Electronic Supplementary Material (ESI) for RSC Advances. This journal is The Royal Society of Chemistry 215 Vaquer, Secci, Frongia, Tuveri Supporting Information Disulfide-based metal free sulfanylation of ketones Andrea F. Vaquer, Francesco Secci *, Angelo Frongia and Enrica Tuveri Dipartimento di Scienze Chimiche e Geologiche, Università degli studi di Cagliari, Complesso Universitario di Monserrato, S.S. 554, Bivio per Sestu, I-942, Monserrato, Cagliari, ITALY e-mail: fsecci@unica.it phone number (+39) 76754384 Table of Contents Materials and methods 2 Experimental procedures 3 General procedure for disulfide synthesis b-l 3 Table 1, pyrrolidine catalysts screening 6 1 H and 13 C NMR spectra of bis-disulfides b-l 7 1 H and 13 C NMR spectra of ketosulfides 2a-g, 4a-h, 6a-d,7a-i 18 Theoretical calculations References and Notes 44 45 1
Materials and Methods Unless stated otherwise, reaction were performed at ambient temperature (25 C). Commercially available reagents were used as received unless otherwise noted. Diphenyldisulfide, p-nitrophenyldisulfide, cyclobutanone 1a, cyclopentanone 3a, cyclohexanones 3b-e, and ketones 5a-c were purchased from Aldrich. Catalysts I-VII were purchased from Aldrich or Alfa-Aesar and used as received. 1 H NMR spectra were recorded on 4 and 5 MHz Varian spectrometers at 27 C using CDCl 3, DMF-d 7 or DMSO-d 6 as solvent. 13 C NMR were recorded at 1 and 125 MHz at 27 C using CDCl 3, DMF-d 7 or DMSO-d 6 as solvent. Chemical shifts ( ) are given in ppm. Coupling constants (J) are reported in Hz. Infrared spectra were recorded on a FT-IR Bruker Equinox-55 spectrophotometer and are reported in wavenumbers. Low Mass spectra analysis were recorded on an Agilent-HP GC-MS (E.I. 7eV). High resolution mass spectra (HRMS) were obtained using a Bruker High Resolution Mass Spectrometer in fast atom bombardment (FAB+) ionization mode or acquired using an Bruker microtof-q II 127. HPLC analysis were obtained from Hitachi-LaChrome 71-UV/74-Pump integrated system and using chiral HPLC columns OJ, OD-H, AD-H and Phenomenex-Lux. Analytical thin layer chromatography was performed using.25 mm Aldrich silica gel 6-F plates. Flash chromatography was performed using Merk 7-2 mesh silica gel. Yields refer to chromatography and spectroscopically pure materials. 2
Experimental Procedures General procedure for the synthesis of substituted disulfides b-k R SH Air/CuCl 2 1 mol% K 2 CO 3 MeOH, rt R = H, p-me, o-me, 3,5-dimethyl, OMe, F, Cl, Br, NO 2, naphthyl R S S R p-substituted disulfides b-k were synthetized as follow: To a stirred solution of benzenethiol b (2. g, 16 mmol) in meoh (5 ml), K 2 CO 3 (4.41 g, 32 mmol) and CuCl 2 (215 mg, 1.6 mmol) were added and the resulting mixture was bubbled with air for 8-1h. the resulting reaction mixture was filtered and the solid was washed with MeOH (2x2 ml). The organic phase was washed with a saturated solution of NaHCO 3 and dried on Na 2 SO 4. After filtration the solution was concentrated under reduced pressure, the crude disulfide was purified by flash chromatography (eluents hexaneshexanes:diethyl ether 95:5) affording the corresponding pure product in 92% yield. Me S S Me bis(p-tolyl)disulfide b. Yield 87%, white solid, Mp 44-45 C (recrystallized by n-hexane); FTIR neat, cm -1 357, 314, 2973, 154, 1452, 136; 1 H NMR (5 MHz, CDCl 3 ) δ: 7.36 (d, 4 H, J = 5. Hz), 7.9 (d, 4 H J = 5. Hz), 2.31 (s, 6 H); 13 C NMR (125 MHz, CDCl 3 ) δ: 137.42, 133.89, 129.76, 128.53, 21.4. GC-MS (EI) m/z: (%) 246, (1) [M+], 213 (12), 167 (15), 123 (66), 91 (15), 77 (18). Spectroscopic data are in accordance with the previously presented. 