E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations

Σχετικά έγγραφα
Supporting Information. for

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Nickel and Platinum PCP Pincer Complexes Incorporating an Acyclic Diaminoalkyl Central Moiety Connecting Imidazole or Pyrazole Rings

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

C H Activation of Cp* Ligand Coordinated to Ruthenium. Center: Synthesis and Reactivity of a Thiolate-Bridged

Supplementary Information. Living Ring-Opening Polymerization of Lactones by N-Heterocyclic Olefin/Al(C 6 F 5 ) 3

Supporting Information

Supporting Information

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Heavier chalcogenone complexes of bismuth(iii)trihalides: Potential catalysts for acylative cleavage of cyclic ethers. Supporting Information

Electronic Supplementary Information

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information for. Catalytic C H α-trifluoromethylation of α,β-unsaturated Carbonyl Compounds

Supporting Information for

Supporting Information

Supporting Information

Supporting Information

Electronic Supplementary Information (ESI)

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information. A catalyst-free multicomponent domino sequence for the. diastereoselective synthesis of (E)-3-[2-arylcarbonyl-3-

Supporting Information

chlorostibine Iou-Sheng Ke and François P. Gabbai Department of Chemistry, Texas A&M University, College Station, TX

Nitric oxide (NO) reactivity studies on mononuclear Iron(II) complexes supported by a tetradentate Schiff base Ligand

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Enantioselective Synthesis of the Anti-inflammatory Agent ( )-Acanthoic Acid

Photo-Induced Self-Assembly of Pt(II)-Linked Rings and Cages via the Photolabilization of a Pt(II) Pyridine Bond

Supporting Information. Experimental section

Supporting Information for Substituent Effects on the Properties of Borafluorenes

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information. Pd(0)-Catalyzed Decarboxylative Coupling and Tandem C H Arylation/Decarboxylation for the. Synthesis of Heteroaromatic Biaryls

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supplementary information

The Free Internet Journal for Organic Chemistry

Supporting Information

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Patrycja Miszczyk, Dorota Wieczorek, Joanna Gałęzowska, Błażej Dziuk, Joanna Wietrzyk and Ewa Chmielewska. 1. Spectroscopic Data.

Supporting Information. Palladium Complexes with Bulky Diphosphine. Synthesis of (Bio-) Adipic Acid from Pentenoic. Acid Mixtures.

Supporting Information. Experimental section

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supporting Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

SUPPORTING INFORMATION

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information

Supplementary information

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Supporting Information for: Intramolecular Hydrogen Bonding-Assisted Cyclocondensation of. 1,2,3-Triazole Synthesis

Electronic Supplementary Information (ESI)

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

and Trimethylene Carbonate

Supporting Information Synthesis of cyclometalated 1,3,5-triphenylpyrazole palladium dimer and its activity towards cross coupling reactions

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Electronic Supplementary Information

Electronic Supporting Information. 3-Aminothiophenecarboxylic acid (3-Atc)-induced folding in peptides

Synthesis and evaluation of novel aza-caged Garcinia xanthones

Supporting Information

Supporting Information. Synthesis and biological evaluation of nojirimycin- and

IV. ANHANG 179. Anhang 178

Cobalt-Catalyzed Selective Synthesis of Isoquinolines Using Picolinamide as a Traceless Directing Group

Supporting Information

Zebra reaction or the recipe for heterodimeric zinc complexes synthesis

Electronic Supplementary Information:

multicomponent synthesis of 5-amino-4-

Supporting Information

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Supporting Information. Research Center for Marine Drugs, Department of Pharmacy, State Key Laboratory

SUPPLEMENTARY MATERIAL

Supplementary Information

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting information

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Peptidomimetics as Protein Arginine Deiminase 4 (PAD4) Inhibitors

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

SUPPLEMENTARY MATERIAL. A Facile and Convenient Approach for the Synthesis of Novel Sesamol-Oxazine and Quinoline- Oxazine Hybrids

Cycloaddition of Homochiral Dihydroimidazoles: A 1,3-Dipolar Cycloaddition Route to Optically Active Pyrrolo[1,2-a]imidazoles

Pyrrolo[2,3-d:5,4-d']bisthiazoles: Alternate Synthetic Routes and a Comparative Study to Analogous Fused-ring Bithiophenes

Fused Bis-Benzothiadiazoles as Electron Acceptors

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Practical Pd(II)-catalyzed C H Alkylation with Epoxides: One-step Syntheses of 3,4-Dihydroisocoumarins

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

Supporting Information

Supplementary Material

Transcript:

E-H (E = B, Si, C) Bond Activation by Tuning Structural and Electronic Properties of Phosphenium Cations Nemanja Đorđević, Rakesh Ganguly, Milena Petković, and Dragoslav Vidović Email: drasko.vidovic@monash.edu SUPPORTING INFORMATION

