Sequential Addition of Phosphine to Alkynes for the Selective. Synthesis of 1,2-Diphosphinoethanes under Catalysis. Well-Defined

Σχετικά έγγραφα
Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Synthesis, characterization and luminescence studies of

Structural Expression of Exo-Anomeric Effect

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Supporting Information for

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Accessory Publication

Supporting Information

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Electronic Supplementary Information for

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Electronic Supplementary Information

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information

DFT Kinetic Study of the Pyrolysis Mechanism of Toluene Used for Carbon Matrix

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Supporting Information. for

Electronic Supplementary Information

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Zn 2 +, Studies on the Structures and Antihyperglycemic Effects of Zn 2 +, Cu 2 +, Ni 2 + 2Metformin Complexes. ZHU, Miao2Li LU, Li2Ping YANG, Pin Ξ

Supporting Information

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information

Chemical Communications. Electronic Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information. Generation of Pyridyl Coordinated Organosilicon Cation Pool by Oxidative Si-Si Bond Dissociation

Supporting Information

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Supporting information

Electronic Supplementary Information (ESI) for

Supporting Information for

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Supporting Information

Supporting Information. Experimental section

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information

Electronic Supplementary Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Experimental and Theoretical Evidence of the Au(I) Bi(III) Closed-Shell Interaction

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information. Experimental section

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Supporting Information

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

The Free Internet Journal for Organic Chemistry

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

SUPPORTING INFORMATION

Supporting Information

Supplementary information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

Supporting Information

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supplementary Information

Differentiation of Diastereoisomers of Protected 1,2-Diaminoalkylphosphonic Acids by EI Mass Spectrometry and Density Functional Theory

Selective mono reduction of bisphosphine

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Pt-Ag Clusters and their Neutral Mononuclear Pt(II) Starting Complexes: Structural and Luminescence Studies.

Table of Contents 1 Supplementary Data MCD

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Transcript:

Supporting Information for the Paper Sequential Addition of Phosphine to Alkynes for the Selective Synthesis of 1,2-Diphosphinoethanes under Catalysis. Well-Defined NHC-Copper Phosphides vs in Situ CuCl 2 /NHC Catalyst Jia Yuan, Lizhao Zhu, Jianying Zhang, Jianfeng Li, and Chunming Cui*,, State Key Laboratory of Elemento-Organic Chemistry, Nankai University Collaborative Innovation Center of Chemical Science and Engineering Tianjin 300071, People s Republic of China E-mail: cmcui@nankai.edu.cn General Considerations....S2 Procedures for the synthesis of 1, 2 and 4...S2 Typical procedures for catalytic double hydrophosphination of alkynes.s3 X-ray crystallographic data...s3 Computational details..... S4 Monitoring the reaction of 2 with phenylacetylene by 1 H NMR and 31 P NMR...S7 Monitoring the reaction of 4 with HPPh 2 by 1 H NMR and 31 P NMR.S8 1 H, 13 C and 31 P NMR spectra for all products...s9 References...S36 S1

Experimental Section General Considerations. All manipulations of air-sensitive materials were carried out under an atmosphere of dry argon by using modified Schlenk line and glovebox techniques. Alkenes and copper salts were purchased from Alfa-Aesar and J&K Scientific Ltd. All solvents were distilled from appropriate drying agents under argon before use. The 1 H, 13 C, and 31 P NMR spectroscopic data were recorded on Bruker Mercury Plus 400 MHz NMR spectrometers. Chemical shifts (δ) for 1 H and 13 C are referenced to internal solvent resonances and reported relative to SiMe 4. Chemical shifts for 31 P are reported relative to an external 85% H 3 PO 4 standard. Elemental analysis was carried out on an Elemental Vario EL analyzer. High resolution mass analysis is performed on Varian 7.0T Fourier-transform mass spectrometry (FTMS) with ESI resource. The N-heterocyclic carbenes, 1,3-diisopropyl-4,5-dimethyl-imidazol-2-yidene (I i Pr), 1,3-di(tert-butyl)imidazol-2-ylidene (I t Bu), 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IDipp) and IDippCuPPh 2 were synthesized according to the published procedures. [1] Synthesis of [(I i Pr)Cu(PPh 2 )] 3 (1). Method A. To a solution of 1,3-diisopropyl-4,5-dimethyl-imidazol-2-yidene (I i Pr) (720 mg, 4.0 mmol) in toluene (10 ml) was added CuCl 2 (134 mg, 1.0 mmol ) and Ph 2 PH (558 mg, 3.0 mmol). The mixture was stirred at 110 ºC for 1 h. The solution was cooled to room temperature and filtered. The solvent of eluate was concentrated to 1 ml and added hexane (10 ml) to give yellow solid of 1 (200 mg, 47%). Method B. To a solution of 1,3-diisopropyl-4,5-dimethyl-imidazol-2-yidene (I i Pr) (360 mg, 2.0 mmol) in toluene (10 ml) was added CuCl (99 mg, 1.0 mmol ) and Ph 2 PH (186 mg, 1.0 mmol). The mixture was stirred at 110 ºC for 1 h. The solution was cooled to room temperature and filtered. The solvent of eluate was removed under reduced pressure. The residue was washed with hexane to give yellow solid of 1 (292 mg, 68%). Mp > 200 C. 1 H NMR (400 MHz, C 6 D 6 ): δ 7.88 (s, 12 H, Ar), 7.09 (t, J = 7.3 Hz, 12 H, Ar), 6.96 (t, J = 7.0 Hz, 6 H, Ar), 4.64 4.71 (m, 6 H, CHMe 2 ), 1.59 (s, 18 H, Me), 1.17 (d, J = 6.8 Hz, 36 H, CHMe 2 ). 13 C NMR (101 MHz, C 6 D 6 ): δ 188.5 (s, carbene C), 150.0 (s, Ar), 134.2 (s, Ar), 127.9 (s, Ar), 127.7 (s, Ar), 127.5 (s, Ar), 126.9 (s, Ar), 122.9 (s, Ar), 122.7 (s, imid-c), 52.4 (s, CHMe 2 ), 22.3 (s, Me), 9.5 (s, CHMe 2 ). 31 P NMR (162 MHz, C 6 D 6 ): δ -35.6 (s). Anal. Calcd for C 69 H 90 Cu 3 N 6 P 3 : C, 64.39; H, 7.05; N, 6.53. Found: C, 64.33; H, 7.02; N, 6.51. Synthesis of [(I t Bu)Cu(PPh 2 )] 3 (2). Method A. To a solution of N,N-di(tert-butyl)imidazol-2-ylidene (I t Bu) (720 mg, 4.0 mmol) in toluene (10 ml) was added CuCl 2 (134 mg, 1.0 mmol ) and Ph 2 PH (558 mg, 3.0 mmol). The mixture was stirred at 110 ºC for 1 h. The solution was cooled to room temperature and filtered. The solvent of eluate was concentrated to 1 ml and added hexane (10 ml) to give yellow solid of 2 (306 mg, 72%). Method B. To a solution of N,N-di(tert-butyl)imidazol-2-ylidene (I t Bu) (360 mg, 2.0 mmol) in toluene (10 ml) was added CuCl (99 mg, 1.0 mmol ) and Ph 2 PH (186 mg, 1.0 mmol). The mixture was stirred at 110 ºC for 1 h. The solution was cooled to room temperature and filtered. The solvent of eluate was removed under reduced pressure. The residue was washed with hexane to give yellow solid of 2 (365 mg, 85%). Mp > 200 C. 1 H NMR (400 MHz, C 6 D 6 ): δ 7.69 (br, 12 H, Ar), 6.99 7.09 (m, 18 H, Ar), 6.60 (s, 6 H, CH), 1.38 (s, 54 H, CMe 3 ). 13 C NMR (101 MHz, C 6 D 6 ): δ 188.2 (s, carbene C), 149.1 (s, Ar), 136.1 (s, Ar), 129.0 (s, Ar), 128.2 (s, Ar), 126.5 (s, Ar), 123.4 (s, Ar), 116.4 (s, imid-c), 56.4 (s, CMe 3 ), 31.0 (s, CMe 3 ). 31 P NMR (162 MHz, C 6 D 6 ): δ -30.4 (s). Anal. Calcd for C 69 H 90 Cu 3 N 6 P 3 : C, 64.39; H, 7.05; N, 6.53. Found: C, 64.28; H, 7.03; N, 6.55. S2