1 Me S S Me bis(o-tolyl)disulfide c. Yield 91%, yellow oil. FTIR neat, cm -1 358, 314, 2973, 154, 1452, 135; 1 H NMR (4 MHz, CDCl 3 ) δ: 7.547.48 (m, 1H), 7.17-7.9 (m, 3H), 2.42 (s, 3H); 13 C NMR (125 MHz, CDCl 3 ) δ: 137.34, 135.37, 13.27, 128.63, 127.29, 126.64, 19.96; GC-MS (EI) m/z: (%) 246, (1) [M+], 213 (8), 198 (6), 182 (1), 167 (6), 123 (67), 18 (9), 91 (11), 77 (13). Spectroscopic data are in accordance with the previously presented. 1 Me Me S S Me Me bis(3,5-phenyl)disulfide d. Yield 89%, yellow oil. FTIR neat, cm -1 31, 2921, 2862, 1537, 1459, 138; 1 H NMR (4 MHz, CDCl 3 ) δ: 7.11 (s, 2H), 6.84 (s, 4H), 2.27 (s, 12H); 13 C NMR (1 MHz, CDCl 3 ) δ: 138.67, 136.79, 128.97, 125.12, 21.21; GC-MS (EI) m/z: (%) 274, (1) [M+], 259 (6), 241 (12), 226 (19), 21 (8), 195 (17), 168 (5), 137 (24), 121 (13), 15 (7), 91 (12), 77 (11). Spectroscopic data are in accordance with the previously presented. 1 3
OMe S S MeO bis(p-methoxyphenyl)disulfide e. Yield 9%, white solid. Mp 75-78 C. 1 H NMR (4 MHz, CDCl 3 ) δ: 7.22-7.18 (m, 2H), 7.7 (d, 4 H, J = 1.1 Hz), 6.76 (dd, 2 H, J = 1.1 Hz J = 2. Hz); 13 C NMR (125 MHz, CDCl 3 ) δ: 159.8, 132.6, 128.4, 114.5, 55.3; GC-MS (EI) m/z: (%) 278, (22) [M+], 14 (1), 139 (1), 96 (21), 77 (9). Spectroscopic data are in accordance with the previously presented. 1 F S S F bis(p-fluorophenyl)disulfide f. Yield 91%, colorless oil. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.43 (dt, 4 H, J = 1.2 Hz, J = 2.5 Hz), 7. (t, 4 H, J = 1.2 Hz); 13 C NMR (125 MHz, CDCl 3 ) δ: 162.6 (d, J = 38 Hz), 132.1 (d, J = 3.87 Hz), 131.2 (d, J = 1.6 Hz), 116.2 (d, J = 28. Hz); GC-MS (EI) m/z: (%) 254, (77), 128 (1), 96 (33), 75 (12). Spectroscopic data are in accordance with the previously presented. 2 Cl S S Cl bis(p-chlorophenyl)disulfide g. Yield 9%, white solid. Mp 71-73 C. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.4-7.38 (m, 2 H), 7.28-7.25 (m, 3 H); 13 C NMR (125 MHz, CDCl 3 ) δ: 135.1, 133.6, 129.3, 129.2; GC-MS (EI) m/z: (%) 288, (13), 287 (23) [M+], 222 (6), 145 (24), 143 (1), 18 (66), 99 (21), 75 (12), 63 (14). Spectroscopic data are in accordance with the previously presented. 1 Br S S Br bis(p-bromopehnyl)disulfide h. Yield 93%, crystalline white solid. Mp 92-93 C. 1 H NMR (5 MHz, CDCl 3 ) δ: 7.43-7.41 (m, 4 H), 7.34-7.32 (m, 4); 13 C NMR (125 MHz, CDCl 3 ) δ: 135.7, 132.2, 129.4, 121.5; GC-MS (EI) m/z: (%) 377, (72), 376 (1) [M+], 375 (63), 312 (8), 297 (18), 296 (17), 189 (77), 188 (74), 18 (81), 82 (15), 69 (16). Spectroscopic data are in accordance with the previously presented. 3 S S bis(benzyl)disulfide i. Yield 98%, brown solid. Mp 68-7 C. 1 H NMR (4 MHz, CDCl 3 ) δ: 7.32-7.22 (m, 1 H), 3.6 (s, 4 H); 13 C NMR (1 MHz, CDCl 3 ) δ: 137.3, 129.3, 128.4, 127.3, 43.3. GC-MS (EI) m/z: (%) 246, (7) [M+], 91 (1), 65 (17). Spectroscopic data are in accordance with the previously presented. 1 MeOOC S S COOMe bis(o-carboxymethylpehnyl)disulfide j. Yield 89%, white solid. Mp 196-198 C; FTIR neat, cm -1 2955, 1718, 1699, 1549, 1456, 1271, 1142, 115, 157; 1 H NMR (5 MHz, CDCl 3 ) δ: 8.6 (dd, 1 H, J = 1. Hz, 1. Hz), 7.43-7.27 (m, 1 H), 7.26 (d, 1 H, J = 1. Hz), 7.23 4
