Supporting Information for

Σχετικά έγγραφα
Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information

Electronic Supplementary Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting Information

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supporting Information

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Supporting Information

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Supporting Information

gem-dichloroalkenes for the Construction of 3-Arylchromones

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information for

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Supporting Information

Supporting Information

Supporting Information

Supporting Information

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting information

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Supporting Information. Experimental section

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

The Free Internet Journal for Organic Chemistry

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Microwave-assisted construction of triazole-linked amino acid - glucoside conjugates as novel PTP1B inhibitors

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information

Supporting Information for

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information. Experimental section

Supporting Materials

The Supporting Information for

Supporting Information

Aminofluorination of Fluorinated Alkenes

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

multicomponent synthesis of 5-amino-4-

Supporting Information

Supplementary Material

Supplementary Data. Engineering, Nanjing University, Nanjing , P. R. China;

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Supporting Information

Diversity-Oriented Synthesis of Acyclic Nucleosides via Ring-Opening of Vinyl Cyclopropanes with Purines. Contents

Electronic Supplementary Information (ESI)

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Pd Catalyzed Carbonylation for the Construction of Tertiary and

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids

Supporting Information

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Supporting Information

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Supporting Information

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Catalyst-free transformation of levulinic acid into pyrrolidinones with formic acid

Supporting Information. for. Highly Selective Hydroiodation of Alkynes Using. Iodine-Hydrophosphine Binary System

Supporting Information

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Supporting Information

Supporting information

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

Supporting Information for Fe-Catalyzed Reductive Coupling of Unactivated Alkenes with. β-nitroalkenes. Contents. 1. General Information S2

Fast copper-, ligand- and solvent-free Sonogashira coupling in a ball mill

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Supporting Information

A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Transcript:

Supporting Information for Palladium-Catalyzed C-H Bond Functionalization of C6-Arylpurines Hai-Ming Guo,* Wei-Hao Rao, Hong-Ying iu, Li-Li Jiang, Ge ng, Jia-Jia Jin, Xi-ing Yang, and Gui-Rong Qu* College of Chemistry and Environmental Science, Key Laboratory of Green Chemical dia and Reactions of Ministry of Education, Henan ormal University, Xinxiang, 453007, China; and School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China General Information...S1 Synthesis of Starting Materials...S2 General procedure...s3 Characterization of compounds...s4 References...S10 Copies of 1 H and 13 C MR spectra...s11 General Information: MR spectra were recorded with a 400 MHz spectrometer for 1 H MR, 100 MHz for 13 C MR. Chemical shifts δ are given in ppm relative to the residual proton signals of the deuterated solvent CD 3 for 1 H and 13 C MR. High resolution mass spectra were taken with a 3000 mass spectrometer, using Waters Q-TofMS/MS system. For column chromatography silica gel (200-300 mesh) was used as the stationary phase. All reactions were monitored by thin layer chromatography (TLC). All regents and solvents were purchased from commercial sources and purified commonly before used. S1

Synthesis of Starting Materials Starting materials 1a-i 1, 1l 1, 1j 2 and 1k 1, 3 were synthesized according to the corresponding reference. AcO O 1a 1b 1c 1d H 3 C CH 3 HAc 1e 1f 1g 1h O 1i O 1j 1k 1l S2

General procedure for the purine-directed Pd-catalyzed C Ar -H bonds acetoxylation In a 35 ml tube containing a stir bar, C6-aryl purine (1a-1j) or 1l (0.3 mmol), Pd() 2 (33 mg, 0.015 mmol), PhI() 2 (0.144 mg, 0.45 mmol) were dissolved in Ac 2 O (1 ml) and AcOH (1 ml). The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at 120 o C for 3-15 h until TLC showed the reaction almost proceeded completely. The resulting mixture was cooled to room temperature. The solvent was removed by distillation under vacuum and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/et) to afford the corresponding acetoxylated product. General procedure for the purine-directed diverse C-H bond functionalizations In a 35 ml tube containing a stir bar, 1c or 1g, 1i, 1l (0.3 mmol), Pd() 2 (33 mg, 0.015 mmol), PhI() 2 ( 0.144 mg, 0.45 mmol) or BS (0.45 mmol), CS (0.45 mmol) were dissolved in solvent as indicated in Table 3. The tube was sealed with a Teflon lined cap and the reaction mixture was stirred at 100 o C for 3-15 h until TLC showed the reaction almost proceeded completely. The resulting mixture was cooled to room temperature. The solvent was removed by distillation under vacuum and the residue was purified by column chromatography on silica gel (eluent: petroleum ether/et) to afford the corresponding product. S3

