3.69 (d, J = 2.0 Hz, 1H), 2.28 (s, 3H). 13 C NMR (101 MHz, CDCl 3 ) δ 137.30, 135.90, 135.55, 129.83, 128.60, 128.30, 127.77, 126.21, 125.49, 124.01, 61.92, 50.91, 18.92. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 92:8, flow rate: 0.5 ml/min, 210 nm, tr = 14.138 min and 18.565 min). 2,3-Bis(4-(tert-butyl)phenyl)oxirane (Table 2, entry 14) 9 Solid (73.1 mg, 79% yield, 52% ee); [α] 20 D = +97.4 (c = 1.11, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.40 (d, J = 8.3 Hz, 2H), 7.28 (d, J = 8.3 Hz, 2H), 3.85 (s, 1H), 1.33 (s, 9H). 13 C NMR (101 MHz, CDCl 3 ) δ 151.4, 134.4, 125.5, 125.3, 62.7, 34.7, 31.4. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 4.753 min and 6.040 min). cis-stilbene oxide (Table 2, entry 15) 10 Solid (mixture of cis- and trans-epoxides (7:3) 39.4 mg, 67% yield; trans-epoxide, 28% ee ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.16 (s, 10H), 4.34 (s, 2H). 13 C NMR (101 MHz, CDCl 3 ) δ 134.4, 127.8, 127.5, 126.9, 59.8. 2,2,3-Triphenyloxirane (Table S2, entry 16) 6 Solid (40.0 mg, 49% yield, 64% ee); [α] 20 D = -45.7 (c = 0.42, CHCl 3 ). 1 H NMR (400 MHz, CDCl 3 ) δ 7.40-7.25 (m, 5H), 7.23-7.16 (m, 5H), 7.16-7.09 (m, 3H), 7.03 (dd, J = 6.5, 3.1 Hz, 2H), 4.32 (s, 1H). 13 C NMR (101 MHz, CDCl 3 ) δ 164.0, 161.6, 136.9, 132.90 (d, J = 3.0 Hz), 128.54 (d, J = 18.3 Hz), 127.21 (d, J = 8.3 Hz), 125.5, 115.7, 115.5, 62.8, 62.3. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 80:20, flow rate: 1 ml/min, 254 nm, t r = 4.447 min and 7.904 min).

2,2-Dimethyl-2,7b-dihydro-1aH-oxireno[2,3-c]chromene-6-carbonitrile (Table 3, entry 20) 11 Solid (57.3 mg, 95% yield, 98% ee); [α] 20 D = -60 (c = 0.55, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ = 7.66 (d, J = 2.0 Hz, 1H), 7.53 (dd, J = 8.5, 2.1 Hz, 1H), 6.87 (d, J = 8.5 Hz, 1H), 3.91 (d, J = 4.3 Hz, 1H), 3.54 (d, J = 4.4 Hz, 1H), 1.60 (s, 3H), 1.30 (s, 3H); 13 C NMR (100 MHz, CDCl 3 ) δ = 156.5, 134.4, 133.8, 121.1, 119.0, 118.7, 104.3, 74.7, 62.3, 49.8, 25.5, 23.0. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254 nm, t r = 11.564 min and 14.055 min). 2-Methyl-2,3-diphenyloxirane (Table S2, entry 1) 6 Solid (49.2 mg, 78% yield, 42% ee); [α] 20 D = +45.2 (c = 0.31, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 7.48-7.42 (m, 2H), 7.41-7.34 (m, 6H), 7.33-7.27 (m, 2H), 3.97 (s, 1H), 1.46 (s, 3H). 13 C NMR (101 MHz, CDCl 3 ) δ 142.4, 136.0, 128.5, 128.2, 127.65 (d, J = 16.2 Hz), 126.6, 125.2, 67.2, 63.1, 16.8. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 80:20, flow rate: 1 ml/min, 254 nm, t r = 4.553 min and 7.765 min). (3-Phenyloxiran-2-yl)(p-tolyl)methanone (Table S2, entry 2) 12 Solid (113.2 mg, 95% yield, 93% ee); [α] 20 D = + 192.8 (c = 0.6, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 7.92 (d, J = 8.2 Hz, 2H), 7.39 (d, J = 4.8 Hz, 5H), 7.28 (d, J = 8.0 Hz, 2H), 4.28 (d, J = 1.9 Hz, 1H), 4.07 (d, J = 1.8 Hz, 1H), 2.42 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 192.6, 145.1, 135.7, 133.1, 129.6, 129.0, 128.8, 128.5, 125.8, 61.0, 59.3, 21.8. The optical purity was determined by HPLC (Chiralcel OB-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r = 17.96 min and 22.51 min). Phenyl(3-(p-tolyl)oxiran-2-yl)methanone (Table S2, entry 3) 13 Solid (107.2 mg, 90% yield, 98% ee); [α] 20 D = + 239.2 (c = 0.6, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.00 (dd, J = 5.2, 3.3 Hz, 2H), 7.66-7.59 (m, 1H), 7.49 (dd, J = 10.7, 4.8 Hz, 2H), 7.27 (d, J = 7.8 Hz, 2H), 7.22 (d, J = 8.1 Hz, 2H), 4.30 (d, J = 1.9 Hz, 1H), 4.04 (d, J = 1.8 Hz, 1H), 2.38 (s, 3H). 13 C NMR (100 MHz, CDCl 3 ) δ 139.1, 135.5, 134.0, 132.5, 129.5,