(dd, 1 H, J = 1 Hz, J = 2 Hz), 3.99 (s, 6 H); 13 C NMR (1 MHz, CDCl 3 ) δ: 166.9, 14.3, 133.1, 131.4, 127.3, 125.8, 125.4, 52.4; GC-MS (EI) m/z: (%) 334, (21), 319 (14), 167 (1), 19 (61), 77 (47%), 65 (39%), 62 (65%). Spectroscopic data are in accordance with the previously presented. 4 S S bis(naphthyl)disulfide k. Yield 93%, beige solid. Mp 14-141 C. 1 H NMR (4 MHz, DMSO-d 6 ) δ: 7.23 (s, 2H), 7.5 (d, 2H, J = 8.7 Hz), 6.99 (dd, 4H, J = 9.1 Hz, J = 6.9 Hz), 6.77 (dd, 2H, J = 8.7 Hz, J = 1.8 Hz), 6.66-6.57 (m, 4H); 13 C NMR (1 MHz, DMSO-d 6 ) δ: 133.1, 133., 132.1, 129.3, 127.8, 127.4, 127.1, 126.7, 126.3, 125.3. Spectroscopic data are in accordance with the previously presented. 1 S S bis(decyl)disulfide l. Yield 96%, colorless oil. 1 H NMR (4 MHz, CDCl 3 ) δ: 2.68 (t, J = 7.4 Hz, 4H), 1.73 1.59 (m, 4H), 1.37 (dd, J = 13.6, 6.7 Hz, 4H), 1.26 (s, 24H),.88 (t, J = 6.5 Hz, 6H); 13 C NMR (11 MHz, CDCl 3 ) δ: 39.4, 32., 29.7, 29.6, 29.5, 29.4, 28.7, 22.8, 14.2. Spectroscopic data are in accordance with the previously presented. 5 5
Table 1 -sulfenylation of cyclobutanone 1a using different pyrrolidine catalysts. a RO N O O COOH COOH N N N N N N N H H H HN N H HN SO2 Tol H HN SO2 Ar H I II III IV V VI R = SiTBDPh HN O HO Ph Ph N H VII COOH N H O O SPh Cat. 2% PhS + SPh DMSO, 5 C 1 2a Entry Catalyst Yield % b Time/h e.r. c 1 2 3 4 5 6 7 8 I II III IV V d VI VII Pyrrolidine 9 92 37 22 29 c 19-12 12 12 24 24 24 24 36 24 48:52 49:51 48:52 51:49 53:47 48:52 - - a) Reaction conditions: DMSO (1. ml), cyclobutanone (1. mmol), cat. I-VII (2 mol%), diphenyldisulfide (1. mmol), 5 C. b) Isolated yield. c) e.r. were determined by chiral-hplc analysis. d) R = p-c 6 H 4 -C 12 H 25. 6
1 H and 13 C NMR spectra of bis(aryl)disulfides b-l cd_338 137.41 133.89 129.76 128.53 77.32 77. 76.68 21.3 55 5 45 4 35 3 25 2 15 1 5-5 22 21 2 19 18 17 16 15 14 13 12 11 1 9 8 7 6 5 4 3 2 1-1 -2-3 7
8 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 cd_3488_4mhz 19.96 76.68 77. 77.32 126.64 127.29 128.63 13.27 135.37 137.34
9 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 cd_3489_4mhz 21.21 76.68 77. 77.32 125.12 128.97 136.79 138.67
1-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_3473_5mhz 55.45 76.9 77.15 77.41 114.72 128.52 132.73 16.1
11-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 cd_3474_5mhz 76.9 77.15 77.41 116.28 116.46 131.33 131.39 132.29 132.31 161.72 163.69
12-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_3464_5mhz 76.9 77.16 77.41 129.43 129.47 133.78 135.28
13-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.1..1.2.3.4.5.6.7.8.9 1. 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2. 2.1 2.2 2.3 2.4 2.5 cd_3465_5mhz 76.9 77.15 77.41 121.68 129.54 132.36 135.87
14-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..2.4.6.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 cd_37_5mhz 43.45 76.9 77.15 77.41 17.44 127.55 128.61 129.54 137.51
