A New Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with Nitroalkenes

Σχετικά έγγραφα
Supporting Information

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Supporting Information

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Supporting Information

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

Supporting Information

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Protease-catalysed Direct Asymmetric Mannich Reaction in Organic Solvent

Rh(III)-Catalyzed C-H Amidation with N-hydroxycarbamates: A. new Entry to N-Carbamate Protected Arylamines

Supporting information

Supporting Information

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Chiral Brønsted Acid Catalyzed Enantioselective Intermolecular Allylic Aminations. Minyang Zhuang and Haifeng Du*

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supplementary Figure 1. (X-ray structures of 6p and 7f) O N. Br 6p

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

SUPPLEMENTARY INFORMATION

Aminofluorination of Fluorinated Alkenes

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Construction of Cyclic Sulfamidates Bearing Two gem-diaryl Stereocenters through a Rhodium-Catalyzed Stepwise Asymmetric Arylation Protocol

Supporting Information

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Synthesis of Imines from Amines in Aliphatic Alcohols on Pd/ZrO 2 Catalyst at Ambient Conditions

Electronic Supplementary Information

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supporting Information

Ligand-free Cu(II)-mediated aerobic oxidations of aldehyde. hydrazones leading to N,N -diacylhydrazines and 1,3,4-oxadiazoles

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Electronic Supplementary Information

Supplementary Information for

Supporting Information for

Supporting Information. Table of Contents. II. Experimental procedures. II. Copies of 1H and 13C NMR spectra for all compounds

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Supporting Information for

Supporting Information

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Supporting Information

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Divergent synthesis of various iminocyclitols from D-ribose

Supporting Information. Consecutive hydrazino-ugi-azide reactions: synthesis of acylhydrazines bearing 1,5- disubstituted tetrazoles

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information. Experimental section

Copper-Catalyzed Direct Acyloxylation of C(sp 2 ) H Bonds. in Aromatic Amides

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

The Free Internet Journal for Organic Chemistry

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Electronic Supplementary Information (ESI)

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Copper-Catalyzed Oxidative Coupling of Acids with Alkanes Involving Dehydrogenation: Facile Access to Allylic Esters and Alkylalkenes

gem-dichloroalkenes for the Construction of 3-Arylchromones

Synthesis of unsymmetrical imidazolium salts by direct quaternization of N-substituted imidazoles using arylboronic acids

Supporting Information Table of Contents 1. General remarks...s1 2. Synthesis of catalyst L S1

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Supporting Information for

Supplementary Information. Bio-catalytic asymmetric Mannich reaction of ketimines using. wheat germ lipase

Supporting Information

Transfer of axial chirality through the nickel-catalyzed hydrocyanation of chiral allenes

Supporting Information for Synthesis of Fused N-Heterocycles via Tandem C-H Activation

Supplementary information

Synthesis of novel 1,2,3-triazolyl derivatives of pregnane, androstane and D-homoandrostane. Tandem Click reaction/cu-catalyzed D-homo rearrangement

SUPPORTING INFORMATION

Supporting Information

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Chiral Phosphoric acid Catalyzed Enantioselective N- Alkylation of Indoles with in situ Generated Cyclic N-Acyl Ketimines

9-amino-(9-deoxy)cinchona alkaloids-derived novel chiral phase-transfer catalysts

Copper-promoted hydration and annulation of 2-fluorophenylacetylene derivatives: from alkynes to benzo[b]furans and benzo[b]thiophenes

SUPPORTING INFORMATION. Transition Metal-Free Arylations of In-Situ Generated Sulfenates with Diaryliodonium Salts

Cu(I)-Catalyzed Asymmetric Multicomponent Cascade Inverse. Electron-Demand aza-diels-alder/nucleophilic Addition/Ring-Opening

Supporting Information for. Copper-Catalyzed Radical Reaction of N-Tosylhydrazones: Stereoselective Synthesis of (E)-Vinyl Sulfones

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Phosphorus Oxychloride as an Efficient Coupling Reagent for the Synthesis of Ester, Amide and Peptide under Mild Conditions

Heterobimetallic Pd-Sn Catalysis: Michael Addition. Reaction with C-, N-, O-, S- Nucleophiles and In-situ. Diagnostics