Characterization of compounds Acetic acid 2-(9-benzyl-9H-purin-6-yl)-phenyl ester (2a) 1 H MR (400 MHz, CD 3 ) δ 9.05 (s, 1H), 8.21-8.19 (m, 1H), 8.07 (s, 1H), 7.55-7.51 (m, 1H), 7.44-7.26 (m, 7H), 5.47 (s, 2H), 2.19 (s, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.6, 154.5, 152.3, 152.2, 148.8, 144.4, 135.1, 132.5, 131.7, 131.3, 129.2, 128.6, 128.0, 127.8, 126.1, 123.9, 47.3, 21.3; HRMS: calcd for C 20 H 16 4 ao 2 [M + a] + 367.1171, found 367.1173. Acetic acid 2-(9-isopropyl-9H-purin-6-yl)-phenyl ester (2b) 1 H MR (400 MHz, CD 3 ) δ 9.00 (s, 1H), 8.18 (dd, J = 8.0, 1.2 Hz, 1H), 8.16 (s, 1H), 7.53 (t, J = 1.2 Hz, 1H), 7.43 (td, J = 7.2, 0.8 Hz, 1H), 7.28 (d, J = 0.8 Hz, 1H), 4.97 (quint, J = 6.8 Hz, 1H), 2.19 (s, 1H), 1.68 (d, J = 6.8 Hz, 6H); 13 C MR (100 MHz, CD 3 ) δ 169.6, 154.4, 151.7, 148.8, 142.3, 132.5, 132.3, 131.1, 128.1, 126.0, 123.9, 47.4, 22.5, 21.2; HRMS: calcd for C 16 H 16 4 ao 2 [M + a] + 319.1171, found 319.1176. Acetic acid 2-(9-butyl-9H-purin-6-yl)-phenyl ester (2c) 1 H MR (400 MHz, CD 3 ) δ 9.03 (s,1h), 8.20 (d, J = 7.6 Hz, 1H), 8.09 (s, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.4 Hz, 1H), 4.32 (t, J = 7.2 Hz, 2H), 2.20 (s, 3H), 1.98-1.90 (m, 2H), 1.45-1.35 (m, 2H), 1.07-0.95 (m, 3H). 13 C MR (100 MHz, CD 3 ) δ 169.6, 152.0, 148.8, 132.4, 131.2, 126.1, 123.9, 43.8, 31.9, 21.2, 19.9, 13.5; HRMS: calcd for C 17 H 18 4 ao 2 [M + a] + 333.1327, found 333.1328. S4

(2R,3R,4R,5R)-2-(acetoxymethyl)-5-(6-(2-acetoxyphenyl)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (2da) AcO O 1 H MR (400 MHz, CD 3 ) δ 9.03 (s, 1H), 8.25 (s, 1H), 8.15 (dd, J = 7.6, 1.2 Hz, 1H), 7.56-7.53 (m, 1H), 7.43 (t, J = 7.6 Hz, 1H), 7.28 (d, J = 8.0 Hz, 1H), 6.27 (d, J = 5.2 Hz, 1H), 6.01 (t, J = 5.2 Hz, 1H), 5.71 (t, J = 5.2 Hz, 1H), 4.49-4.38 (m, 3H), 2.18 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 2.10 (s, 3H); 13 C MR (100 MHz, CD 3 ) δ 170.3, 169.6, 169.4, 155.1, 152.4, 151.6, 148.8, 142.9, 132.5, 131.5, 127.7, 126.1, 123.9, 86.5, 80.4, 73.0, 70.6, 63.0, 21.2, 20.7, 20.5, 20.4; HRMS: calcd for C 24 H 24 4 ao 9 [M + a] + 535.1441, found 535.1454. (2R,3R,4R,5R)-2-(acetoxymethyl)-5-(6-(2,6-diacetoxyphenyl)-9H-purin-9-yl)tetrahydrofuran-3,4-diyl diacetate (2db) AcO AcO O 1 H MR (400 MHz, CD 3 ) δ 9.05 (s, 1H), 8.22 (s, 1H), 7.55 (t, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 2H), 6.24 (d, J = 5.2 Hz, 1H), 5.97 (t, J = 5.2 Hz, 1H), 5.72 (t, J = 5.2 Hz, 1H), 4.50-4.38 (m, 3H), 2.17 (s, 3H), 2.11 (s, 3H), 2.10 (s, 3H), 2.01 (s, 6H); 13 C MR (100 MHz, CD 3 ) δ 170.3, 169.6, 169.4, 168.7, 152.3, 152.1, 151.2, 149.3, 143.3, 133.7, 130.7, 121.4, 120.9, 86.8, 80.3, 73.1, 70.5, 62.9, 20.9, 20.7, 20.5, 20.4; HRMS: calcd for C 26 H 26 4 ao 11 [M + a] + 593.1496, found 593.1496. Acetic acid 2-(2-chloro-9-butyl-9H-purin-6-yl)-phenyl ester (2e) 1 H MR (400 MHz, CD 3 ) δ 8.37 (dd, J = 8.0, 1.2 Hz, 1H), 8.07 (s, 1H), 7.58-7.53 (m, 1H), 7.47-7.41 (m, 1H), 7.26 (d, J = 7.6 Hz, 1H), 4.27 (t, J = 7.2 Hz, 2H), 2.30 (s, 3H), 1.95-1.88 (m, 2H), 1.45-1.35 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.8, 155.8, 153.9, 153.6, 149.1, 145.2, 132.9, 131.9, 130.7, 126.8, 126.1, 124.2, 43.9, 31.8, 21.2, 19.9, 13.5; HRMS: calcd for C 17 H 17 4 ao 2 [M + S5