15 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 cd_257 52.38 76.68 77. 77.32 125.47 125.84 127.31 131.45 133.7 14.36 166.9
16 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 9 95 1 15 11 115 12 125 13 135-2 2 4 6 8 1 12 14 16 18 2 22 24 26 28 3 32 34 36 38.89 39.1 39.31 39.52 39.73 39.94 4.15 125.34 126.31 126.69 127.16 127.44 127.79 129.38 132.14 133.7 133.17
17
1 H and 13 C NMR spectra of ketosulfides 2a-g, 4a-h, 6a-d and 7a-i 2a 18
2b 19
2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 cd_335_5mhz 18.85 45.13 55.36 59.45 76.9 77.15 77.41 113.51 115.35 116.8 119.88 123.72 127.5 129.73 129.86 134.79 159.86 25.15 2c
21-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 cd_332_5mhz 18.55 45.12 6.22 76.9 77.16 77.41 116.2 116.37 128.2 135.39 135.46 161.89 163.87 25.21 2d
22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23 -.2..2.4.6.8 1. 1.2 1.4 1.6 1.8 2. 2.2 2.4 2.6 2.8 3. 3.2 3.4 3.6 3.8 4. 4.2 cd_296_5mhz 18.67 45.22 59.38 76.9 77.16 77.41 17.44 121.92 132.22 132.29 132.7 133.53 136.61 24.75 2f
2g 23
24-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 cd_3398_4mhz 2.45 3.77 36.7 52.49 76.84 77.16 77.48 127.85 129.1 132.65 133.55 213.9 4a
25-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 8 85 cd_3386_4mhz 22.74 25.13 27.14 27.48 34.9 39.18 42.11 56.58 76.84 77.16 77.48 127.56 129.15 132.2 133.98 27.73 4b
26-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 11 12 13 cd_3442_4mhz 27.6 27.72 28.9 28.32 32.33 32.57 33.99 36.47 36.73 41.23 41.42 41.8 46.82 47.56 54.89 57.69 76.84 77.16 77.48 127.2 127.65 129.1 129.18 131.59 132.4 28.81 212.69 4d
27-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 3 -.5..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. 6.5 7. 7.5 8. 8.5 9. 9.5 cd_3422_8-2mix_5mhz 21.3 21.22 27.21 32.51 35.24 35.46 36.48 4.93 41.21 43.32 54.66 57.51 76.9 77.15 77.41 127.37 127.62 129.4 129.18 131.49 132.6 28.45 4e
28
29
3
6a 31
32-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 cd_3441_4mhz 41.31 76.84 77.16 77.48 127.19 128.77 129.16 13.59 133.56 134.87 135.48 194.15 6b
33-3 -2-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 5 1 15 2 25 3 35 4 45 5 55 6 65 7 75 cd_3429_4mhz 47.36 62.87 76.84 77.16 77.48 127.18 127.92 128.42 128.74 128.92 129.2 129.8 129.65 132.63 133.67 133.74 135.36 22.23 6c
34-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 cd_3431_4mhz 26.29 76.84 77.16 77.48 87.57 114.62 116.24 116.81 122.93 129.28 129.7 129.82 129.99 134.74 155.85 2.45 6d
35 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 cd_3497_4mhz 2.89 27.28 27.69 31.95 33.46 36.33 41.35 55.2 76.68 77. 77.32 129.64 129.94 132.1 137.6 28.6 7a
36 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 cd_3495_4mhz 2.63 27.47 27.93 32.18 33.9 36.73 41.67 54.3 76.68 77. 77.32 126.6 127.75 13.36 132.38 133.6 139.51 28.47 7b
37-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 cd_3496_4mhz 21.12 27.47 27.98 32.18 33.93 36.67 41.61 54.98 76.68 77. 77.32 129.35 129.51 133.32 138.62 28.78 7c
38 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 1 2 3 4 5 6 7 8 9 1 11 cd_3485_4mhz 27.48 27.86 33.48 36.59 41.47 55.27 56.47 76.68 77. 77.32 114.74 123.95 135.9 159.94 28.53 7d
7e 39
7f 4
