Disulfide-based metal free sulfanylation of ketones

Σχετικά έγγραφα
Structural Expression of Exo-Anomeric Effect

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Electronic Supplementary Information

Electronic Supplementary Information

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information for

Supporting Information

Supporting information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Electronic Supplementary Information (ESI) for

Supporting Information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

Electronic Supplementary Information

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Supporting Information. Experimental section

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Synthesis, characterization and luminescence studies of

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

Accessory Publication

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Supporting Information

Supporting Information. Experimental section

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information

Supporting Information

The Free Internet Journal for Organic Chemistry

Supplementary Figures

Capture of Benzotriazole-Based Mannich Electrophiles by CH-Acidic Compounds

Supporting Information

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Supporting information

Divergent synthesis of various iminocyclitols from D-ribose

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Bis(perylene diimide) with DACH bridge as nonfullerene. electron acceptor for organic solar cells

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Chemical Communications. Electronic Supporting Information

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Electronic Supplementary Information (ESI)

Supporting Information

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Aminofluorination of Fluorinated Alkenes

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Supporting Information

Electronic Supplementary Information

Electronic Supplementary Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information for:

Supporting Information for

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Title N-H versus C-H Activation of a Pyrrole Imine at {Cp*Ir}: A Computational and Experimental Study

Supporting Information. Lithium Cadmate-Mediated Deprotonative Metalation of Anisole: Experimental and Computational Study

Electronic Supplementary Information (ESI)

Supplementary information

Electronic Supplementary Information for

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Transcript:

Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Vaquer, Secci, Frongia, Tuveri Supporting Information Disulfide-based metal free sulfanylation of ketones Andrea F. Vaquer, Francesco Secci *, Angelo Frongia and Enrica Tuveri Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-942, Monserrato, Cagliari, ITALY e-mail: fsecci@unica.it phone number (+39) 76754384 Table of Contents Materials and methods 2 Experimental procedures 3 General procedure for disulfide synthesis b-l 3 Table 1, pyrrolidine catalysts screening 6 1 H and 13 C NMR spectra of bis-disulfides b-l 7 1 H and 13 C NMR spectra of ketosulfides 2a-g, 4a-h, 6a-d,7a-i 18 Theoretical calculations References and Notes 44 45 1

Materials and Methods Unless stated otherwise, reaction were performed at ambient temperature (25 C). Commercially available reagents were used as received unless otherwise noted. Diphenyldisulfide, p-nitrophenyldisulfide, cyclobutanone 1a, cyclopentanone 3a, cyclohexanones 3b-e, and ketones 5a-c were purchased from Aldrich. Catalysts I-VII were purchased from Aldrich or Alfa-Aesar and used as received. 1 H NMR spectra were recorded on 4 and 5 MHz Varian spectrometers at 27 C using CDCl 3, DMF-d 7 or DMSO-d 6 as solvent. 13 C NMR were recorded at 1 and 125 MHz at 27 C using CDCl 3, DMF-d 7 or DMSO-d 6 as solvent. Chemical shifts ( ) are given in ppm. Coupling constants (J) are reported in Hz. Infrared spectra were recorded on a FT-IR Bruker Equinox-55 spectrophotometer and are reported in wavenumbers. Low Mass spectra analysis were recorded on an Agilent-HP GC-MS (E.I. 7eV). High resolution mass spectra (HRMS) were obtained using a Bruker High Resolution Mass Spectrometer in fast atom bombardment (FAB+) ionization mode or acquired using an Bruker microtof-q II 127. HPLC analysis were obtained from Hitachi-LaChrome 71-UV/74-Pump integrated system and using chiral HPLC columns OJ, OD-H, AD-H and Phenomenex-Lux. Analytical thin layer chromatography was performed using.25 mm Aldrich silica gel 6-F plates. Flash chromatography was performed using Merk 7-2 mesh silica gel. Yields refer to chromatography and spectroscopically pure materials. 2