128.9, 128.3, 125.8, 61.1, 59.5, 21.3. The optical purity was determined by HPLC (Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r = 7.70 min and 8.65 min). (4-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (Table S2, entry 4) 13 Solid (121.6 mg, 94% yield, 90% ee); [α] 20 D = + 181.7 (c = 0.6, CHCl 3 ) 1 H NMR (400 MHz, CDCl 3 ) δ 8.00-7.94 (m, 2H), 7.50-7.45 (m, 2H), 7.43-7.39 (m, 3H), 7.38-7.34 (m, 2H), 4.24 (d, J = 1.9 Hz, 1H), 4.08 (d, J = 1.8 Hz, 1H). 13 C NMR (100 MHz, CDCl 3 ) δ 140.6, 135.2, 133.7, 129.8, 129.2, 128.8, 125.8, 61.1, 59.4. The optical purity was determined by HPLC (Chiralcel OJ, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r =15.56 min and 18.50 min). S8 References (1) Zhang, C. X.; Kaderli, S.; Costas, M.; Kim, E.; Neuhold, Y. M.; Karlin, K. D.; Zuberbuhler, A. D. Inorg. Chem. 2003, 42, 1807. (2) Comba, P.; Morgen, M.; Wadepohl, H. Inorg. Chem. 2013, 52, 6481. (3) Wu, M.; Wang, B.; Wang, S.; Xia, C.; Sun, W. Org. Lett. 2009, 11, 3622. (4) Cusso, O.; Garcia-Bosch, I.; Ribas, X.; Lloret-Fillol, J.; Costas, M. J. Am. Chem. Soc. 2013, 135, 14871. (5) Dai, W.; Shang, S.; Chen, B.; Li, G.; Wang, L.; Ren, L.; Gao, S. J. Org. Chem. 2014, 79, 6688. (6) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J. Am. Chem. Soc. 2007, 119, 11224. (7) Niwa, T.; Nakada, M. J. Am. Chem. Soc. 2012, 134, 13538. (8) Illa, O.; Namutebi, M.; Saha, C.; Ostovar, M.; Chen, C. C.; Haddow, M. F.; Nocquet-Thibaut, S.; Lusi, M.; McGarrigle, E. M.; Aggarwal, V. K. J. Am. Chem. Soc. 2013, 135, 11951. (9) Gelalcha, F. G.; Bitterlich, B.; Anilkumar, G.; Tse, M. K.; Beller, M. Angew. Chem. Int. Ed. 2007, 46, 7293. (10) Chatterjee, D. J. Mol. Catal. A-Chem. 2009, 310, 174. (11) Shen, D.; Miao, C.; Wang, S.; Xia, C.; Sun, W. Eur. J. Inorg. Chem. 2014, 5777. (12) Lu, J.; Xu, Y.-H.; Liu, F.; Loh, T.-P. Tetrahedron Lett. 2008, 49, 6007. (13) Li, Y.; Liu, X.; Yang, Y.; Zhao, G. J. Org. Chem. 2007, 72, 288.