41 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 5 1 15 2 25 3 35 4 45 cd_3483_4mhz 27.35 27.42 27.74 28.2 32.8 32.48 33.64 36.3 36.41 4.93 41.63 47.3 54.46 57.35 76.68 77. 77.32 121.4 121.54 131.82 132.1 132.66 133.12 133.3 26.25 28.4 7g
42 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 2 4 6 8 1 12 14 16 18 2 22 24 26 28 cd_351 27.41 27.51 27.93 28.18 32.26 32.66 33.98 35.69 36.56 41.7 42.15 47.61 52.23 55.81 76.68 77. 77.32 123.9 123.98 124.4 124.58 126.37 127.96 128.14 131.9 144.62 145.83 25.37 28.1 7h
43-1 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 19 2 21 22 23..5 1. 1.5 2. 2.5 3. 3.5 4. 4.5 5. 5.5 6. cd_354_5mhz 27.59 27.66 27.69 28.7 32.32 34. 36.81 41.38 41.85 54.78 76.9 77.15 77.41 126.36 126.62 127.59 127.76 128.76 128.77 13.33 131.42 132.51 133.73 28.68 7i
Theoretical calculations Table 2 DFT-optimized for Sulfur atom charges on disulfide (e,g,i,a,l) compounds. Density Functional Theory (DFT) calculations were performed on compounds e,g,i,a,l with the commercial suite of software Gaussian9 6. On this basis, the quantum-mechanical (QM) study aimed at investigating the S atom charge on disulfure. All calculations were carried out with the mpw1pw hybrid functional 7 with the split valence 6-311G 8,9 basis sets, for all atomic species. NBO populations 1 bond indices were calculated at the optimized geometries, which were verified by harmonic frequency calculations. Tight SCF convergence criteria and fine numerical integration grids were used for all calculations. The results of the calculations were examined with GaussView 5 and Molden 5. programs. In according to the experimental data the charge on S atom. Ball and stick drawing and atom labelling scheme of the compounds e,g,i,a,l DFT level optimized geometry. Compound S-charges (medium value) S-natural charges e S,17852 S1,2755 S2,1495 g S,19717 S1,24934 S2,1451 i S,12628 S1,8212 S2,1744 a S,17848 S1,243 S2,15293 l S,5961 S1,711 S2,4911 44
References and Notes [1] M. Obe, K. Tanaka, K. Nishiyama, W. Ando, J. Org. Chem., 211, 76, 4173. [2] D. R. Dreyer, O.-P. Jia, A. D. Todd, J. Geng, C. W. Bielawski, Org. Biomol. Chem., 211, 9, 7292. [3] J. K. Vandavasi, W. P. Hu, C.-Y. Chen, J.-J. Wang, Tetrahedron, 211, 67, 8895. [4] Gopinath, P.; Nilaya, S.; Debi, T. R.; Ramkumar, V.; Muraleedharan, K. M., Chem. Commun. 29, 7131. [5] K. Iwasaki, K. K. Wan, A. Oppedisano, S. W. M. Crossiey, R. A. Shenvi, J. Am. Chem. Soc. 214, 136, 13. [6] Gaussian 9, Revision A.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scal- mani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M.; Hada, M. Ehara, K. Toyota, R. Fukuda, J. Ha-Segawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussi- an, Inc., Wallingford CT, 29. [7] C. Adamo, V. Barone, J. Chem. Phys. 1998, 18, 664. [8] a) R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 198, 72, 65; b) A. D. McLean, G. S. Chandler, J. Chem. Phys. 198, 72, 5639. [9] a) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88, 899; b) Carpenter, J. E.; Weinhold, F. J. Mol. Struct: Theochem, 1988, 169, 41. [1] a) GaussView, Version 5, Dennington, R.; Keith, T.; Millam, J. Semichem Inc., Shawnee Mission KS, 29. b) Schaftenaar, G.; Noordik, J. H. J. Comput.-Aided Mol. Design, 2, 14, 123. 45