Experimental Procedures General procedure for the synthesis of substituted disulfides b-k R SH Air/CuCl 2 1 mol% K 2 CO 3 MeOH, rt R = H, p-me, o-me, 3,5-dimethyl, OMe, F, Cl, Br, NO 2, naphthyl R S S R p-substituted disulfides b-k were synthetized as follow: To a stirred solution of benzenethiol b (2. g, 16 mmol) in meoh (5 ml), K 2 CO 3 (4.41 g, 32 mmol) and CuCl 2 (215 mg, 1.6 mmol) were added and the resulting mixture was bubbled with air for 8-1h. the resulting reaction mixture was filtered and the solid was washed with MeOH (2x2 ml). The organic phase was washed with a saturated solution of NaHCO 3 and dried on Na 2 SO 4. After filtration the solution was concentrated under reduced pressure, the crude disulfide was purified by flash chromatography (eluents hexaneshexanes:diethyl ether 95:5) affording the corresponding pure product in 92% yield. Me S S Me bis(p-tolyl)disulfide b. Yield 87%, white solid, Mp 44-45 C (recrystallized by n-hexane); FTIR neat, cm -1 357, 314, 2973, 154, 1452, 136; 1 H NMR (5 MHz, CDCl 3 ) δ: 7.36 (d, 4 H, J = 5. Hz), 7.9 (d, 4 H J = 5. Hz), 2.31 (s, 6 H); 13 C NMR (125 MHz, CDCl 3 ) δ: 137.42, 133.89, 129.76, 128.53, 21.4. GC-MS (EI) m/z: (%) 246, (1) [M+], 213 (12), 167 (15), 123 (66), 91 (15), 77 (18). Spectroscopic data are in accordance with the previously presented. 1 Me S S Me bis(o-tolyl)disulfide c. Yield 91%, yellow oil. FTIR neat, cm -1 358, 314, 2973, 154, 1452, 135; 1 H NMR (4 MHz, CDCl 3 ) δ: 7.547.48 (m, 1H), 7.17-7.9 (m, 3H), 2.42 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ: 137.34, 135.37, 13.27, 128.63, 127.29, 126.64, 19.96; GC-MS (EI) m/z: (%) 246, (1) [M+], 213 (8), 198 (6), 182 (1), 167 (6), 123 (67), 18 (9), 91 (11), 77 (13). Spectroscopic data are in accordance with the previously presented. 1 Me Me S S Me Me bis(3,5-phenyl)disulfide d. Yield 89%, yellow oil. FTIR neat, cm -1 31, 2921, 2862, 1537, 1459, 138; 1 H NMR (4 MHz, CDCl 3 ) δ: 7.11 (s, 2H), 6.84 (s, 4H), 2.27 (s, 12H); 13 C NMR (1 MHz, CDCl 3 ) δ: 138.67, 136.79, 128.97, 125.12, 21.21; GC-MS (EI) m/z: (%) 274, (1) [M+], 259 (6), 241 (12), 226 (19), 21 (8), 195 (17), 168 (5), 137 (24), 121 (13), 15 (7), 91 (12), 77 (11). Spectroscopic data are in accordance with the previously presented. 1 3