S9 Copies of HPLC spectra 2-(p-Tolyl)oxirane (Table 2, entry 4, 67% ee) O Chiralcel OD-H, 25 o C, hexane/isopropanol 99:1, flow rate: 0.5 ml/min, 220 nm, t r = 12.706 min and 14.309 min. 2.00 1.50 AU 1.00 12.982 14.100 0.50 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 Minutes 1.40 1.20 AU 1.00 0.80 0.60 12.706 0.40 0.20 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 Minutes 14.309

trans-stilbene oxide (Table 2, entry 10, 88% ee) O Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 7.572 min and 11.534 min. 0.80 0.60 AU 0.40 0.20 7.744 11.845 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Minutes 0.30 0.25 0.20 11.534 AU 0.15 0.10 0.05 7.572 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Minutes trans-stilbene oxide (Scheme 2, Recrystallization, 93% ee) 0.60 0.50 AU 0.40 0.30 10.713 0.20 0.10 7.427 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Minutes

2-(4-Fluorophenyl)-3-phenyloxirane (Table 2, entry 11, 88% ee) O F Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 7.905 min and 9.970 min. 0.80 0.70 0.60 AU 0.50 0.40 0.30 7.801 9.442 0.20 0.10 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Minutes 0.80 0.70 0.60 AU 0.50 0.40 9.970 0.30 0.20 0.10 7.905 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Minutes

2-Phenyl-3-(p-tolyl)oxirane (Table 2, entry 12, 80% ee): O Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 6.939 min and 8.263 min 1.00 0.80 AU 0.60 0.40 6.971 8.302 0.20 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 Minutes 1.00 0.80 0.60 AU 0.40 8.263 0.20 6.939 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Minutes

2-Phenyl-3-(o-tolyl)oxirane (Table 2, entry 13, 90% ee) Chiralcel OD-H, 25 o C, hexane/isopropanol 92:8, flow rate: 0.5 ml/min, 210 nm, tr = 14.138 min and 18.565 min. A U 2.00 1.00 1 4. 1 3 2 1 8. 5 1 1 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Minutes Name Retention Time Peak Type Area % Area Height % Height 2 18.511 Unknown 53215643 50.80 1983370 44.11 1 14.132 Unknown 51547785 49.20 2512895 55.89 A U 2.00 1.00 1 3.7 0 0 1 7.9 3 6 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Minutes Name Retention Time Peak Type Area % Area Height % Height 1 13.700 Unknown 4389414 5.01 204765 6.80 2 17.936 Unknown 83208452 94.99 2806002 93.20

2,3-Bis(4-(tert-butyl)phenyl)oxirane (Table 2, entry 14, 52% ee) t-bu t-bu O Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 0.8 ml/min, 254 nm, t r = 4.753 min and 6.040 min. 2.00 1.50 AU 1.00 4.772 6.082 0.50 0.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 Minutes 1.00 0.80 AU 0.60 4.753 0.40 0.20 6.040 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 Minutes

2,2,3-Triphenyloxirane (Table 2, entry 16, 63% ee) Ph O Chiralcel OD-H, 25 o C, hexane/isopropanol 80:20, flow rate: 1 ml/min, 254 nm, t r = 4.447 min and 7.904 min. 1.00 0.80 0.60 AU 0.40 0.20 4.472 8.046 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Minutes 1.20 1.00 0.80 AU 0.60 7.904 0.40 0.20 4.447 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 Minutes

2,2-Dimethyl-2,7b-dihydro-1aH-oxireno[2,3-c]chromene-6-carbonitrile (Table 2, entry 20, 98% ee) NC O O Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254 nm, t r = 11.564 min and 14.055 min. 2.00 1.50 AU 1.00 11.578 14.097 0.50 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 16.00 17.00 18.00 Minutes 2.00 1.50 AU 1.00 14.055 0.50 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 Minutes 11.564