Synthesis of (I t Bu)Cu(CCPh) (4). Method A. To a solution of 1,3-di(tert-butyl)imidazol-2-ylidene (I t Bu) (720 mg, 4.0 mmol) in toluene (10 ml) was added CuCl 2 (134 mg, 1.0 mmol ) and phenylacetylene (306 mg, 3.0 mmol). The mixture was stirred at 60 ºC for 1 h. It was cooled to room temperature and filtered. The filtrate was concentrated to 1 ml and added hexane (10 ml) to give white solid of 4 (259 mg, 75%). Method B. To a solution of I t Bu (360 mg, 2.0 mmol) in toluene (10 ml) was added CuCl (99 mg, 1.0 mmol ) and phenylacetylene (102 mg, 1.0 mmol). The mixture was stirred at 60 ºC for 1 h. The solution was cooled to room temperature and filtered. The solvent of eluate was removed under reduced pressure. The residue was washed with hexane to give white solid of 4 (283 mg, 82%). Mp: 151-152 C. 1 H NMR (400 MHz, C 6 D 6 ): δ 7.78 (d, J = 7.2 Hz, 2 H, Ar), 7.03 (t, J = 7.6 Hz, 2 H, Ar), 6.92 (t, J = 7.4 Hz, 1 H, Ar), 6.46 (s, 2 H, CH), 1.43 (s, 18 H, CMe 3 ). 13 C NMR (101 MHz, C 6 D 6 ): δ 176.5 (s, carbene C), 131.9 (s, Ar), 129.5 (s, Ar), 124.8 (s, imid-c), 122.9 (s, CuC CPh), 116.0 (s, Ar), 106.8 (s, C CPh), 57.3 (s, CMe 3 ), 31.6 (s, CMe 3 ). Anal. Calcd for C 19 H 25 CuN 2 : C, 66.15; H, 7.31; N, 8.12. Found: C, 66.23; H, 7.29; N, 8.09. Typical procedures for catalytic double hydrophosphination of alkynes. To a round bottom flask, diphenylphosphine (2 mmol), alkyne (1 mmol), I t Bu (0.05 mmol, 5 mmol%) and CuCl 2 (0.0125mmol, 1.25 mol%) were added under argon. The mixture was stirred for a certain time at 110 ºC. After removal of the volatile materials under reduced pressure, the residue was solved in toluene (10 ml). It was filtered and the solvent of eluate was removed under reduced pressure. The residue was washed with hexane to give the 1,2-bisphosphinoethane derivatives as a white powder. For the oxidation process, H 2 O 2 (30 %, 1 ml) was added to the mixture at room temperature. It was stirred for 1 h. The product was extracted with dichloromethane and dried over MgSO 4. After the solvent was removed, the crude product was purified by chromatograph on silica gel (n-hexane /acetone/dichloromethane). X-ray Structural Determination. The X-ray date were collected on a Rigaku Saturn CCD diffractometer using graphite-monochromated Mo Kα radiation (λ = 0.71073 Å) at 113 K. The structure was solved by direct methods (SHELXS-97) [2] and refined by full-matrix least squares on F 2. All non-hydrogen atoms were refined anisotropically and hydrogen atoms by a riding model (SHELXL-97). [3] The crystal data and structural refinements details are listed in Table S1. CCDC 1445745 (2) contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. S3