a] + 367.0938, found 367.0932. Acetic acid 2-(2-acetylamino-9-butyl-9H-purin-6-yl)-4-methyl-phenyl ester (2f) 1 H MR (400 MHz, CD 3 ) δ 8.25 (br, 1H), 7.97 (s, 1H), 7.77 (d, J = 2.0 Hz, 1H), 7.32 (dd, J = 8.4, 1.6 Hz, 1H), 7.14 (d, J = 8.0 Hz, 1H), 4.22 (t, J = 7.2 Hz, 2H), 2.59 (s, 3H), 2.42 (s, 3H), 2.11 (s, 3H), 1.95-1.86 (m, 2H), 1.41-1.35 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.5, 155.6, 152.9, 152.4, 146.4, 144.1, 135.8, 132.3, 132.0, 128.5, 127.5, 123.4, 43.6, 31.7, 25.1, 21.2, 20.9, 19.9, 13.5; HRMS: calcd for C 20 H 23 5 ao 3 [M + a] + 404.1699, found 404.1695. Acetic acid 2-(9-butyl-9H-purin-6-yl)-4-methyl-phenyl ester (2g) 1 H MR (400 MHz, CD 3 ) δ 9.00 (s, 1H), 8.08 (s, 1H), 7.93 (s, 1H), 7.32 (dd, J = 8.0, 2.0 Hz, 1H), 7.15 (d, J = 8.0 Hz, 1H), 4.29 (t, J = 7.2 Hz, 2H), 2.43 (s, 3H), 2.13 (s, 3H), 1.96-1.88 (m, 2H), 1.43-1.33 (m, 2H), 0.97 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.7, 154.5, 152.0, 152.0, 146.6, 144.6, 135.7, 132.6, 131.9, 131.8, 127.7, 123.5, 43.8, 31.9, 21.3, 21.0, 19.9, 13.5; HRMS: calcd for C 18 H 21 4 O 2 [M + H] + 325.1665, found 325.1662. Acetic acid 2-(9-benzyl-9H-purin-6-yl)-5-methyl-phenyl ester (2h) CH 3 1 H MR (400 MHz, CD 3 ) δ 9.03 (s, 1H), 8.15 (d, J = 8.0 Hz, 1H), 8.07 (s, 1H), 7.40-7.31 (m, 5H), 7.23 (d, J = 8.0 Hz, 1H), 7.08 (s, 1H), 5.47 (s, 2H), 2.44 (s, 3H), 2.19 (s, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.8, 154.6, 152.2, 152.1, 148.7, 144.3, 142.2, 135.1, 132.4, 131.5, 129.4, 128.6, 127.8, 126.9, 125.0, 124.4, 47.3, 21.4, 21.3; HRMS: calcd for C 21 H 18 4 ao 2 [M + a] + 381.1327, found 381.1330. S6