1. Multinuclear NMR Spectra [( i Pr2N)2P][BAr Cl 4], [1][BAr Cl 4]: Figure S1. 1 H NMR Spectrum of [1][BAr Cl 4] 2

Figure S2. 13 C{ 1 H} NMR Spectrum of [1][BAr Cl 4] Figure S3. 31 P NMR Spectrum of [1][BAr Cl 4] 3

[{C6H4(MeN)2C}2C. P(N i Pr2)Cl][X], [2a-Cl][X], X = Cl, SbF6: Figure S4. 1 H NMR Spectrum of [2a-Cl]Cl Figure S5. 13 C{ 1 H} NMR Spectrum of [2a-Cl]Cl 4

Figure S6. 31 P NMR Spectrum of [2a-Cl]Cl 5

[{C6H4(MeN)2C}2C. P(Ph)Cl][X], [2b-Cl][X], X = Cl, SbF6: Figure S7. 1 H NMR Spectrum of [2b-Cl]Cl 6

Figure S8. 13 C{ 1 H} NMR Spectrum of [2b-Cl]Cl Figure S9. 31 P NMR Spectrum of [2b-Cl]Cl 7

[{C6H4(MeN)2C}2C. PN i Pr2][BAr Cl 4]2, [2a][BAr Cl 4]2: Figure S10. 1 H NMR Spectrum of [2a][BAr Cl 4] 2 8

Figure S11. 13 C{ 1 H} NMR Spectrum of [2a][BAr Cl 4] 2 Figure S12. 31 P NMR Spectrum of [2a][BAr Cl 4] 2 9

[{C6H4(MeN)2C}2C. PPh][X]2, [2b][X]2, X = AlCl4 and BAr Cl 4: Figure S13. 1 H NMR Spectrum of [2b][AlCl 4] 2 Figure S14. 13 C{ 1 H} NMR Spectrum of [2b][AlCl 4] 2 10

Figure S15. 31 P NMR Spectrum of [2b][AlCl 4] 2 11

[{C6H4(MeN)2C}2C. P(CH2CCH3)2Ph][AlCl4]2, [2b(CH2CCH3)2][AlCl4]2: Figure S16. 1 H NMR Spectrum of [2b(CH2CCH3)2][AlCl 4] 2 Figure S17. 13 C{ 1 H} NMR Spectrum of [2b(CH2CCH3)2][AlCl 4] 2 12

31.15 400 300 200 100 0 100 200 300 400 ppm Figure S18. 31 P{ 1 H} NMR Spectrum of [2b(CH2CCH3)2][AlCl 4] 2 Figure S19. 31 P NMR Spectrum of [2b(CH2CCH3)2][AlCl 4] 2 13

[( i Pr2N)2P(H)(BH2. Py)][BAr Cl 4], [1(H)(BH2. Py)][BAr Cl 4]: Figure S20. 1 H NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] Figure S21. 13 C{ 1 H} NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] 14

Figure S22. 11 B NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] 15

Figure S23. 11 B{ 1 H} NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] Figure S24. 31 P NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] 16

Figure S25. 31 P{ 1 H} NMR Spectrum of [1(H)(BH2. Py)][BAr Cl 4] 17

[( i Pr2N)2P(H)(BH2. NMe3)][BAr Cl 4], [1(H)(BH2. NMe3)][BAr Cl 4]: Figure S26. 1 H NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] Figure S27. 13 C{ 1 H} NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] 18

Figure S28. 11 B NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] Figure S29. 11 B{ 1 H} NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] 19

Figure S30. 31 P NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] Figure S31. 31 P{ 1 H} NMR Spectrum of [1(H)(BH2. NMe3)][BAr Cl 4] 20

Reactions of [2a][BAr Cl 4]2 with H3B. LB (LB = NMe3, Pyridine): Figure S32. 31 P{ 1 H} NMR Spectrum of the reaction between in situ formed [2a][BAr Cl 4] 2 and H 3B. NMe 3 21

Figure S33. 31 P NMR Spectrum of the reaction between in situ formed [2a][BAr Cl 4] 2 and H 3B. NMe 3 Figure S34. 31 P NMR Spectrum of the reaction between in situ formed [2a][BAr Cl 4] 2 and H 3B. Py 22

Figure S35. 31 P{ 1 H} NMR Spectrum of the reaction between in situ formed [2a][BAr Cl 4] 2 and H 3B. Py 23

x10 4 +ESI Scan (rt: 0.734 min) Frag=200.0V Sept23-2016 ND9.d 3.6 3.4 3.2 264.1658 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1 264.6675 0.8 263.6628 0.6 0.4 0.2 0 265.1695 263.6 263.8 264 264.2 264.4 264.6 264.8 265 265.2 265.4 265.6 Counts vs. Mass-to-Charge (m/z) Figure S36. HR-MS Spectrum (experimental bottom, and theoretical top right) of [2a(H)(BH2. Py)][BAr Cl 4] 2 24