Supplementary Material

Novel and Selective Palladium-Catalyzed Annulation of 2-Alkynylphenols to Form 2-Substituted 3-Halobenzo[b]furans. Supporting Information

Sequential catalysis for the production of sterically hindered amines: Ruthenium(II)-catalyzed C-H bond activation and hydrosilylation of imines

Supporting information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Supporting Information

Sotto, 8; Perugia, Italia. Fax: ; Tel: ;

Zuxiao Zhang, Xiaojun Tang and William R. Dolbier, Jr.* Department of Chemistry, University of Florida, Gainesville, FL

Supporting Information

Supporting Information for. Rhodium-Catalyzed β-selective Oxidative Heck-Type

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

D-Glucosamine-derived copper catalyst for Ullmann-type C- N coupling reaction: theoretical and experimental study

Supporting Information

Supporting Information for

Cu-Catalyzed/Mediated Synthesis of N-Fluoroalkylanilines from Arylboronic Acids: Fluorine Effect on the Reactivity of Fluoroalkylamines

Supporting Information

Transcript:

A ew Type of Bis(sulfonamide)-Diamine Ligand for a Cu(OTf) 2 -Catalyzed Asymmetric Friedel-Crafts Alkylation Reaction of Indoles with itroalkenes Jing Wu, Xincheng Li, Fan Wu, and Boshun Wan* Dalian Institute of Chemical ysics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China. E-mail: bswan@dicp.ac.cn Supporting Information

Table of Contents 1. General information S2 2. The preparation of Bis(sulfonamide)-Diamine Ligand L1 L7 S2 3. Optimization of the model reaction S2 S3 4. Asymmetric Friedel-Craft Alkylation of indole with nitroalkene S3 5. Results of some commercially available indole analogues S3-S4 6. Analysis of the ligand L1-L7 and products S3 S10 7. Copy of MR, RMS and PLC for racemic and chiral compounds S11 S65 S1

1. General information All reactions were carried out under an atmosphere of argon using standard Schlenk techniques, unless otherwise noted. 1 MR and 13 C MR spectra were recorded on Bruker DRX 400 or Bruker DRX 500 spectrometers (400 Mz or 500 Mz for 1 MR, 100 Mz or 126 Mz for 13 C MR, see details of each compound) using CDCl 3 or CD 3 COCD 3 as solvent. Tetramethylsilane (δ = 0) or CDCl 3 (δ = 7.27) or CD 3 COCD 3 (2.05 ppm) serves as the internal standard for 1 MR and CDCl 3 (77.16 ppm) and CD 3 COCD 3 (29.84 ppm) for 13 C MR. Coupling constants (J) are reported in z and refer to apparent peak multiplications. Optical rotations were measured with JASCO P 1010 polarimeter. RMS data were obtained with Micromass PLC-Q-TOF mass spectrometer Flash column chromatography was performed on silica gel (300 400 mesh). TLC analysis was performed using glass-backed plates coated with 0.2 mm silica. Commercially available reagents were used throughout without further purification. All solvents were purified according to the standard procedures. 2. The preparation of Bis(sulfonamide)-Diamine Ligand L1 L7 R 1 R 1 O R 2 TsCl, K 2 CO 3 2 C 3 C Ts R 2 1,2-diamines, reflux C 3 C or C 3 O R 2 Ts Ts R 2 L1-L7 were synthesized by the same procedure in the literature 1,2,3. 3. Optimization of model reaction Table 1. Screening of Lewis acids for the reaction Entry Metal salt Yield (%) Ee (%) 1 Cu(OTf) 2 68 21 2 FeCl 3 88 2 3 Ag(OTf) 52 0 4 Zn(OTf) 2 94 0 5 Cu(OTf). C 6 6 38 0 6 CuCl 2 29 3 7 Cu(OAc) 2 23 8 1 Jin, W.; Li, X. C.; uang, Y. B.; Wu, F.; Wan, B. S. Chem. Eur. J. 2010, 16, 8259. 2 Jin, W.; Li, X. C.; Wan, B. S. J. Org. Chem. 2011, 76, 484. 3 Pei, Y.; Brule, E.; Moberg, C. Org. Biomol. Chem. 2006, 4, 544. S2