2-Methyl-2,3-diphenyloxirane (Table S2, entry 1, 42% ee) O Chiralcel OD-H, 25 o C, hexane/isopropanol 80:20, flow rate: 1 ml/min, 254 nm, t r = 4.553 min and 7.765 min. 1.00 0.80 0.60 AU 0.40 0.20 4.581 7.810 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 12.00 13.00 14.00 15.00 Minutes 1.00 0.80 0.60 AU 0.40 4.553 7.765 0.20 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 Minutes

(3-Phenyloxiran-2-yl)(p-tolyl)methanone (Table S2, entry 2, 93% ee) O O Chiralcel OB-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r = 17.96 min and 22.51 min. 2.00 1.50 AU 1.00 0.50 18.742 22.620 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 Minutes 0.30 0.25 AU 0.20 0.15 18.154 0.10 0.05 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 Minutes 22.556

Phenyl(3-(p-tolyl)oxiran-2-yl)methanone (Table S2, entry 3, 98% ee) O O Chiralcel OD-H, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r = 7.70 min and 8.65 min. 4.00 AU 3.00 2.00 7.575 8.547 1.00 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 Minutes 1.20 1.00 0.80 AU 0.60 7.571 0.40 0.20 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00 11.00 Minutes 8.598

(4-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (Table S2, entry 4, 90% ee) O O Cl Chiralcel OJ, 25 o C, hexane/isopropanol 90:10, flow rate: 1 ml/min, 254nm, t r =15.56 min and 18.50 min. 0.10 0.08 0.06 AU 0.04 17.378 21.192 0.02 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 Minutes 0.80 0.70 0.60 0.50 AU 0.40 0.30 19.572 0.20 0.10 16.217 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 Minutes

S10 Copies of GC spectra Styrene oxide (Table 2, entry 1, 78% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 5 minutes, 8 o C/min, 170 o C for 10 minutes, t r = 14.199 and 14.480 min). Peak at retention time around 9.5 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 14.167 BB 49.57272 2 14.485 BB 50.42728 Peak [#] RetTime [min] Type Area [%] 1 14.199 BB 11.08791 2 14.480 BB 88.91209

2-(4-Fluorophenyl)oxirane (Table 2, entry 2, 78% ee) O F The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 11.106 min and 11.477 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 11.120 BB 47.81087 2 11.526 BB 52.18913 Peak [#] RetTime [min] Type Area [%] 1 11.106 BB 10.87993 2 11.477 BB 89.12007

2-(4-Chlorophenyl)oxirane (Table 2, entry 3, 76% ee) O Cl The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 15.655 min and 15.891 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 15.655 BB 48.89906 2 15.930 BB 51.10094 Peak [#] RetTime [min] Type Area [%] 1 15.655 BB 12.08036 2 15.891 BB 87.91964

2-(m-Tolyl)oxirane (Table 2, entry 5, 77% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 12.688 min and 12.816 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 12.660 MM 48.15221 2 12.823 MM 51.84779 Peak [#] RetTime [min] Type Area [%] 1 12.688 BV 11.62134 2 12.816 VV 88.37866

2-(o-Tolyl)oxirane (Table 2, entry 6, 80% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 12.960 min and 13.151 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 12.977 MM 48.62780 2 13.205 MM 51.37220 Peak [#] RetTime [min] Type Area [%] 1 12.960 BB 10.20653 2 13.151 BV 89.79347

2-Methyl-3-phenyloxirane (Table 2, entry 7, 93% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 11.774 min and 12.093 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 11.663 BB 49.83372 2 12.044 BB 50.16628 Peak [#] RetTime [min] Type Area [%] 1 11.774 BB 3.57207 2 12.093 BB 96.42793

2-Methyl-3-phenyloxirane (Table 2, entry 8, 2% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 25 minutes, 10 o C/min to 170 o C for 15 minutes t r = 20.507 min and 20.870 min).