[{C6H4(MeN)2C}2C. P(H)(BH2. NMe3)N i Pr2][BAr Cl 4]2, [2a(H)(BH2. NMe3)][BAr Cl 4]2: Figure S37. 1 H NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 25

Figure S38. 11 B NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 Figure S39. 11 B{ 1 H} NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 26

Figure S40. 13 C{ 1 H} NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 Figure S41. 31 P NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 27

Figure S42. 31 P{ 1 H} NMR Spectrum of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 28

x10 6 +ESI Scan (rt: 1.101 min) Frag=150.0V Sept23-2016 ND7.d 3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 253.6837 Figure S43. HR-MS Spectrum (experimental bottom, and theoretical top right) of [2a(H)(BH2. NMe3)][BAr Cl 4] 2 254.1811 254.6833 254.8316 255.1844 253.6 253.8 254 254.2 254.4 254.6 254.8 255 255.2 255.4 Counts vs. Mass-to-Charge (m/z) 29

[{C6H4(MeN)2C}2C. PH2][X], [2. PH2][X], [X] = [AlCl4], [BAr Cl 4]: Figure S44. 1 H NMR Spectrum of [2. PH2][BAr Cl 4] 30

Figure S45. 31 P NMR Spectrum of [2. PH2][BAr Cl 4] Figure S46. 31 P{ 1 H} NMR Spectrum of [2. PH2][BAr Cl 4] 31

Reactions of [2b][BAr Cl 4]2 with BH3. LB (LB = NMe3, Pyridine): Figure S47. 31 P NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and H 3B. NMe 3 32

Figure S48. 31 P{ 1 H} NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and H 3B. NMe 3 Figure S49. 31 P NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and H 3B. Py 33

Figure S50. 31 P{ 1 H} NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and H 3B. Py 34

x10 4 +ESI Scan (rt: 3.003 min) Frag=100.0V Sept23-2016 ND10.d 3.1 3 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 252.1271 252 252.2 252.4 252.6 252.8 253 253.2 253.4 253.6 253.8 254 Counts vs. Mass-to-Charge (m/z) Figure S51. HR-MS Spectrum (experimentally obtained bottom, and theoretically predicted top right) of [2b(H)(BH2. Py)][BAr Cl 4] 2 252.6292 253.1362 253.6369 35

[{C6H4(MeN)2C}2C. P(H)(BH2. NMe3)Ph][X]2, [2b(H)(BH2. NMe3)][X]2, X = AlCl4, BAr Cl 4: Figure S52. 1 H NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 36

Figure S53. 11 B NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 Figure S54. 11 B{ 1 H} NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 37

Figure S55. 13 C{ 1 H} NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 Figure S56. 31 P NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 38

Figure S57. 31 P{ 1 H} NMR Spectrum of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 39

x10 5 +ESI Scan (rt: 0.800 min) Frag=50.0V Sept23-2016 ND3.d 4.8 4.6 4.4 4.2 242.6440 4 3.8 3.6 3.4 3.2 3 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 243.1456 1 0.8 242.1454 0.6 0.4 0.2 243.6465 0 242 242.2 242.4 242.6 242.8 243 243.2 243.4 243.6 243.8 244 244.2 244.4 Counts vs. Mass-to-Charge (m/z) Figure S58. HR-MS Spectrum (experimental bottom, and theoretical top right) of [2b(H)(BH2. NMe3)][BAr Cl 4] 2 40

Reactions of [2a][BAr Cl 4]2 with R3SiH (R = Et, Ph): Figure S59. 31 P NMR Spectrum of the reaction mixture between in situ formed [2a][BAr Cl 4] 2 and Et 3SiH 41

Figure S60. 31 P{ 1 H} NMR Spectrum of the reaction mixture between in situ formed [2a][BAr Cl 4] 2 and Et 3SiH 42

[{C6H4(MeN)2C}2C. P(N i Pr2)H][BAr Cl 4], [2a-H][BAr Cl 4]: Figure S61. 31 P NMR Spectrum of the reaction mixture between in situ formed [2a][BAr Cl 4] 2 and n Bu 3SnH 43

Figure S62. 31 P{ 1 H} NMR Spectrum of the reaction mixture between in situ formed [2a][BAr Cl 4] 2 and nbu 3SnH 44