Table 2. Optimization of the solvents Entry Solvent Isolated yield (%) Ee (%) 1 toluene 94 91 2 C 2 Cl 2 99 86 3 CCl 3 99 85 4 DCE 97 81 5 Et 2 O 23 40 6 TF 7 7 7 C 3 C 8 0 9 p-xylene 91 85 10 CF 3 99 92 11 benzene 86 88 4. Asymmetric 1,4-addition of arylboronic acids to 2-cyclohexenone Under argon atmosphere, a mixture of Cu(OTf) 2 (4.5 mg, 0.0125 mmol) and L6 (9.5 mg, 0.0125mmol) in CF 3 (3 ml) was stirred at room temperature in a 25 ml Schlenk tube for 2 h to give the catalyst. After putting it into a freezer with the temperature of 0 C, this mixture was added nitroalkene (0.375 mmol). After stirred for 10 min, indole (0.25 mmol) was added. The reaction was stirred at 0 C and monitored by TLC. When the reaction was over, the reaction mixture was directly charged onto a column (silica gel) and flash chromatograph with a mixture of petroleum ether/c 3 CO 2 Et to afford the product. 5. Results of some commercially available indole analogues S3

Entry R Yield (%) Ee (%) 1 1-Me 51 17 2 2-Me 87 0 3 2-47 9 4 7-Me 68 1 6. Analysis of the ligand L1-L7 and product L1 white solid; m.p. = 159 161 C; yield 92%; R f = 0.33 Ts Ts (C 2 Cl 2 /C 3 O = 30/1); [α] 23 D = +35.7 (c 0.63, CCl 3 ); MR (500 Mz, CDCl 3 ) δ 7.81 (d, J = 8.3 z, 4), 7.29 (d, J = 8.0 z, 4), 7.18 7.03 (m, 6), 7.02 6.91 (m, 4), 5.78 (s, 2), 3.52 (s, 2), 3.18 3.04 (m, 2), 2.54 (dd, J = 12.6, 5.0 z, 2), 2.48 2.39 (m, 9), 1.85 1.66 (m, 1), 0.68 (d, J = 6.7 z, 6), 0.64 (d, J = 6.8 z, 6); 13 C MR (126 Mz, CDCl 3 ) δ 143.0, 141.5, 139.0, 129.6, 128.0, 127.9, 127.1, 126.9, 69.0, 60.0, 48.0, 30..0, 21.6, 19.4, 18.9; RMS Calculated for C 38 51 4 O 4 S 2 [M+] + 691.3352, found 691.335. 1 Ts Ts L2 white solid; m.p. = 205 207 C; yield 83%; R f = 0.40 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = +44.2 (c 0.75, CCl 3 );. 1 MR (500 Mz, CDCl 3 ) δ 7.68 (d, J = 8.1 z, 4), 7.20 (d, J = 8.1 z, 4), 7.16 7.07 (m, 6), 6.97 (d, J = 6.4 z, 4), 5.56 (s, 2), 3.49 (s, 2), 3.14 (s, 2), 2.46 (dd, J = 11.6, 7.2 z, 2), 2.42 2.35 (m, 8), 1.70 1.61 (m, 3), 0.73 (d, J = 6.8 z, 6), 0.68 (d, J = 6.8 z, 6). 13 C MR (126 Mz, CDCl 3 ) δ 142.9, 141.4, 139.0, 129.6, 128.1, 128.0, 127.0, 69.4, 60.0, 48.5, 30.7, 21.6, 19.2, 18.6; RMS Calculated for C 38 51 4 O 4 S 2 [M+] + 691.3352, found 691.3356. Ts L3: known compond 3 white foam; m.p. = 62 64 C; yield 80%; R f = 0.35 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = 12.3 (c 1.09, CCl 3 ); 1 MR (400 Mz, CDCl 3 ) δ 7.81 (d, J = 8.2 z, 4), 7.28 (d, J = 8.1 z, 4), 5.83 (s, 1), 3.14 3.02 (m, 2), 2.87 Ts (dd, J = 12.1, 5.0 z, 2), 2.59 (dd, J = 12.1, 3.5 z, 2), 2.41 (s, 6), 2.23 2.13 (m, 2), 1.99 (d, J = 12.4 z, 2), 1.73 (m, 4), 1.30 1.14 (m, 2), 1.02 (dd, J = 13.1, 6.1 z, 2), 0.76 (d, J = 6.7 z, 6), 0.67 (d, J = 6.7 z, 6); 13 C MR (101 Mz, CDCl 3 ) δ 142.9, 138.8, 129.6, 127.0, 61.4, 60.2, 47.4, 32.1, 29.9, 25.3, 21.6, 19.4, 19.0. Ts Ts L4: white foam; m.p. = 71 73 C; yield 79%; R f = 0.23 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = +13.8 (c 1.28, CCl 3 ); 1 MR (500 Mz, CDCl 3 ) δ 7.83 (d, J = 8.3 z, 4), 7.30 (d, J = 8.2 z, 4), 7.15 7.03 (m, 6), 6.92 (dd, J = 7.6, 1.6 z, 4), 5.66 (s, 2), 3.53 (s, 2), 3.48 (m, 2), 2.55 (s, 2), 2.45 2.38 (m, 8), 2.34 (dd, J = 12.8, 7.1 z, 2), 0.92 (d, J = 6.6 z, 6); 13 C MR (126 Mz, CDCl 3 ) δ 143.1, 141.1, 138.7, 129.7, 128.0, 127.2, 127.0, 68.0, 51.8, 48.9, 21.6, 19.1; RMS Calculated for C 34 43 4 O 4 S 2 [M+] + 635.2726, found 635.2721. S4