Table S1. Crystal Data and Summary of X-ray Data Collection for 2 2 formula C 69 H 90 Cu 3 N 6 P 3 fw 1287.04 T (K) 113(2) space group P21/n crystal system monoclinic a (Å) 26.862(3) b (Å) 22.2816(19) c (Å) 27.235(3) α (deg.) 90 β (deg.) 116.826(2) γ (deg.) 90 V (Å 3 ) 14547(3) Z 8 d calcd. (g/cm 3 ) 1.175 F(000) 5424.0 GOF 0.990 R 1 (I > 2σ (I)) 0.0597 wr 2 (all data) 0.1817 Computational Details. All calculations were performed using the Gaussian 03 suite of programs, revision C. 02.S7. [4] The geometries and harmonic vibration frequency of intermediates A-D were optimized in DFT method with B3lypmethod and 6-31G* basis set. Single point energies were calculated with the large M06/6-311+G(d,p) set. Figure S1. Optimized structures (distances in Å and angles in deg) of complex 4: C35 C36 1.23088, Cu34 C35 1.82620, C33 Cu34 1.87926, C36 C37 1.42538; C36 C35 Cu34 164.96204, C33 Cu34 C35 179.28872. S4

Figure S2. Optimized structures (distances in Å and angles in deg) of intermediate A: Cu34 C37 1.89855, C33 Cu34 1.94506, Cu34 P35 2.27244, C37 C38 1.23347, P35 H36 1.41607; C33 Cu34 P35 127.29600, C33 Cu34 C37 127.34563, P35 Cu34 C37 105.23756, Cu34 P35 H36 109.37496. Figure S3. Optimized structures (distances in Å and angles in deg) of intermediate B: C58 C70 1.26557, Cu34 C58 1.97710, Cu34 C70 1.91890, C33 Cu34 1.95274, Cu34 P35 2.35679; C70 Cu34 C58 37.87437, C58 Cu34 P35 131.54679, C70 Cu34 P35 93.68226, C58 S5

Cu34 C33 112.61701, C70 Cu34 C33 150.45493, C33 Cu34 P35 115.83542. Figure S4. Optimized structures (distances in Å and angles in deg) of intermediate C: C35 C36 1.35269, Cu34 C35 1.89151, C33 Cu34 1.88966, C36 P60 1.84962; C36 C35 Cu34 122.27146, C35 Cu34 C33 177.23411, Cu34 C35 C38 116.73455, P60 C36 C35 126.59104. Figure S5. Optimized structures (distances in Å and angles in deg) of intermediate D: C58 C59 1.35437, Cu34 C58 1.90165, C33 Cu34 1.89698, C59 P35 1.83362; Cu34 C58 C59 124.90787, C33 Cu34 C58 175.21640, C34 C58 C61 117.89400, C58 C59 P35 122.65812. S6

Figure S6. Monitoring the reaction of 2 with phenylacetylene by the 1 H NMR (top) and 31 P NMR (bottom) in C 6 D 6 in an NMR tube. Reaction conditions: phenylacetylene (0.05 mmol, 5.1 mg) and complex 2 (0.0167 mmol, 21.5 mg) in C 6 D 6 (0.4 ml). S7

E-product Z-product [(I t Bu)Cu(PPh 2 )] 3 (I t Bu)Cu(CCPh) + HPPh 2 RT, 2 h (I t Bu)Cu(CCPh) + HPPh 2 RT, 30 min HPPh 2 Figure S7. Monitoring the reaction of 4 with HPPh 2 by the 1 H NMR (top) and 31 P NMR (bottom) in C 6 D 6 in an NMR tube. Reaction conditions: Ph 2 PH (0.05 mmol, 9.3 mg) and complex 4 (0.05 mmol, 17.3 mg) in C 6 D 6 (0.4 ml). S8