Reaction of [2a][BAr Cl 4]2 with H2O. When [2a][BAr Cl 4]2 reacted with silanes and stannane (Figures S59-62), apart from the formation of [2a-H][BAr Cl 4], a new signal at P 12 ppm with coupling constant value of 1 JP-H = 560 Hz was observed in the 31 P/ 31 P{ 1 H} NMR spectrum. The following peak resembles the compound [{C6H4(MeN)2C}2C. P(O)(H)N i Pr2][BAr Cl 4], [2a(O)(H)][BAr Cl 4] derived from slight hydrolysis (less than 10% in abundance) of [2a][BAr Cl 4]2. The product of hydrolysis was synthesized independently according to the following procedure: 256 mg (0.40 mmol, 2 equiv) of Na[BAr Cl 4] was added to the solution of 100 mg (0.19 mmol, 1 equiv) of [2a- Cl]Cl in 40 ml of 1,2-difluorobenzene, and the resulting mixture was stirred for 5 minutes at ambient temperature. Then, 4 μl (0.19 mmol, 1 equiv) of H2O was added followed by additional 2 hours of stirring at ambient temperature. NaCl was removed by filtration, and the resulting solution treated with n-pentane (around 100 ml) to give [2a(O)(H)][BAr Cl 4] as a light yellow solid that was isolated by filtration and dried under vacuum. Yield: 186 mg (93%). 1 H NMR (400 MHz, CD2Cl2, 298 K): 0.90 (br s, 6H, (CH3)2CH), 1.39 (br s, 6H, (CH3)2CH), 3.42 (br s, 12H, NCH3), 3.78 (br m, 2H, CH(CH3)2), 6.89 (t, 4 JHH = 2 Hz, 8H, p-h, BAr Cl 4), 7.03 (m, 16H, BAr Cl 4), 7.31 (br s, 4H), 8.13 (d, 1 JHP = 560 Hz, PH), 7.57 (m, 4H). 13 C{ 1 H} NMR (100 MHz, CD2Cl2, 298 K): 23.0 (s, (CH3)2CH), 23.6 (s, (CH3)2CH), 32.9 (br s, NCH3), 47.2 (s, CH(CH3)2), 111.8 (s, CH arom.), 122.9 (s, p-c, BAr Cl 4), 127.6 (s, CH arom.), 131.2 (s, CH arom.), 132.9 (br s, o-c, BAr Cl 4), 133.0 (s, m-c, BAr Cl 4), 150.4 (br s, NCN), 164.7 (q, 1 JCB = 49 Hz, ipso-c, BAr Cl 4). 31 P NMR (160 MHz, CD2Cl2, 298 K): δ 12.3 (d, 1 JPH = 560 Hz). 31 P{ 1 H} NMR (160 MHz, CD2Cl2, 298 K): δ 12.9 (s). HR- MS Calculated for [C25H35N5OP] + [2a(O)(H)] + : m/z 452.2574. Found: 452.2576. 45

Figure S63. 1 H NMR Spectrum of [2a(O)(H)][BAr Cl 4] Figure S64. 13 C{ 1 H} NMR Spectrum of [2a(O)(H)][BAr Cl 4] 46

Figure S65. 31 P NMR Spectrum of [2a(O)(H)][BAr Cl 4] Figure S66. 31 P{ 1 H} NMR Spectrum of [2a(O)(H)][BAr Cl 4] 47

x10 7 +ESI Scan (rt: 0.123 min) Frag=100.0V Sept23-2016 ND8.d 1.2 1.15 1.1 1.05 452.2576 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 453.2607 0.25 0.2 0.15 0.1 0.05 0 454.2653 455.2679 452 452.5 453 453.5 454 454.5 455 455.5 Counts vs. Mass-to-Charge (m/z) Figure S67. HR-MS Spectrum (experimental bottom, and theoretical top right) of [2a(O)(H)][BAr Cl 4] 48

[{C6H4(MeN)2C}2C. P(Ph)H][X], [2b-H][X], [X] = [AlCl4] and [BAr Cl 4]: Figure S68. 1 H NMR Spectrum of [2b-H][BAr Cl 4] Figure S69. 13 C{ 1 H} NMR Spectrum of [2b-H][BAr Cl 4] 49

Figure S70. 31 P NMR Spectrum of [2b-H][BAr Cl 4] Figure S71. 31 P{ 1 H} NMR Spectrum of [2b-H][BAr Cl 4] 50

x10 4 +ESI Scan (rt: 0.768 min) Frag=50.0V Sept30-2016 ND2.d 1.7 1.6 1.5 413.1892 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 414.1920 0.3 0.2 0.1 0 413 413.2 413.4 413.6 413.8 414 414.2 414.4 414.6 414.8 415 415.2 415.4 415.6 Counts vs. Mass-to-Charge (m/z) Figure S72. HR-MS Spectrum (experimental bottom, and theoretic top right) of [2b-H][BAr Cl 4] 51

Reaction of [2b][BAr Cl 4]2 with 1,3,5-cycloheptatriene: Figure S73. 31 P NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and cycloheptatriene 52

Figure S74. 31 P{ 1 H} NMR Spectrum of the reaction between in situ formed [2b][BAr Cl 4] 2 and cycloheptatriene 53

[{C6H4(MeN)2C}2C. P{(CH)6CH2}Ph][BAr Cl 4]2, [2b{(CH)6CH2}][BAr Cl 4]2: Figure S75. 1 H NMR Spectrum of [2b{(CH)6CH2}][BAr Cl 4] 2 54