Acetic acid 2-(9-butyl-9H-purin-6-yl)-4-methoxy-phenyl ester (2i) H 3 CO 1 H MR (400 MHz, CD 3 ) δ 9.01 (s, 1H), 8.08 (s, 1H), 7.73 (d, J = 3.2 Hz, 1H), 7.18 (d, J = 8.8 Hz, 1H), 7.05 (dd, J = 8.8, 3.2 Hz, 1H), 4.31 (t, J = 7.2 Hz, 2H), 3.87 (s, 3H), 2.14 (s, 3H), 1.97-1.89 (m, 2H), 1.44-1.35 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.9, 157.1, 154.2, 152.1, 151.9, 144.6, 142.3, 131.8, 128.6, 124.6, 117.1, 116.7, 55.7, 43.8, 31.9, 21.2, 19.9, 13.5; HRMS: calcd for C 18 H 20 4 ao 3 [M + a] + 363.1433, found 363.1428. Acetic acid 2-(9-benzyl-9H-purin-6-yloxy)-phenyl ester (2j) O 1 H MR (400 MHz, CD 3 ) δ 8.54 (s, 1H), 8.00 (s, 1H), 7.39-7.25 (m, 9H), 5.46 (s, 2H), 2.03 (s, 3H); 13 C MR (100 MHz, CD 3 ) δ 168.3, 159.3, 153.3, 152.2, 143.7, 143.1, 142.6, 134.9, 129.2, 128.7, 127.9, 126.6, 126.5, 123.8, 123.7, 121.1, 47.7, 20.6. HRMS: calcd for C 20 H 17 4 O 3 [M + H] + 361.1301, found 361.1301. Acetic acid 2-(9-benzyl-6-methyl-9H-purin-2-yl)-phenyl ester (2k) CH 3 1 H MR (400 MHz, CD 3 ) δ 8.22 (dd, J = 7.6, 1.6 Hz, 1H), 7.99 (s, 1H), 7.49-4.45 (m, 1H), 7.41-7.33 (m, 4H), 7.31-7.29 (m, 2H), 7.16 (d, J = 8.0 Hz, 1H), 5.46 (s, 2H), 2.90 (s, 3H), 2.21 (s, 3H); 13 C MR (100 MHz, CD 3 ) δ 169.8, 158.9, 157.9, 149.0, 143.9, 135.9, 132.0, 131.4, 130.6, 129.1, 128.5, 127.8, 126.2, 123.7, 47.0, 21.2, 19.7; HRMS: calcd for C 21 H 18 4 ao 2 [M + a] + 381.1327, found 381.1327. 9-butyl-6-(2-methoxy-phenyl)-9H-purine (3a) O S7

1 H MR (400 MHz, CD 3 ) δ 9.06 (s, 1H), 8.05 (s, 1H), 7.65 (dd, J = 7.6, 1.6 Hz, 1H), 7.47 (td, J = 8.4, 1.6 Hz, 1H), 7.13-7.08 (m, 2H), 4.31 (t, J = 7.2 Hz, 2H), 3.84 (s, 3H), 1.98-1.91 (m, 2H), 1.46-1.37 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 157.5, 156.5, 152.2, 151.7, 144.3, 132.6, 131.7, 131.3, 124.9, 120.7, 111.9, 55.9, 43.7, 31.9, 19.9, 13.5; HRMS: calcd for C 16 H 19 4 O [M + H] + 383.1559, found 383.1556. 6-(2-Ethoxy-phenyl)-9-butyl-9H-purine (3b) OEt 1 H MR (400 MHz, CD 3 ) δ 9.04 (s, 1H), 8.05 (s, 1H), 7.64 (dd, J = 7.6, 1.2 Hz, 1H), 7.46-7.42 (m, 1H), 7.11-7.05 (m, 2H), 4.31 (t, J = 7.2 Hz, 2H), 4.10 (q, J = 7.2 Hz, 2H), 1.98-1.90 (m, 2H), 1.45-1.36 (m, 2H), 1.22 (t, J = 7.2 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 156.9, 156.7, 152.2, 151.5, 144.0, 132.5, 131.5, 131.2, 125.2, 120.6, 113.0, 64.3, 43.7, 31.9, 19.9, 14.7, 13.5; HRMS: calcd for C 17 H 21 4 O [M + H] + 297.1715, found 297.1717. 6-(2-bromophenyl)-9-butyl-9H-purine (3c) Br 1 H MR (400 MHz, CD 3 ) δ 9.09 (s, 1H), 8.11 (s, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.63 (d, J = 8.0 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.38-7.34 (m, 1H), 4.34 (t, J = 7.2 Hz, 2H), 2.00-1.93 (m, 2H), 1.47-1.38 (m, 2H), (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 157.2, 152.1, 152.0, 144.9, 136.5, 133.6, 132.0, 131.7, 130.9, 127.4, 122.0, 43.9, 31.9, 19.9, 13.5; HRMS: calcd for C 15 H 15 Br 4 a [M + a] + 353.0378, found 353.0370. 6-(2-chlorophenyl)-9-butyl-9H-purine (3d) 1 H MR (400 MHz, CD 3 ) δ 9.08 (s, 1H), 8.10 (s, 1H), 7.68-7.65 (m, 1H), 7.57-7.54 (m, 1H), 7.44-7.41 S8