OMe S S MeO bis(p-methoxyphenyl)disulfide e. Yield 9%, white solid. Mp 75-78 C. 1 H NMR (4 MHz, CDCl 3 ) δ: 7.22-7.18 (m, 2H), 7.7 (d, 4 H, J = 1.1 Hz), 6.76 (dd, 2 H, J = 1.1 Hz J = 2. Hz); 13 C NMR (125 MHz, CDCl 3 ) δ: 159.8, 132.6, 128.4, 114.5, 55.3; GC-MS (EI) m/z: (%) 278, (22) [M+], 14 (1), 139 (1), 96 (21), 77 (9). Spectroscopic data are in accordance with the previously presented. 1 F S S F bis(p-fluorophenyl)disulfide f. Yield 91%, colorless oil. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.43 (dt, 4 H, J = 1.2 Hz, J = 2.5 Hz), 7. (t, 4 H, J = 1.2 Hz); 13 C NMR (125 MHz, CDCl 3 ) δ: 162.6 (d, J = 38 Hz), 132.1 (d, J = 3.87 Hz), 131.2 (d, J = 1.6 Hz), 116.2 (d, J = 28. Hz); GC-MS (EI) m/z: (%) 254, (77), 128 (1), 96 (33), 75 (12). Spectroscopic data are in accordance with the previously presented. 2 Cl S S Cl bis(p-chlorophenyl)disulfide g. Yield 9%, white solid. Mp 71-73 C. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.4-7.38 (m, 2 H), 7.28-7.25 (m, 3 H); 13 C NMR (125 MHz, CDCl 3 ) δ: 135.1, 133.6, 129.3, 129.2; GC-MS (EI) m/z: (%) 288, (13), 287 (23) [M+], 222 (6), 145 (24), 143 (1), 18 (66), 99 (21), 75 (12), 63 (14). Spectroscopic data are in accordance with the previously presented. 1 Br S S Br bis(p-bromopehnyl)disulfide h. Yield 93%, crystalline white solid. Mp 92-93 C. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.43-7.41 (m, 4 H), 7.34-7.32 (m, 4); 13 C NMR (125 MHz, CDCl 3 ) δ: 135.7, 132.2, 129.4, 121.5; GC-MS (EI) m/z: (%) 377, (72), 376 (1) [M+], 375 (63), 312 (8), 297 (18), 296 (17), 189 (77), 188 (74), 18 (81), 82 (15), 69 (16). Spectroscopic data are in accordance with the previously presented. 3 S S bis(benzyl)disulfide i. Yield 98%, brown solid. Mp 68-7 C. 1 H NMR (4 MHz, CDCl 3 ) δ: 7.32-7.22 (m, 1 H), 3.6 (s, 4 H); 13 C NMR (1 MHz, CDCl 3 ) δ: 137.3, 129.3, 128.4, 127.3, 43.3. GC-MS (EI) m/z: (%) 246, (7) [M+], 91 (1), 65 (17). Spectroscopic data are in accordance with the previously presented. 1 MeOOC S S COOMe bis(o-carboxymethylpehnyl)disulfide j. Yield 89%, white solid. Mp 196-198 C; FTIR neat, cm -1 2955, 1718, 1699, 1549, 1456, 1271, 1142, 115, 157; 1 H NMR (5 MHz, CDCl 3 ) δ: 8.6 (dd, 1 H, J = 1. Hz, 1. Hz), 7.43-7.27 (m, 1 H), 7.26 (d, 1 H, J = 1. Hz), 7.23 4

(dd, 1 H, J = 1 Hz, J = 2 Hz), 3.99 (s, 6 H); 13 C NMR (1 MHz, CDCl 3 ) δ: 166.9, 14.3, 133.1, 131.4, 127.3, 125.8, 125.4, 52.4; GC-MS (EI) m/z: (%) 334, (21), 319 (14), 167 (1), 19 (61), 77 (47%), 65 (39%), 62 (65%). Spectroscopic data are in accordance with the previously presented. 4 S S bis(naphthyl)disulfide k. Yield 93%, beige solid. Mp 14-141 C. 1 H NMR (4 MHz, DMSO-d 6 ) δ: 7.23 (s, 2H), 7.5 (d, 2H, J = 8.7 Hz), 6.99 (dd, 4H, J = 9.1 Hz, J = 6.9 Hz), 6.77 (dd, 2H, J = 8.7 Hz, J = 1.8 Hz), 6.66-6.57 (m, 4H); 13 C NMR (1 MHz, DMSO-d 6 ) δ: 133.1, 133., 132.1, 129.3, 127.8, 127.4, 127.1, 126.7, 126.3, 125.3. Spectroscopic data are in accordance with the previously presented. 1 S S bis(decyl)disulfide l. Yield 96%, colorless oil. 1 H NMR (4 MHz, CDCl 3 ) δ: 2.68 (t, J = 7.4 Hz, 4H), 1.73 1.59 (m, 4H), 1.37 (dd, J = 13.6, 6.7 Hz, 4H), 1.26 (s, 24H),.88 (t, J = 6.5 Hz, 6H); 13 C NMR (11 MHz, CDCl 3 ) δ: 39.4, 32., 29.7, 29.6, 29.5, 29.4, 28.7, 22.8, 14.2. Spectroscopic data are in accordance with the previously presented. 5 5

Table 1 -sulfenylation of cyclobutanone 1a using different pyrrolidine catalysts. a RO N O O COOH COOH N N N N N N N H H H HN N H HN SO2 Tol H HN SO2 Ar H I II III IV V VI R = SiTBDPh HN O HO Ph Ph N H VII COOH N H O O SPh Cat. 2% PhS + SPh DMSO, 5 C 1 2a Entry Catalyst Yield % b Time/h e.r. c 1 2 3 4 5 6 7 8 I II III IV V d VI VII Pyrrolidine 9 92 37 22 29 c 19-12 12 12 24 24 24 24 36 24 48:52 49:51 48:52 51:49 53:47 48:52 - - a) Reaction conditions: DMSO (1. ml), cyclobutanone (1. mmol), cat. I-VII (2 mol%), diphenyldisulfide (1. mmol), 5 C. b) Isolated yield. c) e.r. were determined by chiral-hplc analysis. d) R = p-c 6 H 4 -C 12 H 25. 6