Figure S76. 13 C{ 1 H} NMR Spectrum of [2b{(CH)6CH2}][BAr Cl 4] 2 Figure S77. 31 P NMR Spectrum of [2b{(CH)6CH2}][BAr Cl 4] 2 55

x10 6 +ESI Scan (rt: 1.300 min) Frag=100.0V Sept23-2016 ND4.d 2 1.9 1.8 252.1218 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 252.6244 0.5 0.4 0.3 0.2 0.1 0 253.1264 253.6289 252 252.2 252.4 252.6 252.8 253 253.2 253.4 253.6 253.8 Counts vs. Mass-to-Charge (m/z) Figure S78 HR-MS Spectrum (experimental bottom, and theoretical top right) of [2b{(CH)6CH2}][BAr Cl 4] 2 56

Reaction of [2b-H][BAr Cl 4] with tropylium tetrafluoroborate ([C7H7][BF4]): Figure S79. 31 P NMR Spectrum of the reaction mixture between [2b][BAr Cl 4] 2 and [C 7H 7][BF 4] 57

Figure S80. 31 P{ 1 H} NMR Spectrum of the reaction mixture between [2b][BAr Cl 4] 2 and [C 7H 7][BF 4] 58

[{C6H4(MeN)2C}2C. P(H)(CH{C6H4}2O)Ph][BAr Cl 4]2, [2b(H)(CH{C6H4}2O)][BAr Cl 4]2: Figure S81. 1 H NMR Spectrum of [2b(H)(CH{C6H4}2O)][BAr Cl 4] 2 59

Figure S82. 1 H NMR Spectra of [2b(H)(CH{C6H4}2O)][BAr Cl 4] 2 recorded using different effective frequencies 300 (top), 400 (middle), and 500 (bottom) MHz Figure S83. 13 C{ 1 H} NMR Spectrum of [2b(H)(CH{C6H4}2O)][BAr Cl 4] 2 60

Figure S84. 31 P{ 1 H} NMR Spectrum of [2b(H)(CH{C6H4}2O)][BAr Cl 4] 2 Figure S85. 31 P NMR Spectrum of [2b(H)(CH{C6H4}2O)][BAr Cl 4] 2 61

x10 5 +ESI Scan (rt: 0.387 min) Frag=50.0V Sept30-2016 ND2.d 1.35 1.3 1.25 1.2 1.15 1.1 1.05 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.05 0 593.2469 594.2502 595.2523 593 593.5 594 594.5 595 595.5 596 596.5 Counts vs. Mass-to-Charge (m/z) Figure S86. HR-MS Spectrum (experimental bottom, and theoretical top right) of [2b(CH{C6H4}2O)] + 62

x10 6 +ESI Scan (rt: 3.785 min) Frag=175.0V Sept23-2016 ND5.d 1.2 1.15 1.1 1.05 181.0653 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5 0.45 0.4 0.35 0.3 0.25 0.2 0.15 182.0692 0.1 0.05 0 180.8 181 181.2 181.4 181.6 181.8 182 182.2 182.4 182.6 182.8 183 183.2 183.4 Counts vs. Mass-to-Charge (m/z) Figure S87. HR-MS Spectrum (experimental bottom, and theoretical top right) of [CH{C6H4}2O] + 63