2,2-Dimethyl-3-phenyloxirane (Table 2, entry 9, 52% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (80 o C isothermal for 3 minutes, 10 o C/min, 170 o C for 10 minutes, t r = 11.590 min and 11.711 min). Peak at retention time around 7 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 11.616 MM m 49.96340 2 11.722 MM m 50.03660 Peak [#] RetTime [min] Type Area [%] 1 11.590 BV 75.81597 2 11.711 VB 24.18403

2-Cyclohexyloxirane (Table 2, entry 17, 45% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (90 o C isothermal for 5 minutes, 8 o C/min, 170 o C for 10 minutes, t r = 10.878 and 10.960 min). Peak at retention time around 9.5 min belongs to internal standard decane. Peak [#] RetTime [min] Type Area [%] 1 10.860 BV 49.84416 2 10.957 VB 50.15584 Peak [#] RetTime [min] Type Area [%] 1 10.878 BV 27.41293 2 10.960 VB 72.58707

2-Butyl-3-methyloxirane (Table 2, entry 18, 54% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (60 o C isothermal for 3 minutes, 3 o C/min, 170 o C for 10 minutes, t r = 8.769 min and 8.853 min). Peak [#] RetTime [min] Type Area [%] 1 8.768 BV 49.56703 2 8.864 VB 50.43297 Peak [#] RetTime [min] Type Area [%] 1 8.769 BV 23.27359 2 8.853 VB 76.72641

2-hexyloxirane (Table 2, entry 19, 31% ee) O The optical purity was determined by Agilent 7890A with a CP-Chirasil-Dex CB column (45 o C isothermal for 50 minutes, 5 o C/min, 80 o C for 2 minutes, 10 o C/min, 170 o C for 15 minutes t r = 61.055 min and 61.178 max).

S11 Copies of NMR spectra (1R,2R,N 1 E,N 2 E)-N 1,N 2 -bis((4-(dimethylamino)pyridin-2-yl)methylene)cyclohexane-1,2-diamine (5)

(1R,2R)-N 1,N 2 -bis((4-(dimethylamino)pyridin-2-yl)methyl)-n 1,N 2 -dimethylcyclohexane-1,2-diami ne (L2b)

(1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(phenyl)methyl)cyclohexane-1,2-diamine (6a)

(1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(phenyl)methyl)-n 1,N 2 -dimethylcyclohexa ne-1,2-diamine (L1a)

(1R,2R)-N 1,N 2 -bis((r)-(4-(tert-butyl)phenyl)(4-(dimethylamino)pyridin-2-yl)methyl)-n 1,N 2 -dimet hylcyclohexane-1,2-diamine (L1b)

(1R,2R)-N 1,N 2 -bis((r)-(4-(dimethylamino)pyridin-2-yl)(naphthalen-1-yl)methyl)-n 1,N 2 -dimethylc yclohexane-1,2-diamine (L1c)

2-(p-Tolyl)oxirane (Table 2, entry 4)

trans-stilbene oxide (Table 2, entry 10)

2-(4-Fluorophenyl)-3-phenyloxirane (Table 2, entry 11)

2-Phenyl-3-(p-tolyl)oxirane (Table 2, entry 12)

2-Phenyl-3-(o-tolyl)oxirane (Table 2, entry 13)

2,3-Bis(4-(tert-butyl)phenyl)oxirane (Table 2, entry 14)

cis-stilbene oxide (Table 2, entry 15)

2,2,3-Triphenyloxirane (Table 2, entry 16)

2,2-Dimethyl-2,7b-dihydro-1aH-oxireno[2,3-c]chromene-6-carbonitrile (Table 2, entry 20)

2-Methyl-2,3-diphenyloxirane (Table S2, entry 1)

(3-Phenyloxiran-2-yl)(p-tolyl)methanone (Table S2, entry 2)

Phenyl(3-(p-tolyl)oxiran-2-yl)methanone (Table S2, entry 3)

(4-Chlorophenyl)(3-phenyloxiran-2-yl)methanone (Table S2, entry 4)