(1-phenylethane-1,2-diyl)bis(diphenylphosphine). [5] 1 H NMR (400 MHz, CDCl 3 ): δ 7.29 7.46 (m, 11 H, Ar), 7.08 7.19 (m, 10 H, Ar), 6.99 7.03 (m, 2 H, Ar), 6.84 (t, J = 7.2 Hz, 2 H, Ar), 3.26 3.33 (m, 1 H, CH), 2.43 2.59 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 140.3 (d, J CP = 3.5 Hz, Ar), 140.2 (d, J CP = 3.5 Hz, Ar), 139.1 (d, J CP = 13.6 Hz, Ar), 137.6 (d, J CP = 16.0 Hz, Ar), 136.8 (d, J CP = 15.8 Hz, Ar), 135.9 (d, J CP = 15.6 Hz, Ar), 134.3 (d, J CP = 6.7 Hz, Ar), 134.1 (d, J CP = 6.7 Hz, Ar), 132.9 (d, J CP = 17.7 Hz, Ar), 131.8 (d, J CP = 17.4 Hz, Ar), 130.8 (d, J CP = 9.7 Hz, Ar). 129.3 (d, J CP = 5.1 Hz, Ar), 129.3 (d, J CP = 5.2 Hz, Ar), 128.6 (d, J CP = 7.3 Hz, Ar), 128.5 (d, J CP = 7.4 Hz, Ar), 128.2 (d, J CP = 6.5 Hz, Ar), 128.1 (d, J CP = 5.8 Hz, Ar), 127.9 (s, Ar), 127.7 (d, J CP = 6.6 Hz, Ar), 126.5 (d, J CP = 2.3 Hz, Ar), 41.5 (t, J CP = 14.5 Hz, CH), 32.7 (dd, J CP = 21.3, J CP = 15.6 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 3.0 (d, J PP = 17.6 Hz, PCH), -21.9 (d, J PP = 17.4 Hz, PCH 2 ). (1-(p-tolyl)ethane-1,2-diyl)bis(diphenylphosphine). [6] 1 H NMR (400 MHz, CDCl 3 ): δ 7.27 7.43 (m, 11 H, Ar), 7.00 7.18 (m, 11 H, Ar), 6.87 (t, J = 7.0 Hz, 2 H, Ar), 3.23 3.30 (m, 1 H, CH), 2.41 2.54 (m, 2 H, CH 2 ), 2.27 (s, 3 H, CH 3 ). 13 C NMR (101 MHz, CDCl 3 ): δ 139.3 (d, J CP = 13.6 Hz, Ar), 137.5 (d, J CP = 16.0 Hz, Ar), 137.1 (m, Ar), 136.1 (d, J CP = 15.7 Hz, Ar), 136.0 (d, J CP = 2.4 Hz, Ar), 134.3 (d, J CP = 3.4 Hz, Ar), 134.1 (d, J CP = 3.5 Hz, Ar), 132.9 (d, J CP = 17.6 Hz, Ar), 131.7 (d, J CP = 17.3 Hz, Ar), 129.2 (d, J CP = 5.5 Hz, Ar), 129.1 (d, J CP = 7.2 Hz, Ar), 129.0 (s, Ar), 128.5 (s, Ar), 128.5 (s, Ar), 128.4 (s, Ar).128.1 (s, Ar), 128.0 (s, Ar), 127.7 (s, Ar), 127.7 (s, Ar), 127.6 (s, Ar). 40.9 (t, J CP = 14.4 Hz, CH), 32.8 (dd, J CP = 21.2, J CP = 14.9 Hz, CH 2 ), 21.1 (s, CH 3, PCH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 2.4 (d, J PP = 17.1 Hz, PCH), -22.2 (d, J PP = 17.2 Hz, PCH 2 ). (1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine). [6] 1 H NMR (400 MHz, CDCl 3 ): δ 7.28 7.44 (m, 10 H, Ar), 7.00 7.19 (m, 10 H, Ar), 6.86 (t, J = 7.2 Hz, 2 H, Ar), 6.73 (d, J = 8.5 Hz, 2 H, Ar), 3.76 (s, 3 H, OCH 3 ), 3.21 3.29 (m, 1 H, CH), 2.41 2.53 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 158.1 (d, J CP = 2.1 Hz, Ar), 139.2 (d, J CP = 13.4 Hz, Ar), 137.6 (d, J CP = 15.8 Hz, Ar), 137.0 (d, J CP = 15.6 Hz, Ar), 136.0 (d, J CP = 15.6 Hz, Ar), 134.2 (d, J CP = 20.3 Hz, Ar), 132.9 (d, J CP = 17.5 Hz, Ar), 132.2 (dd, J CP = 8.6, J CP = 3.4 Hz, Ar), 131.8 (d, J CP = 17.4 Hz, Ar), 130.2 (d, J CP = 7.1 Hz, Ar), 129.2 (d, J CP = 7.3 Hz, Ar), 128.5 (d, J CP = 7.6 Hz, Ar), 128.4 (d, J CP = 7.7 Hz, Ar), 128.1 (s, Ar), 128.1 (s, Ar), 127.8 (s, Ar), 127.7 (d, J CP = 6.6 Hz, Ar), 113.7 (s, Ar), 55.1 (s, OCH 3 ), 40.6 (t, J CP = 14.3 Hz, CH), 32.9 (dd, J CP = 22.0, J CP = 15.0 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ) δ 2.3 (d, J PP = 17.1 Hz, PCH), -22.0 (d, J PP = 17.2 Hz, PCH 2 ). S9