2. Crystallographic Data Crystallographic data for [1][BAr Cl 4]: C36H40BCl8N2P, M r 826.08, monoclinic, P 1 21/n 1, a = 9.7448(3) Å, b = 13.9148(4) Å, and c = 29.7605(8) Å, α = 90, β = 95.6699(14), and γ = 90, V = 4015.7(2) Å 3, Z = 4, ρ = 1.366 c gcm-3, T = 103(2) K, λ = 0.71073 Å; 116505 reflections collected, 15393 independent [Rint = 0.0294], which were used in all calculations; R1 = 0.0348, wr2 = 0.0848 for I > 2σ(I), and R1 = 0.0414, wr2 = 0.0881 for all unique reflections; max and min residual electron densities 1.439 eå -3 and -0.672 eå -3. CCDC 1544307. Crystallographic data for [2a-Cl][SbF6]: C52H72Cl6F12N10P2Sb2, M r 1583.33, triclinic, P - 1, a = 9.9510(2) Å, b = 18.1607(5) Å, and c = 19.4532(4) Å, α = 70.4829(11), β = 88.0745(12), and γ = 82.4796(14), V = 3284.82(13) Å 3, Z = 2, ρ = 1.601 c gcm-3, T = 153(2) K, λ = 0.71073 Å; 68666 reflections collected, 14331 independent [Rint = 0.0584], which were used in all calculations; R1 = 0.0464, wr2 = 0.1195 for I > 2σ(I), and R1 = 0.0674, wr2 = 0.1505 for all unique reflections; max and min residual electron densities 2.532 eå -3 and -1.971 eå -3. CCDC 1544302. Crystallographic data for [2b-Cl][SbF6]: C53H56Cl8F12N8P2Sb2, M r 1622.09, triclinic, P -1, a = 8.5429(8) Å, b = 15.9590(15) Å, and c = 24.892(2) Å, α = 107.4440(19), β = 98.8580(19), and γ = 91.986(2), V = 3187.2(5) Å 3, Z = 2, ρ = 1.690 c gcm-3, T = 103(2) K, λ = 0.71073 Å; 40964 reflections collected, 17232 independent [Rint = 0.0566], which were used in all calculations; R1 = 0.0659, wr2 = 0.1553 for I > 2σ(I), and R1 = 0.1066, wr2 = 0.1793 for all unique reflections; max and min residual electron densities 2.859 eå - 3 and -2.259 eå -3. CCDC 1544299. Crystallographic data for [2b][BAr Cl 4]2: C85H57B2Cl16F4N4P, M r 1830.13, triclinic, P -1, a = 13.4121(11) Å, b = 13.9406(12) Å, and c = 22.8317(19) Å, α = 84.027(3), β = 82.751(3), and γ = 76.978(3), V = 4113.2(6) Å 3, Z = 2, ρ = 1.478 c gcm-3, T = 103(2) K, λ = 0.71073 Å; 77999 reflections collected, 19869 independent [Rint = 0.1461], which were used in all calculations; R1 = 0.0705, wr2 = 0.1609 for I > 2σ(I), and R1 = 0.1707, wr2 = 0.2483 for all unique reflections; max and min residual electron densities 0.676 eå -3 and -0.533 eå -3. CCDC 1544303. Crystallographic data for [2b(CH2CCH3)2][AlCl4]2: C32H37Al2Cl10N4P, M r 917.08, monoclinic, P 1 21/n 1, a = 9.5886(4) Å, b = 36.6578(17) Å, and c = 12.1022(7) Å, α = 90, β = 98.046(3), and γ = 90, V = 4212.0(4) Å 3, Z = 4, ρ c = 1.446 gcm-3, T = 153(2) K, λ = 0.71073 Å; 44804 reflections collected, 8081 independent [Rint = 0.1497], which were used in all calculations; R1 = 0.0607, wr2 = 0.1619 for I > 2σ(I), and R1 = 0.1615, wr2 = 0.2401 for all unique reflections; max and min residual electron densities 0.558 eå -3 and -0.665 eå -3. CCDC 1544300. Crystallographic data for [1(H)(BH2. Py)][BAr Cl 4]: C41H48B2Cl8N3P, M r 919.01, monoclinic, P 1 21/c 1, a = 14.6575(6) Å, b = 13.5987(5) Å, and c = 23.7606(9) Å, α = 64

90, β = 106.9035(14), and γ = 90, V = 4531.4(3) Å 3, Z = 4, ρ c = 1.347 gcm-3, T = 103(2) K, λ = 0.71073 Å; 71364 reflections collected, 14451 independent [Rint = 0.1219], which were used in all calculations; R1 = 0.0547, wr2 = 0.1285 for I > 2σ(I), and R1 = 0.0870, wr2 = 0.1492 for all unique reflections; max and min residual electron densities 0.914 eå - 3 and -0.690 eå -3. CCDC 1544301. Crystallographic data for [1(H)(BH2. NMe3)][BAr Cl 4]: C39H52B2Cl8N3P, M r 899.02, triclinic, P -1, a = 12.7943(5) Å, b = 12.8697(5) Å, and c = 15.7309(6) Å, α = 96.1461(14), β = 109.8769(14), and γ = 108.7461(14), V = 2237.60(15) Å 3, Z = 2, ρ c = 1.334 gcm-3, T = 153(2) K, λ = 0.71073 Å; 105482 reflections collected, 17242 independent [Rint = 0.1075], which were used in all calculations; R1 = 0.0511, wr2 = 0.1189 for I > 2σ(I), and R1 = 0.0823, wr2 = 0.1390 for all unique reflections; max and min residual electron densities 1.402 eå -3 and -0.594 eå -3. CCDC 1544308. Crystallographic data for [2b(H)(BH2. NMe3)][AlCl4]2: C28H37Al2BCl8N5P, M r 822.96, triclinic, P -1, a = 11.0690(7) Å, b = 18.5787(13) Å, and c = 19.7880(13) Å, α = 90.450(3), β = 105.030(3), and γ = 90.613(3), V = 3929.7(5) Å 3, Z = 4, ρ c = 1.391 gcm-3, T = 153(2) K, λ = 0.71073 Å; 130301 reflections collected, 16208 independent [Rint = 0.0625], which were used in all calculations; R1 = 0.0703, wr2 = 0.2133 for I > 2σ(I), and R1 = 0.0951, wr2 = 0.2356 for all unique reflections; max and min residual electron densities 0.907 eå - 3 and -0.933 eå -3. CCDC 1544309. Crystallographic data for [2. PH2][AlCl4]: C19H22AlCl4N4P, M r 506.15, monoclinic, P 1 21/n 1, a = 10.4946(9) Å, b = 14.2035(15) Å, and c = 16.6481(15) Å, α = 90, β = 100.966(3), and γ = 90, V = 2436.3(4) Å 3, Z = 4, ρ = 1.380 c gcm-3, T = 103(2) K, λ = 0.71073 Å; 30724 reflections collected, 5364 independent [Rint = 0.0694], which were used in all calculations; R1 = 0.0581, wr2 = 0.1656 for I > 2σ(I), and R1 = 0.0911, wr2 = 0.1842 for all unique reflections; max and min residual electron densities 1.012 eå -3 and - 0.727 eå -3. CCDC 1544305. Crystallographic data for [2b-H][AlCl4]: C50H53Al2Cl8N8P2, M r 1165.50, orthorhombic, P c a 21, a = 21.0177(16) Å, b = 22.3251(16) Å, and c = 11.6657(9) Å, α = 90, β = 90, and γ = 90, V = 5473.8(7) Å 3, Z = 4, ρ = 1.414 c gcm-3, T = 103(2) K, λ = 0.71073 Å; 10242 reflections collected, 10242 independent [Rint = 0.1152], which were used in all calculations; R1 = 0.0561, wr2 = 0.1276 for I > 2σ(I), and R1 = 0.1080, wr2 = 0.1637 for all unique reflections; max and min residual electron densities 0.747 eå -3 and -0.523 eå -3. CCDC 1544304. Crystallographic data for [2b{(CH)6CH2}][BAr Cl 4]2: C92H67B2Cl16F4N4P, M r 1924.28, triclinic, P -1, a = 13.3965(11) Å, b = 13.4151(12) Å, and c = 25.380(2) Å, α = 93.476(5), β = 101.749(5), and γ = 101.070(5), V = 4358.9(7) Å 3, Z = 2, ρ c = 1.466 gcm -3, T = 153(2) K, λ = 0.71073 Å; 72340 reflections collected, 17104 independent [Rint = 0.0978], which were used in all calculations; R1 = 0.0997, wr2 = 0.2567 for I > 2σ(I), 65