(m, 2H), 4.32 (t, J = 7.2 Hz, 2H), 1.98-1.91 (m, 2H), 1.46-1.36 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 156.0, 152.2, 151.9, 144.9, 134.6, 132.9, 132.3, 131.7, 130.8, 130.4, 126.8, 43.8, 31.9, 19.9, 13.5; HRMS: calcd for C 15 H 15 4 a [M + a ]+ 309.0883, found 309.0880. 6-(2-chloro-5-methylphenyl)-9-butyl-9H-purine (3e) 1 H MR (400 MHz, CD 3 ) δ 9.07 (s, 1H), 8.10 (s, 1H), 7.45 (d, J = 1.6 Hz, 1H), 7.42 (d, J = 8.0 Hz, 1H), 7.23 (dd, J = 8.4, 1.6 Hz, 1H), 4.32 (t, J = 7.2 Hz, 2H), 2.38 (s, 3H), 1.98-1.91 (m, 2H), 1.45-1.36 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100M Hz, CD 3 ) δ 156.3, 152.2, 151.9, 144.9, 136.8, 134.3, 132.3, 132.1, 131.6, 130.1, 129.9, 43.8, 31.9, 20.9, 19.9, 13.5; HRMS: calcd for C 16 H 18 4 [M + H ]+ 301.1220, found 301.1222. 6-(2-chloro-5-methoxyphenyl)-9-butyl-9H-purine (3f) O 1 H MR (400 MHz, CD 3 ) δ 9.08 (s, 1H), 8.11 (s, 1H), 7.44 (d, J = 8.8 Hz, 1H), 7.17 (d, J = 3.2 Hz, 1H), 6.98 (dd, J = 8.8, 3.2 Hz, 1H), 4.32 (t, J = 7.2 Hz, 2H), 3.82 (s, 3H), 1.99-1.91 (m, 2H), 1.46-1.37 (m, 2H), 0.99 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 158.2, 155.9, 152.2, 151.9, 145.0, 135.2, 132.2, 131.2, 124.3, 117.1, 116.5, 55.6, 43.8, 31.9, 19.9, 13.5; HRMS: calcd for C 16 H 18 4 O [M + H ]+ 317.1169, found 317.1162. 6-(2-chloro-4-methylphenyl)-9-butyl-9H-purine (3g) 1 H MR (400 MHz, CD 3 ) δ 9.07 (s, 1H), 8.08 (s, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.38 (s, 1H), 7.22 (d, J = S9

8.0 Hz, 1H), 4.31 (t, J = 7.2 Hz, 2H), 2.40 (s, 3H), 1.98-1.91 (m, 2H), 1.46-1.36 (m, 2H), 0.98 (t, J = 7.2 Hz, 3H); 13 C MR (100 MHz, CD 3 ) δ 156.2, 152.2, 151.9, 144.8, 141.3, 132.6, 132.3, 131.6, 131.6, 130.9, 127.7, 43.8, 31.9, 21.1, 19.9, 13.5; HRMS: calcd for C 16 H 18 4 [M + H ]+ 301.1220, found 301.1215. References: 1. a) I. Černǎ, R. Pohl, B. Klepetářová and M. Hocek, J. Org. Chem., 2008, 73, 9048; b) M. K. Lakshman, J. H. Hilmer, J. Q. Martin, J. C. Keeler, Y. Q. V. Dinh, F.. gassa and L.;M. Russon, J. Am. Chem. Soc., 2001, 123, 779. 2. L.-K. Huang, Y.-C. Cherng, Y.-R. Cheng, J.-P. Jang, Y.-L. Chao and Y.-J. Cherng, Tetrahedron, 2007, 63, 5323. 3. G. R. Qu, Z. J. Mao, H. Y. iu, D. C. Wang, C. Xia and H. M. Guo, Org. Lett., 2009, 11, 1745. S10