4-(1,2-bis(diphenylphosphino)ethyl)-N,N-dimethylaniline. [6] 1 H NMR (400 MHz, CDCl 3 ): δ 7.27 7.42 (m, 11 H, Ar), 7.18 (d, J = 3.5 Hz, 4 H, Ar), 6.96 7.11 (m, 5 H, Ar), 6.87 (t, J = 7.5 Hz, 1 H, Ar), 6.59 (d, J = 8.6 Hz, 2 H, Ar), 3.17 3.25 (m, 1 H, CH), 2.89 (s, 6 H, NMe 2 ), 2.39 2.52 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 149.3 (s, Ar), 139.6 (d, J CP = 14.0 Hz, Ar), 137.8 (d, J CP = 16.4 Hz, Ar), 137.5 (d, J CP = 15.6 Hz, Ar), 136.5 (d, J CP = 16.3 Hz, Ar), 134.4 (d, J CP = 5.4 Hz, Ar), 134.2 (d, J CP = 5.4 Hz, Ar), 132.9 (d, J CP = 17.2 Hz, Ar), 131.8 (d, J CP = 17.2 Hz, Ar), 129.9 (d, J CP = 6.9 Hz, Ar), 129.1 (d, J CP = 5.5 Hz, Ar), 128.5 (s, Ar), 128.4 (s, Ar), 128.3 (s, Ar), 128.0 (d, J CP = 5.7 Hz, Ar), 127.9 (s, Ar), 127.6 (d, J CP = 3.1 Hz, Ar), 127.6 (s, Ar), 112.6 (s, Ar), 40.7 (s, NMe 2 ), 40.3 (t, J CP = 14.1 Hz, CH), 33.0 (dd, J CP = 22.2, J CP = 14.5 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 1.7 (d, J PP = 17.0 Hz, PCH), -22.0 (d, J PP = 16.9 Hz, PCH 2 ). (1-(4-(tert-butyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine). [6] 1 H NMR (400 MHz, CDCl 3 ): δ 7.28 7.42 (m, 11 H, Ar), 7.15 7.19 (m, 6 H, Ar), 6.95 7.09 (m, 5 H, Ar), 6.76 (t, J = 7.0 Hz, 2 H, Ar), 3.26 3.32 (m, 1 H, CH), 2.40 2.62 (m, 2 H, CH 2 ), 1.27 (s, 9 H, CMe 3 ). 13 C NMR (101 MHz, CDCl 3 ): δ 149.2 (d, J CP = 2.2 Hz, Ar), 139.1 (d, J CP = 13.5 Hz, Ar), 137.9 (d, J CP = 15.9 Hz, Ar), 137.2 (d, J CP = 16.0 Hz, Ar), 136.9 (m, Ar), 136.0 (d, J CP = 15.8 Hz, Ar), 134.3 (d, J CP = 10.0 Hz, Ar), 134.1 (d, J CP = 9.8 Hz, Ar), 132.8 (d, J CP = 17.3 Hz, Ar), 131.9 (d, J CP = 17.5 Hz, Ar), 129.2 (d, J CP = 12.5 Hz, Ar), 128.8 (d, J CP = 7.0 Hz, Ar), 128.5 (d, J CP = 7.4 Hz, Ar), 128.4 (d, J CP = 7.3 Hz, Ar), 128.1 (d, J CP = 5.7 Hz, Ar), 127.9 (d, J CP = 12.1 Hz, Ar), 127.5 (d, J CP = 6.3 Hz, Ar), 125.1 (s, Ar), 41.1 (t, J CP = 15.0 Hz, CH), 34.3 (s, CMe 3 ), 32. 6 (dd, J CP = 21.8, J CP = 15.4 Hz, CH 2 ), 31.4 (s, CMe 3 ). 31 P NMR (162 MHz, CDCl 3 ): δ 3.1 (d, J PP = 18.5 Hz, PCH), -21.2 (d, J PP = 18.5 Hz, PCH 2 ). (1-(4-fluorophenyl)ethane-1,2-diyl)bis(diphenylphosphine). [6] 1 H NMR (400 MHz, CDCl 3 ): δ 7.27 7.46 (m, 10 H, Ar), 7.00 7.21 (m, 10 H, Ar), 6.83 6.88 (m, 4 H, Ar), 3.24 3.34 (m, 1 H, CH), 2.47 2.51 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 161.4 (d, J CF = 247.5 Hz, Ar), 138.8 (d, J CP = 13.2 Hz, Ar), 137.4 (d, J CP = 15.6 Hz, Ar), 136.6 (d, J CP = 15.8 Hz, Ar), 136.0 (m, Ar), 135.6 (d, J CP = 15.4 Hz, Ar), 134.1 (d, J CP = 20.4 Hz, Ar), 132.9 (d, J CP = 18.0 Hz, Ar), 131.9 (d, J CP = 17.6 Hz, Ar), 130.6 (t, J CP = 7.5 Hz, Ar), 129.3 (d, J CP = 11.9 Hz, Ar), 128.6 (d, J CP = 7.3 Hz, Ar), 128.5 (d, J CP = 7.3 Hz, Ar), 128.4 (s, Ar), 128.2 (d, J CP = 5.9 Hz, Ar), 128.0 (s, Ar), 127.8 (d, J CP = 6.7 Hz, Ar), 115.1 (d, J CF = 21.3 Hz, Ar), 40.9 (t, J CP = 14.7 Hz, CH), 32.7 (dd, J CP = 21.6, J CP = 15.6 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 3.0 (d, J PP = 17.0 Hz, PCH), -21.7 (d, J PP = 17.2 Hz, PCH 2 ). S10