1 H and 13 C NMR spectra of bis(aryl)disulfides b-l cd_338 137.41 133.89 129.76 128.53 77.32 77. 76.68 21.3 55 5 45 4 35 3 25 2 15 1 5-5 22 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2-3 7

8 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 cd_3488_4mhz 19.96 76.68 77. 77.32 126.64 127.29 128.63 13.27 135.37 137.34

9 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 cd_3489_4mhz 21.21 76.68 77. 77.32 125.12 128.97 136.79 138.67

1-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_3473_5mhz 55.45 76.9 77.15 77.41 114.72 128.52 132.73 16.1

11-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 cd_3474_5mhz 76.9 77.15 77.41 116.28 116.46 131.33 131.39 132.29 132.31 161.72 163.69

12-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_3464_5mhz 76.9 77.16 77.41 129.43 129.47 133.78 135.28

13-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.1..1.2.3.4.5.6.7.8.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 cd_3465_5mhz 76.9 77.15 77.41 121.68 129.54 132.36 135.87

14-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..2.4.6.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 cd_37_5mhz 43.45 76.9 77.15 77.41 17.44 127.55 128.61 129.54 137.51

15 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 cd_257 52.38 76.68 77. 77.32 125.47 125.84 127.31 131.45 133.7 14.36 166.9

16 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1 15 11 115 12 125 13 135-2 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38.89 39.1 39.31 39.52 39.73 39.94 4.15 125.34 126.31 126.69 127.16 127.44 127.79 129.38 132.14 133.7 133.17

17

1 H and 13 C NMR spectra of ketosulfides 2a-g, 4a-h, 6a-d and 7a-i 2a 18

2b 19

2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 cd_335_5mhz 18.85 45.13 55.36 59.45 76.9 77.15 77.41 113.51 115.35 116.8 119.88 123.72 127.5 129.73 129.86 134.79 159.86 25.15 2c

21-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 cd_332_5mhz 18.55 45.12 6.22 76.9 77.16 77.41 116.2 116.37 128.2 135.39 135.46 161.89 163.87 25.21 2d

22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.2..2.4.6.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 3.6 3.8 4. 4.2 cd_296_5mhz 18.67 45.22 59.38 76.9 77.16 77.41 17.44 121.92 132.22 132.29 132.7 133.53 136.61 24.75 2f

2g 23

24-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 cd_3398_4mhz 2.45 3.77 36.7 52.49 76.84 77.16 77.48 127.85 129.1 132.65 133.55 213.9 4a

25-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 cd_3386_4mhz 22.74 25.13 27.14 27.48 34.9 39.18 42.11 56.58 76.84 77.16 77.48 127.56 129.15 132.2 133.98 27.73 4b

26-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 11 12 13 cd_3442_4mhz 27.6 27.72 28.9 28.32 32.33 32.57 33.99 36.47 36.73 41.23 41.42 41.8 46.82 47.56 54.89 57.69 76.84 77.16 77.48 127.2 127.65 129.1 129.18 131.59 132.4 28.81 212.69 4d

27-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 cd_3422_8-2mix_5mhz 21.3 21.22 27.21 32.51 35.24 35.46 36.48 4.93 41.21 43.32 54.66 57.51 76.9 77.15 77.41 127.37 127.62 129.4 129.18 131.49 132.6 28.45 4e

28

29

3

6a 31

32-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 cd_3441_4mhz 41.31 76.84 77.16 77.48 127.19 128.77 129.16 13.59 133.56 134.87 135.48 194.15 6b

33-3 -2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 cd_3429_4mhz 47.36 62.87 76.84 77.16 77.48 127.18 127.92 128.42 128.74 128.92 129.2 129.8 129.65 132.63 133.67 133.74 135.36 22.23 6c

34-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 cd_3431_4mhz 26.29 76.84 77.16 77.48 87.57 114.62 116.24 116.81 122.93 129.28 129.7 129.82 129.99 134.74 155.85 2.45 6d

35 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 cd_3497_4mhz 2.89 27.28 27.69 31.95 33.46 36.33 41.35 55.2 76.68 77. 77.32 129.64 129.94 132.1 137.6 28.6 7a