and R1 = 0.1240, wr2 = 0.2787 for all unique reflections; max and min residual electron densities 0.892 eå -3 and -0.816 eå -3. CCDC 1544306. 2.1. Crystal structures Figure S88. Molecular view of [1][BAr Cl 4]2 set at 50% probability. Counterion and hydrogen atoms were omitted for clarity. Selected bond lengths [Å] and angle [ ]: N1-P1, 1.6183(10), N2-P1, 1.6252(10), N1-P1-N2, 110.65(5). 66

Figure S89. Molecular view of [2b{(CH)6CH2}][BAr Cl 4]2 set at 50% probability. Counterions and hydrogen atoms were omitted for clarity. Selected bond lengths [Å] and angles [ ]: P1-C1, 1.674(16), P1-C2, 1.796(10), C1-P1-C2, 107.2(8). 67

3. Cartesian Coordinates for Phosphenium Cations [1] + 15-0.045857 0.120836-0.005997 1-2.522489-2.065630 2.630725 7 0.048458 0.030173 1.636675 1 1.718381 1.940719 3.947248 7 1.436858 0.052529-0.721810 1 0.524231 2.468424 2.749360 6 1.235502 2.062371-2.229411 1 0.037312 1.438466 4.113988 6 2.714138-0.555255-0.213263 1 2.517209-0.496266 3.994201 6 1.187078 0.394460 2.547927 1 0.863767-1.094854 4.123415 1-2.082020 1.688779 2.202163 1 1.904556-1.661010 2.806325 6-1.264531-0.334716 2.319259 1 2.476159 0.341009-2.497845 6-1.653522-1.787769 2.025626 1 2.492767-0.909189 0.792966 6-2.388734 0.658742 1.997624 1 4.733093-0.002188 0.308470 6 1.637548-0.789074 3.412259 1 4.147949 0.822112-1.136188 6 0.830240 1.632687 3.385905 1 3.585100 1.340064 0.461761 6 1.458861 0.547577-2.163136 1 3.950020-2.279721-0.574048 6 0.497814-0.235608-3.067153 1 2.265085-2.517110-1.068091 6 3.853800 0.467970-0.143194 1 3.370055-1.549488-2.069531 6 3.086857-1.795103-1.041892 1 1.388564 2.412464-3.255307 1-1.040457-0.253370 3.383573 1 0.212417 2.329207-1.938325 1 2.006921 0.688084 1.893394 1 1.933522 2.599331-1.579797 1-2.715762 0.591374 0.954701 1 0.664437 0.062047-4.107250 1-3.255782 0.431666 2.625962 1 0.667686-1.313708-2.991477 1-1.927062-1.923909 0.972406 1-0.551973-0.029337-2.833608 1-0.838333-2.477313 2.265523 [2a] + 6 2.923327 3.430617-1.041238 1-6.999017 1.086153-0.963303 6 1.985020 2.553145-0.490278 1-4.809446 1.925932-1.764090 6 1.330230 2.835713 0.717786 1-2.357372-3.062008 1.174134 6 1.575650 4.012388 1.430699 1-2.859333-1.902214 2.432061 6 2.506847 4.886903 0.881336 1-1.162805-1.958868 1.904563 6 3.168266 4.601376-0.332118 1-1.604517 2.529635-1.411019 7 1.496909 1.322706-0.932703 1-2.632532 1.721074-2.617445 6 0.597976 0.842899-0.028954 1-0.983774 1.141913-2.357396 7 0.487088 1.754639 0.975481 1 3.440988 3.216725-1.969934 6-0.168950-0.390350-0.158442 1 3.888532 5.313790-0.720671 15 0.329592-2.020314-0.555833 1 2.731506 5.813536 1.399206 7 1.869973-2.453088-0.115683 1 1.069699 4.241384 2.362261 6 2.237979-3.801077-0.733929 1 2.863562 0.262148-2.139669 6 3.555611-3.719323-1.510460 1 1.900448 1.510884-2.971651 6-0.341618 1.643405 2.176576 1 1.142873-0.027525-2.496603 6 1.877062 0.725965-2.212492 1-1.222424 2.286659 2.094576 6-1.629999-0.269491-0.146862 1 0.249418 1.949373 3.042364 7-2.364627 0.625884-0.867220 1-0.651158 0.608096 2.308869 6-3.721251 0.432556-0.606911 1 3.472800-2.810133 1.113402 6-3.807158-0.643427 0.288042 1 1.443118-4.007102-1.459986 7-2.500036-1.042018 0.566114 1 4.584683-0.705446 1.135777 6-4.862454 1.087125-1.078808 1 4.223191-1.084514-0.549038 6-6.085713 0.610548-0.621272 1 3.262139 0.131100 0.330944 6-6.172028-0.475456 0.275884 1 2.909466-1.366231 2.985701 6-5.037107-1.124186 0.747477 1 1.513339-0.699828 2.139624 6-1.857650 1.567570-1.865567 1 1.543645-2.420596 2.599970 6-2.196856-2.059550 1.577709 1 2.354684-5.881427-0.207416 68