(1-(4-chlorophenyl)ethane-1,2-diyl)bis(diphenylphosphine). 1 H NMR (400 MHz, CDCl 3 ): δ 7.27 7.43 (m, 10 H, Ar), 7.10 7.20 (m, 8 H, Ar), 6.98 7.06 (m, 4 H, Ar), 6.88 (t, J = 7.5 Hz, 2 H, Ar), 3.26 3.33 (m, 1 H, CH), 2.48 (t, J = 6.6 Hz, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 138.9 (dd, J CP = 8.7, J CP = 3.4 Hz, Ar), 138.7 (d, J CP = 13.1 Hz, Ar), 137.3 (d, J CP = 15.5 Hz, Ar), 136.4 (d, J CP = 15.6 Hz, Ar), 135.5 (d, J CP = 15.6 Hz, Ar), 134.0 (d, J CP = 20.4 Hz, Ar), 132.9 (d, J CP = 18.1 Hz, Ar), 132.1 (d, J CP = 3.0 Hz, Ar), 131.9 (d, J CP = 17.7 Hz, Ar), 130.5 (d, J CP = 7.1 Hz, Ar), 129.4 (d, J CP = 14.5 Hz, Ar), 128.6 (d, J CP = 7.4 Hz, Ar), 128.6 (s, Ar), 128.5 (s, Ar), 128.5 (s, Ar), 128.4 (s, Ar), 128.2 (d, J CP = 6.0 Hz, Ar), 128.0 (s, Ar), 127.8 (d, J CP = 6.7 Hz, Ar), 41.1 (t, J CP = 14.9 Hz, CH), 32.5 (dd, J CP = 21.1, J CP = 15.5 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 3.2 (d, J PP = 17.0 Hz, PCH), -21.6 (d, J PP = 16.8 Hz, PCH 2 ). Anal. Calcd for C 32 H 27 ClP 2 : C, 75.52; H, 5.35. Found: C, 75.44; H, 5.34. (1-(4-bromophenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide). [7] 1 H NMR (400 MHz, CDCl 3 ): δ 8.00 8.05 (m, 2 H, Ar), 7.29 7.58 (m, 13 H, Ar), 6.90 7.25 (m, 9 H, Ar), 4.21 4.82 (m, 1 H, CH), 3.04 3.13 (m, 1 H, CH 2 ), 2.75 2.85 (m, 1 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 134.3 (s, Ar), 133.2 (d, J CP = 5.9 Hz, Ar), 132.2 (d, J CP = 2.5 Hz, Ar), 131.8 (d, J CP = 2.0 Hz, Ar), 131.7 (d, J CP = 5.7 Hz, Ar), 131.5 (d, J CP = 2.6 Hz, Ar), 131.4 (d, J CP = 8.5 Hz, Ar), 131.0 (s, Ar), 130.9 (d, J CP = 1.5 Hz, Ar), 130.8 (s, Ar), 130.7 (d, J CP = 2.0 Hz, Ar), 130.6 (s, Ar), 130.2 (d, J CP = 9.3 Hz, Ar), 130.1 (s, Ar), 129.1 (d, J CP = 11.4 Hz, Ar), 128.7 (d, J CP = 11.6 Hz, Ar), 128.2 (s, Ar), 128.1 (s, Ar), 127.9 (s, Ar), 121.2 (d, J CP = 3.0 Hz, Ar), 38.8 (d, J CP = 65.7 Hz, CH), 30.2 (d, J CP = 69.0 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 34.3 (d, J PP = 46.6 Hz, PCH), 29.3 (d, J PP = 46.5 Hz, PCH 2 ). (1-(2-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide). 1 H NMR (400 MHz, CDCl 3 ): δ 8.03 8.07 (m, 2 H, Ar), 7.29 7.59 (m, 13 H, Ar), 7.06 7.23 (m, 6 H, Ar), 6.86 (t, J = 7.7 Hz, 1 H, Ar), 6.70 (t, J = 7.4 Hz, 1 H, Ar), 6.13 (d, J = 8.2 Hz, 1 H, Ar), 4.96 (br, 1 H, CH), 3.29 (s, 3 H, OCH 3 ), 2.81 3.10 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 156.0 (d, J CP = 4.8 Hz, Ar), 134.2 (s, Ar), 133.2 (s, Ar), 132.2 (s, Ar), 131.8 (d, J CP = 2.0 Hz, Ar), 131.6 (s, Ar), 131.5 (s, Ar), 131.2 (s, Ar), 130.8 (s, Ar), 130.8 (s, Ar), 130.7 (s, Ar), 130.6 (s, Ar), 130.3 (d, J CP = 9.3 Hz, Ar), 129.6 (s, Ar), 128.8 (d, J CP = 11.2 Hz, Ar), 128.4 (d, J CP = 11.6 Hz, Ar), 128.0 (s, Ar), 127.4 (d, J CP = 12.0 Hz, Ar), 127.2 (d, J CP = 11.9 Hz, Ar), 123.0 (d, J CP = 5.4 Hz, Ar), 120.1 (d, J CP = 2.2 Hz, Ar), 109.3 (s, Ar), 54.4 (s, OCH 3 ), 29.9 (d, J CP = 69.6 Hz, CH), 28.8 (d, J CP = 69.9 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 35.8 (d, J PP = 47.6 Hz, PCH), 30.0 (d, J PP = 47.6 Hz, PCH 2 ). HRMS (ESI): [M+H] + calcd. for C 33 H 31 O 3 P 2 : 537.1748; Found: 537.1748. S11