36 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 cd_3495_4mhz 2.63 27.47 27.93 32.18 33.9 36.73 41.67 54.3 76.68 77. 77.32 126.6 127.75 13.36 132.38 133.6 139.51 28.47 7b

37-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 cd_3496_4mhz 21.12 27.47 27.98 32.18 33.93 36.67 41.61 54.98 76.68 77. 77.32 129.35 129.51 133.32 138.62 28.78 7c

38 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 1 2 3 4 5 6 7 8 9 1 11 cd_3485_4mhz 27.48 27.86 33.48 36.59 41.47 55.27 56.47 76.68 77. 77.32 114.74 123.95 135.9 159.94 28.53 7d

7e 39

7f 4

41 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 5 1 15 2 25 3 35 4 45 cd_3483_4mhz 27.35 27.42 27.74 28.2 32.8 32.48 33.64 36.3 36.41 4.93 41.63 47.3 54.46 57.35 76.68 77. 77.32 121.4 121.54 131.82 132.1 132.66 133.12 133.3 26.25 28.4 7g

42 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 2 4 6 8 1 12 14 16 18 2 22 24 26 28 cd_351 27.41 27.51 27.93 28.18 32.26 32.66 33.98 35.69 36.56 41.7 42.15 47.61 52.23 55.81 76.68 77. 77.32 123.9 123.98 124.4 124.58 126.37 127.96 128.14 131.9 144.62 145.83 25.37 28.1 7h

43-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_354_5mhz 27.59 27.66 27.69 28.7 32.32 34. 36.81 41.38 41.85 54.78 76.9 77.15 77.41 126.36 126.62 127.59 127.76 128.76 128.77 13.33 131.42 132.51 133.73 28.68 7i

Theoretical calculations Table 2 DFT-optimized for Sulfur atom charges on disulfide (e,g,i,a,l) compounds. Density Functional Theory (DFT) calculations were performed on compounds e,g,i,a,l with the commercial suite of software Gaussian9 6. On this basis, the quantum-mechanical (QM) study aimed at investigating the S atom charge on disulfure. All calculations were carried out with the mpw1pw hybrid functional 7 with the split valence 6-311G 8,9 basis sets, for all atomic species. NBO populations 1 bond indices were calculated at the optimized geometries, which were verified by harmonic frequency calculations. Tight SCF convergence criteria and fine numerical integration grids were used for all calculations. The results of the calculations were examined with GaussView 5 and Molden 5. programs. In according to the experimental data the charge on S atom. Ball and stick drawing and atom labelling scheme of the compounds e,g,i,a,l DFT level optimized geometry. Compound S-charges (medium value) S-natural charges e S,17852 S1,2755 S2,1495 g S,19717 S1,24934 S2,1451 i S,12628 S1,8212 S2,1744 a S,17848 S1,243 S2,15293 l S,5961 S1,711 S2,4911 44

References and Notes [1] M. Obe, K. Tanaka, K. Nishiyama, W. Ando, J. Org. Chem., 211, 76, 4173. [2] D. R. Dreyer, O.-P. Jia, A. D. Todd, J. Geng, C. W. Bielawski, Org. Biomol. Chem., 211, 9, 7292. [3] J. K. Vandavasi, W. P. Hu, C.-Y. Chen, J.-J. Wang, Tetrahedron, 211, 67, 8895. [4] Gopinath, P.; Nilaya, S.; Debi, T. R.; Ramkumar, V.; Muraleedharan, K. M., Chem. Commun. 29, 7131. [5] K. Iwasaki, K. K. Wan, A. Oppedisano, S. W. M. Crossiey, R. A. Shenvi, J. Am. Chem. Soc. 214, 136, 13. [6] Gaussian 9, Revision A.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal- mani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.; Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ha-Segawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussi- an, Inc., Wallingford CT, 29. [7] C. Adamo, V. Barone, J. Chem. Phys. 1998, 18, 664. [8] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 198, 72, 65; b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 198, 72, 5639. [9] a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899; b) Carpenter, J. E.; Weinhold, F. J. Mol. Struct: Theochem, 1988, 169, 41. [1] a) GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission KS, 29. b) Schaftenaar, G.; Noordik, J. H. J. Comput.-Aided Mol. Design, 2, 14, 123. 45