Copies of 1 H and 13 C MR spectra 2.167 5.465 7.282 7.307 7.326 7.350 7.365 7.368 7.399 7.418 7.437 7.508 7.511 7.530 7.546 7.550 8.069 8.187 8.202 8.206 9.045 2a 1.06 1.02 1.28 7.57 2.16 3.24 10.0 ppm (f1) 5.0 0.0 21.268 47.331 123.900 126.066 127.846 128.001 128.638 129.175 131.269 131.702 132.471 135.059 144.456 148.838 152.163 152.289 154.512 169.604 2a 200 ppm (f1) 150 100 50 0 S11

-0.010 1.665 1.682 2.182 4.940 4.957 4.974 4.991 5.008 7.283 7.412 7.431 7.447 7.450 7.512 7.516 7.532 7.535 7.551 7.555 8.156 8.179 8.183 8.198 8.202 9.006 2b 2.02 1.08 1.03 1.27 1.03 2.98 6.60 9.0 ppm (f1) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 21.252 22.547 47.393 76.707 77.024 77.342 123.869 126.050 128.131 131.160 132.198 132.464 142.304 148.799 151.708 151.755 154.370 169.627 2b ppm (f1) 150 100 50 0 S12

-0.006 0.969 0.987 6 1.235 1.252 1.376 1.395 1.414 1.433 1.645 1.647 1.904 1.923 1.941 1.960 2.179 4.297 4.315 4.333 7.270 7.291 7.417 7.435 7.453 7.522 7.541 7.560 8.100 8.190 8.208 9.022 2c 1.11 1.21 0.98 1.15 1.03 1.33 2.09 2.94 2.10 2.21 3.00 ppm (f1) 5.0 0.0 13.734 18.662 20.155 21.487 32.119 44.035 76.915 77.232 77.550 124.091 126.295 131.441 132.641 144.986 145.253 149.031 152.225 152.270 154.631 169.836 2c 200 ppm (f1) 150 100 50 0 S13

1.246 2.097 2.121 2.144 2.164 2.184 4.373 4.386 4.405 4.418 4.455 4.463 4.475 4.479 4.486 5.702 5.714 5.727 5.997 6.010 6.024 6.264 6.277 7.261 7.274 7.293 7.416 7.433 7.452 7.530 7.534 7.553 7.569 7.573 8.138 8.142 8.158 8.161 8.245 9.032 AcO O 2da 0.96 0.85 0.98 0.99 1.02 1.03 0.97 1.92 0.98 12.25 10.0 ppm (f1) 5.0 0.0 20.414 20.538 20.753 21.248 63.044 70.599 73.032 76.697 77.015 77.333 80.379 86.541 123.916 126.088 127.732 131.464 132.438 142.974 148.814 151.618 152.373 155.098 168.123 169.379 169.573 170.308 AcO O 2da 200 ppm (f1) 150 100 50 0 S14

-0.010 1.993 2.096 2.108 2.167 4.370 4.383 4.402 4.416 4.469 4.477 4.488 4.493 4.502 4.509 5.705 5.718 5.731 5.960 5.974 5.987 6.234 6.247 7.215 7.236 7.528 7.549 7.569 8.216 9.047 AcO AcO O 2db 1.01 1.04 2.07 0.95 0.95 0.97 1.89 1.07 15.20 ppm (f1) 5.0 0.0 20.418 20.537 20.741 20.999 62.994 70.513 73.136 76.511 76.703 77.021 77.338 80.293 86.781 107.040 120.929 121.365 130.724 133.587 143.295 149.318 151.184 152.119 152.315 168.685 169.398 169.592 170.301 AcO AcO O 2db 200 ppm (f1) 150 100 50 0 S15

8.380 8.377 8.361 8.358 8.074 8.068 7.572 7.553 7.537 7.533 7.453 7.433 7.415 7.413 7.269 7.250 4.288 4.270 4.252 2.300 2.046 1.935 1.916 1.897 1.659 1.422 1.403 1.384 1.365 1.018 2 0.984 0.965-0.006 2e 9 8 7 6 5 4 3 2 1 0 ppm 169.81 155.84 153.92 153.57 149.06 145.21 144.78 138.10 132.85 132.53 131.95 130.95 130.72 130.09 128.43 128.29 126.78 126.08 124.21 124.00 43.90 43.52 31.91 31.76 21.18 19.86 13.47 0.34 1.01 0.20 1.07 1.26 1.43 1.62 0.35 2.14 3.00 2.13 2.42 3.21 2e 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S16