(1-(pyridin-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide). [8] 1 H NMR (400 MHz, CDCl 3 ): δ 8.21 (d, J = 3.7 Hz, 1 H, Ar), 7.97 (t, J = 8.0 Hz, 2 H, Ar), 7.31 7.64 (m, 14 H, Ar), 7.11 7.21 (m, 5 H, Ar), 6.77 6.85 (m, 2 H, Ar), 4.47 4.56 (m, 1 H, CH), 3.63 (t, J = 14.4 Hz, 1 H, CH 2 ), 2.80 2.90 (m, 1 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 154.2 (d, J CP = 5.5 Hz, Ar), 148.8 (s, Ar), 135.3 (s, Ar), 133.7 (s, Ar), 132.8 (s, Ar), 132.1 (s, Ar), 132.0 (s, Ar), 131.6 (s, Ar), 131.4 (d, J CP = 8.6 Hz, Ar), 131.3 (s, Ar), 131.1 (s, Ar), 131.0 (s, Ar), 130.9 (s, Ar), 130.7 (d, J CP = 9.8 Hz, Ar), 130.6 (s), 130.3 (d, J CP = 9.3 Hz, Ar), 130.1 (s, Ar), 128.8 (d, J CP = 11.5 Hz, Ar), 128.5 (d, J CP = 11.7 Hz, Ar), 127.9 (s, Ar), 127.8 (s, Ar), 127.7 (s, Ar), 124.9 (d, J CP = 4.0 Hz, Ar), 121.5 (s, Ar), 41.8 (d, J CP = 62.7 Hz, CH), 28.2 (d, J CP = 69.0 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 34.4 (d, J PP = 46.0 Hz, PCH), 30.1 (d, J PP = 46.0 Hz, PCH 2 ). (1-(thiophen-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide). 1 H NMR (400 MHz, CDCl 3 ): δ 8.01 8.05 (m, 2 H, Ar), 7.16 7.57 (m, 18 H, Ar), 6.80 (d, J = 4.8 Hz, 1 H, Ar), 6.69 (s, 1 H, Ar), 6.75 (t, J = 4.0 Hz, 1 H, Ar), 4.63 4.71 (m, 1 H, CH), 2.77 3.14 (m, 2 H, CH 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 135.8 (d, J CP = 6.9 Hz, Ar), 134.4 (s, Ar), 133.4 (s, Ar), 132.2 (d, J CP = 2.6 Hz, Ar), 131.9 (s, Ar), 131.7 (d, J CP = 2.7 Hz, Ar), 131.6 (d, J CP = 8.6 Hz, Ar), 131.5 (s, Ar), 131.0 (d, J CP = 2.8 Hz, Ar), 130.9 (s, Ar), 130.8 (s, Ar), 130.8 (s, Ar), 130.7 (s, Ar), 130.6 (s, Ar), 130.2 (d, J CP = 9.4 Hz, Ar), 129.8 (s, Ar), 129.1 (d, J CP = 11.4 Hz, Ar), 128.6 (d, J CP = 11.7 Hz, Ar), 128.4 (d, J CP = 6.9 Hz, Ar), 128.0 (d, J CP = 8.5 Hz, Ar), 127.9 (d, J CP = 8.6 Hz, Ar), 126.2 (d, J CP = 2.5 Hz, Ar), 125.4 (d, J CP = 2.8 Hz, Ar), 34.8 (dd, J CP = 67.9, J CP = 4.0 Hz, CH), 31.3 (d, J CP = 69.1 Hz, CH 2 ). 31 P NMR (162 MHz, CDCl 3 ): δ 34.3 (d, J PP = 44.4 Hz), 29.9 (d, J PP = 44.4 Hz). HRMS (ESI): [M+H] + calcd. for C 30 H 27 O 2 P 2 S: 513.1207; Found: 513.1204. Hexane-1,2-diylbis(diphenylphosphine oxide). 1 H NMR (400 MHz, CDCl 3 ) δ 7.72 7.81 (m, 6 H, Ar), 7.37 7.52 (m, 14 H, Ar), 3.01 (br, 1 H, PCH), 2.52 2.70 (m, 2 H, PCH 2 ), 1.68 1.77 (m, 1 H, n Bu), 1.22 1.51 (m, 2 H, n Bu), 0.75 0.94 (m, 3 H, n Bu), 0.52 (t, J = 7.2 Hz, 3 H, n Bu). 13 C NMR (101 MHz, CDCl 3 ): δ 133.7 (d, J CP = 9.3 Hz, Ar), 132.7 (d, J CP = 10.9 Hz, Ar), 132.7 (d, J CP = 14.8 Hz, Ar), 131.8 (d, J CP = 2.5 Hz, Ar), 131.6 (d, J CP = 2.4 Hz, Ar), 131.4 (d, J CP = 14.7 Hz, Ar), 131.0 (d, J CP = 8.4 Hz, Ar), 130.9 (d, J CP = 8.9 Hz, Ar), 130.7 (d, J CP = 9.4 Hz, Ar), 130.5 (d, J CP = 9.3 Hz, Ar), 128.8 (d, J CP = 11.2 Hz, Ar), 128.6 (d, J CP = 3.3 Hz, Ar), 128.5 (s, Ar), 128.5 (s, Ar), 128.4 (s, Ar), 31.2 (dd, J CP = 69.3, J CP = 3.7 Hz, PCH), 29.0 (d, J CP = 4.3 Hz, CH 2 CH 2 CH 2 CH 3 ), 27.9 (s, CH 2 CH 2 CH 2 CH 3 ), 27.3 (d, J CP = S12

69.0 Hz, PCH 2 ), 22.5 (s, CH 2 CH 2 CH 2 CH 3 ), 13.4 (s, CH 2 CH 2 CH 2 CH 3 ). 31 P NMR (162 MHz, CDCl 3 ): δ 37.1 (d, J PP = 47.6 Hz, PCH), 30.1 (d, J PP = 47.7 Hz, PCH 2 ). HRMS (ESI): [M+H] + calcd. for C 30 H 33 O 2 P 2 : 487.1956; Found: 487.1955. 2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine. [9] 1 H NMR (400 MHz, CDCl 3 ): δ 7.40 7.44 (m, 2 H, Ar), 7.29 7.39 (m, 10 H, Ar), 7.20 7.26 (m, 8 H, Ar), 2.40 2.57 (m, 2 H, CH 2 NMe 2 ), 2.24 2.32 (m, 2 H, CH 2 PPh 2 ), 2.11 (s, 6 H, NMe 2 ), 2.00 2.08 (m, 1 H, CHPPh 2 ). 13 C NMR (101 MHz, CDCl 3 ): δ 139.3 (d, J CP = 7.1 Hz, Ar), 139.1 (d, J CP = 8.3 Hz, Ar), 136.6 (d, J CP = 16.1 Hz, Ar), 135.9 (d, J CP = 16.8 Hz, Ar), 134.0 (d, J CP = 19.2 Hz, Ar), 133.6 (s, Ar), 133.2 (d, J CP = 18.3 Hz, Ar), 132.5 (d, J CP = 18.1 Hz, Ar), 128.7 (d, J CP = 3.8 Hz, Ar), 128.3 (s, Ar), 128.2 (d, J CP = 1.6 Hz, Ar), 128.2 (s, Ar), 128.17 (s, Ar), 128.1 (d, J CP = 2.0 Hz, Ar), 61.1 (dd, J CP = 13.0, J CP = 7.7 Hz), 45.8 (s), 31.6 (dd, J CP = 15.8, J CP = 10.8 Hz), 29.3 (dd, J CP = 16.1, J CP = 8.3 Hz). 31 P NMR (162 MHz, CDCl 3 ): δ -4.0 (d, J PP = 31.6 Hz, PCH), -19.7 (d, J PP = 31.5 Hz, PCH 2 ). Figure S8. 1 H NMR spectrum of complex 1 in C 6 D 6. S13

Figure S9. 13 C NMR spectrum of complex 1 in C 6 D 6. Figure S10. 31 P NMR spectrum of complex 1 in C 6 D 6. S14