6 2.840970-1.943083 0.912976 1 3.021744-4.841465 1.045322 6 2.148238-1.586082 2.230730 1 1.259171-4.962585 0.834445 6 3.771650-0.831310 0.413502 1 3.720382-4.672199-2.022826 6 2.217955-4.925054 0.307247 1 3.527185-2.931534-2.269813 1-5.112083-1.963501 1.430028 1 4.416508-3.550795-0.855891 1-7.149625-0.813512 0.603279 [2b] + 7 0.571818 1.473841 0.962420 6-2.320802-2.170670 1.658561 6 0.639074 0.541125-0.024929 6-1.786365 1.350088-1.878516 7 1.605809 0.917930-0.901852 1-5.224877-1.874736 1.546741 6 2.184303 2.108148-0.461275 1-7.194416-0.644291 0.676072 6 1.518386 2.469127 0.720252 1-6.942079 1.181337-0.963542 6 1.846543 3.630179 1.426591 1-4.711127 1.862440-1.801757 6 2.869776 4.407527 0.897019 1-2.503327-3.166531 1.248694 6 3.541640 4.043840-0.290725 1-2.998180-1.988232 2.495254 6 3.214716 2.890032-0.992953 1-1.292695-2.107828 2.012537 6-0.206517-0.653641-0.128273 1-1.530319 2.327457-1.459928 15 0.293158-2.293378-0.358517 1-2.535275 1.480169-2.660803 6 2.053958-2.459462-0.071057 1-0.906192 0.887780-2.323283 6 2.878110-1.659746 0.757733 1 3.741409 2.615478-1.900228 6 4.209315-2.000078 0.953569 1 4.336137 4.682057-0.663258 6 4.749671-3.132063 0.323396 1 3.160187 5.319072 1.408964 6 3.949139-3.940049-0.487253 1 1.332753 3.920225 2.336568 6 2.606847-3.620269-0.670123 1 2.923665-0.330158-1.972057 6 2.008774 0.243895-2.137946 1 2.180610 1.000843-2.905563 6-0.286179 1.441234 2.149629 1 1.216344-0.427177-2.467723 6-1.662577-0.446373-0.103631 1-1.141001 2.111907 2.025420 7-2.566648-1.143098 0.638514 1 0.300573 1.760607 3.013102 6-3.849112-0.676383 0.352874 1-0.632960 0.423567 2.322044 6-3.706242 0.357769-0.584385 1 2.470112-0.800690 1.280616 7-2.342261 0.466305-0.851066 1 4.831935-1.397781 1.608087 6-4.809849 1.056380-1.083099 1 5.791949-3.390797 0.484264 6-6.055574 0.668885-0.604632 1 4.364668-4.824202-0.959924 6-6.199958-0.374642 0.336150 1 1.981368-4.268831-1.279005 6-5.103352-1.067498 0.833081 69