0.959 0.977 0.995 1.351 1.370 1.389 1.407 1.861 1.871 1.890 1.908 1.926 1.945 2.105 2.424 2.585 4.200 4.218 4.236 7.133 7.153 7.312 7.316 7.333 7.337 7.773 7.778 7.972 8.248 H 3 C 2f HAc 1.01 0.97 0.98 0.95 1.95 2.72 2.96 2.94 2.36 2.16 3.02 ppm (f1) 5.0 0.0 13.513 19.879 20.974 21.234 25.054 31.690 43.635 76.721 77.039 77.357 123.439 127.457 128.542 132.042 132.267 135.788 144.094 146.423 152.397 152.969 155.600 169.515 H 3 C 2f HAc 200 ppm (f1) 150 100 50 0 S17

0.949 0.967 0.985 1.333 1.352 1.370 1.389 1.408 1.427 1.881 1.899 1.918 1.937 1.955 2.131 2.432 4.275 4.293 4.311 7.140 7.161 7.307 7.312 7.332 7.930 8.080 9.003 2g 1.08 0.94 1.02 0.91 2.01 2.89 2.90 2.49 2.02 3.09 9.0 ppm (t1) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 13.498 19.903 20.987 21.258 31.881 43.746 123.518 127.720 131.824 131.859 132.581 135.733 144.557 146.584 152.001 152.040 154.544 169.757 2g 200 ppm (t1) 150 100 50 0 S18

-0.004 2.187 2.435 5.468 7.081 7.224 7.244 7.311 7.330 7.338 7.356 7.375 7.390 7.396 8.066 8.139 8.159 9.029 CH 3 2h 0.93 4.99 1.15 0.97 1.92 2.96 3.20 10.0 ppm (t1) 5.0 0.0 21.298 21.406 47.313 124.410 125.011 126.981 127.843 128.621 129.167 131.538 132.353 135.071 142.172 144.271 148.737 152.070 152.229 154.602 169.819 CH 3 2h 200 ppm (t1) 150 100 50 0 S19

-0.009 0.961 0.980 0.998 1.347 1.366 1.384 1.403 1.422 1.441 1.894 1.913 1.926 1.931 1.950 1.969 2.144 3.866 4.288 4.307 4.325 7.041 7.049 7.063 7.071 7.172 7.194 7.259 7.721 7.729 8.080 9.014 O 2i 1.05 1.01 1.06 1.03 2.09 3.09 2.95 2.20 2.23 3.24 ppm (t1) 5.0 0.0 13.505 19.917 21.237 31.894 43.760 55.730 76.700 77.017 77.335 116.740 117.056 124.633 128.633 131.832 142.351 144.572 151.984 152.137 154.196 157.133 169.988 O 2i 200 ppm (t1) 150 100 50 0 S20

H1 Solvent:CD3 o:01 rwh-2010.07.08 8.538 8.004 7.369 7.346 7.340 7.336 7.327 7.320 7.311 5.455 2.034 1.623-0.003 O 2j 10 9 8 7 6 5 4 3 2 1 0 ppm 168.33 159.53 153.29 152.21 143.71 143.05 142.60 134.97 129.17 128.68 127.93 126.62 126.49 123.79 123.68 121.14 47.69 20.56-0.04 1.02 10.49 2.11 3.09 C13 Solvent:CD3 o:01 rwh-2010.07.08 O 2j 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S21

1H Solvent:CD3 o:04 rwh-2010.05.31 8.233 8.218 8.214 7.994 7.477 7.473 7.458 7.454 7.406 7.387 7.370 7.352 7.333 7.310 7.290 7.172 7.152 5.460 2.899 2.205 1.627 1.252 0.068-0.003 CH 3 2k 9 8 7 6 5 4 3 2 1 0 ppm 169.79 158.89 157.95 149.01 143.88 135.29 132.03 131.42 130.58 129.15 128.54 127.75 126.22 123.71 47.01 21.15 19.69 0.98 1.17 4.38 2.21 1.35 2.05 3.05 3.08 13C Solvent:CD3 o:02 rwh-2010.06.08 CH 3 2k 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S22

H1 Solvent:CD3 o:02 rwh-2010.07.08 7.790 7.519 7.410 6.996 4.404 4.197 4.147 4.020 3.660 3.524 2.207 2.186 2.082 1.543 1.305 1.144 1.125 0.873 0.830 0.758 0.705 0.139 0.065-0.080-0.104 O 3a 10 9 8 7 6 5 4 3 2 1 0 ppm 157.50 156.52 152.20 151.64 144.26 132.55 131.65 131.30 124.91 120.72 111.90 55.95 43.69 31.94 19.93 13.48-0.05 1.03 1.06 2.15 2.05 3.07 2.13 2.16 3.11 C13 Solvent:CD3 o:02 rwh-2010.07.08 O 3a 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S23