Figure S11. 1 H NMR spectrum of complex 2 in C 6 D 6. Figure S12. 13 C NMR spectrum of complex 2 in C 6 D 6. S15

Figure S13. 31 P NMR spectrum of complex 2 in C 6 D 6. Figure S14. 1 H NMR spectrum of complex 4 in C 6 D 6. S16

Figure S15. 13 C NMR spectrum of complex 4 in C 6 D 6. Figure S16. 1 H NMR spectrum of (1-(p-tolyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S17

Figure S17. 13 C NMR spectrum of (1-(p-tolyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S18. 31 P NMR spectrum of (1-(p-tolyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S18

Figure S19. 1 H NMR spectrum of (1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S20. 13 C NMR spectrum of (1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S19

Figure S21. 31 P NMR spectrum of (1-(4-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S22. 1 H NMR spectrum of 4-(1,2-bis(diphenylphosphino)ethyl)-N,N-dimethylaniline in CDCl 3. S20

Figure S23. 13 C NMR spectrum of 4-(1,2-bis(diphenylphosphino)ethyl)-N,N-dimethylaniline in CDCl 3. Figure S24. 31 P NMR spectrum of 4-(1,2-bis(diphenylphosphino)ethyl)-N,N-dimethylaniline in CDCl 3. S21

Figure S25. 1 H NMR spectrum of (1-(4-(tert-butyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S26. 13 C NMR spectrum of (1-(4-(tert-butyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S22

Figure S27. 31 P NMR spectrum of (1-(4-(tert-butyl)phenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S28. 1 H NMR spectrum of (1-(4-fluorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S23

Figure S29. 13 C NMR spectrum of (1-(4-fluorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S30. 31 P NMR spectrum of (1-(4-fluorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S24

Figure S31. 1 H NMR spectrum of (1-(4-chlorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S32. 13 C NMR spectrum of (1-(4-chlorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. S25

Figure S33. 31 P NMR spectrum of (1-(4-chlorophenyl)ethane-1,2-diyl)bis(diphenylphosphine) in CDCl 3. Figure S34. 1 H NMR spectrum of (1-(4-bromophenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S26

Figure S35. 13 C NMR spectrum of (1-(4-bromophenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S36. 31 P NMR spectrum of (1-(4-bromophenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S27

Figure S37. 1 H NMR spectrum of (1-(2-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S38. 13 C NMR spectrum of (1-(2-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S28

Figure S39. 31 P NMR spectrum of (1-(2-methoxyphenyl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S40. 1 H NMR spectrum of (1-(pyridin-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S29

Figure S41. 13 C NMR spectrum of (1-(pyridin-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S42. 31 P NMR spectrum of (1-(pyridin-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S30

Figure S43. 1 H NMR spectrum of (1-(thiophen-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S44. 13 C NMR spectrum of (1-(thiophen-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. S31

Figure S45. 31 P NMR spectrum of (1-(thiophen-2-yl)ethane-1,2-diyl)bis(diphenylphosphine oxide) in CDCl 3. Figure S46. 1 H NMR spectrum of 2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine in CDCl 3. S32

Figure S47. 13 C NMR spectrum of 2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine in CDCl 3. Figure S48. 31 P NMR spectrum of 2,3-bis(diphenylphosphanyl)-N,N-dimethylpropan-1-amine in CDCl 3. S33

Figure S49. 1 H NMR spectrum of hexane-1,2-diylbis(diphenylphosphine oxide) in CDCl 3. Figure S50. 13 C NMR spectrum of hexane-1,2-diylbis(diphenylphosphine oxide) in CDCl 3. S34

Figure S51. 31 P NMR spectrum of hexane-1,2-diylbis(diphenylphosphine oxide) in CDCl 3. References: (S1) (a) Kuhn, N.; Kratz, T. Synthesis 1993, 6, 561-562. (b) Rensburg, H.; Tooze, R. P.; Foster, D. F.; Otto, S. Inorg. Chem. 2007, 46, 1963-1965. ( c) Scott, N. M.; Dorta, R.; Stevens, E. D.; Correa, A.; Cavallo, L.; Nolan, S. P. J. Am. Chem. Soc. 2005, 127, 3516-3526. (d) Arduengo, A. J.; Krafczyk, III, R.; Schmutzler, R. Tetrahedron, 1999, 55, 14523-l4534. (e) Fortman, G. C. ; Slawin, A. M. Z.; Nolan, S. P. Organometallics 2010, 29, 3966-3972. (S2) Sheldrick, G. M. SHELXS-90/96, Program for Structure Solution, Acta Crystallogr. Sect A 1990, 46, 467. (S3) Sheldrick, G. M. SHELXL 97, Program for Crystal structure Refinement, University of Goettingen:Geottingen, Germany, 1997. (S4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, Jr., K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; S35

Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT, 2004 (S5) King, R. B.; Bakos, J.; Hoff, C. D.; Markó, L. J. Org. Chem., 1979, 44, 1729-1731. (S6) Kamitani, M.; Itazaki, M.; Tamiya, C.; Nakazawa, H. J. Am. Chem. Soc. 2012, 134, 11932-11935. (S7) Stone, J. J.; Stockland Jr., R. A.; Reyes Jr., J. M.; Kovach, J.; Goodman, C. C.; Tillman, T. S. J. Mol. Catal. A-Chem., 2005, 226, 11-21. (S8) Allen, Jr., A.; Ma, L.; Lin, W. Tetrahedron Lett., 2002, 43, 3707 3710. (S9) Giuseppe, A. D. Luca, R. D.; Castarlenas, R.; Pérez-Torrente, J. J.; Crucianelli, M.; Oro, L. A. Chem. Commun. 2016, 52, 5554-5557. S36