1H Solvent:CD3 o:07 rwh-2010.08.02 9.042 8.045 7.652 7.649 7.633 7.630 7.459 7.456 7.438 7.420 7.417 7.111 7.092 7.072 7.051 4.327 4.309 4.291 4.128 4.111 4.094 4.076 1.978 1.960 1.942 1.923 1.904 1.775 1.432 1.414 1.395 1.376 1.290 1.241 1.223 1.206 1.184 1 0.983 0.964 0.063 OEt 3b 10 9 8 7 6 5 4 3 2 1 0 ppm 156.95 156.66 152.15 151.51 144.03 132.52 131.49 131.23 125.23 120.63 113.00 104.19 77.20 64.32 52.90 51.35 43.69 31.92 29.67 19.91 14.65 13.50 1.92-0.04-7.23 1.02 1.05 1.08 2.19 2.06 2.06 2.28 2.49 4.47 3.34 OEt 3b 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S24

1H Solvent:CD3 o:05 rwh-2010.05.31 9.089 8.106 7.768 7.748 7.640 7.622 7.493 7.474 7.455 7.378 7.357 4.355 4.337 4.319 1.984 1.966 1.947 1.610 1.456 1.437 1.418 1.399 1.250 1.019 1 0.983-0.005 Br 3c 9 8 7 6 5 4 3 2 1 0 ppm 157.18 152.14 152.02 144.97 136.45 133.62 132.02 131.68 130.86 127.35 122.01 43.85 31.93 19.93 13.50 0.98 1.02 1.05 1.14 1.15 2.20 2.24 2.54 3.50 13C Solvent:CD3 o:23(01) rwh-2010.06.11 Br 3c 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S25

1H Solvent:CD3 o:04 rwh-2010.06.09 9.078 8.100 7.676 7.663 7.653 7.566 7.556 7.544 7.447 7.431 7.422 7.411 4.338 4.320 4.302 1.983 1.965 1.946 1.928 1.909 1.840 1.437 1.418 1.399 1.381 1.239 2 0.983 0.965-0.017 3d 10 9 8 7 6 5 4 3 2 1 0 ppm 156.01 152.17 151.95 144.95 134.56 132.95 132.24 131.73 130.76 130.41 126.79 43.82 31.91 29.66 19.92 13.48 1.02 1.04 1.06 2.07 2.04 2.22 2.22 3.28 13C Solvent:CD3 o:01 rwh-2010.06.10 3d 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm S26

0.963 0.982 0 1.238 1.359 1.377 1.396 1.415 1.434 1.452 1.835 1.905 1.924 1.937 1.943 1.956 1.961 1.980 2.378 4.298 4.317 4.335 7.216 7.220 7.237 7.241 7.414 7.434 7.445 7.449 8.097 9.067 3e 1.03 2.03 0.98 2.12 3.11 2.11 2.25 3.25 9.0 ppm (t1) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 13.518 19.943 20.865 31.941 43.825 76.719 77.037 77.354 129.845 130.109 131.578 132.089 132.252 134.270 136.761 144.891 151.885 152.197 156.258 3e ppm (t1) 150 100 50 0 S27

0.968 0.987 5 1.365 1.375 1.383 1.392 1.402 1.421 1.440 1.458 1.788 1.911 1.930 1.942 1.948 1.953 1.961 1.967 1.985 3.816 4.304 4.322 4.340 6.963 6.971 6.985 6.993 7.172 7.180 7.427 7.449 8.105 9.077 O 3f 1.04 0.95 0.91 0.99 2.20 2.84 2.17 2.23 3.23 9.0 ppm (t1) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 13.524 19.948 31.942 43.844 55.634 116.445 117.113 124.280 131.177 132.190 135.232 144.989 151.961 152.197 155.961 158.192 O 3f 200 ppm (t1) 150 100 50 0 S28

-0.014 0.965 0.983 2 1.361 1.380 1.398 1.418 1.436 1.455 1.805 1.905 1.924 1.937 1.942 1.947 1.955 1.961 1.980 2.404 4.294 4.313 4.331 7.212 7.231 7.378 7.565 7.585 8.084 9.067 3g 1.04 1.05 1.11 1.04 2.13 3.19 2.13 2.13 3.18 9.0 ppm (t1) 8.0 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0.0 13.521 19.948 21.137 31.946 43.808 127.648 130.922 131.589 131.610 132.303 132.624 141.338 144.778 151.879 152.153 156.166 3g ppm (t1) 150 100 50 0 S29