L5: white solid; m.p. = 104 108 C; yield 95%; R f = 0.30 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = +46.3 (c 1.25, CCl 3 ); 1 MR (400 Mz, CDCl 3 ) δ 7.60 (d, J = 8.2 z, 4), 7.15 (d, J Bn Bn = 8.1 z, 4), 7.13 7.04 (m, 12), 6.93 (m, 8), 5.71 (s, 2), Ts Ts 3.67 3.52 (m, 4), 2.74 (dd, J = 13.8, 7.3 z, 2), 2.69 2.57 (m, 4), 2.48 (dd, J = 12.4, 4.4 z, 3), 2.39 (s, 6); 13 C MR (101 Mz, CDCl 3 ) δ 142.9, 141.3, 138.2, 137.7, 129.7, 129.3, 128.5, 128.1, 128.0, 127.0, 127.0, 126.4, 69.2, 55.3, 50.3, 39.2, 21.7; RMS Calculated for C 46 51 4 O 4 S 2 [M+] + 787.3352, found 787.3345. L6: white foam; m.p. = 75 77 C; yield 55%; R f = 0.68 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = +61.6 (c 1.26, CCl 3 ); 1 MR (400 Mz, CDCl 3 ) δ 7.81 (d, J = 8.3 z, 4), 7.33 (d, J = 8.1 z, 4), 7.31 7.18 (m, 10), 7.14 7.05 (m, 6), 6.96 Ts Ts (dd, J = 6.5, 3.0 z, 4), 5.73 (s, 2), 3.95 (t, J = 5.4 z, 2), 3.90 (s, 2), 3.49 (dd, J = 13.0, 4.6 z, 2), 3.12 (dd, J = 13.0, 6.4 z, 2), 2.96 (s, 1), 2.49 (s, 6); 13 C MR (101 Mz, CDCl 3 ) δ 143.3, 141.4, 141.3, 137.3, 129.8, 128.5, 127.9, 127.9, 127.4, 127.1, 127.1, 126.9, 67.4, 60.3, 47.6, 21.6; RMS Calculated for C 44 47 4 O 4 S 2 [M+] + 759.3039, found 759.3032. Ts Ts L7: white solid, m.p. = 192 196 C; yield 83%; R f = 0.48 (C 2 Cl 2 /C 3 O = 30/1); [α] 25 D = 30.9 (c 1.04, CCl 3 ); MR (400 Mz, CDCl 3 ) δ 7.77 (d, J = 7.8 z, 4), 7.27 (d, J = 7.9 z, 4), 7.13 (m, 6), 6.97 (d, J = 7.1 z, 4), 5.74 (s, 2), 3.48 (s, 2), 3.14 (s, 2), 2.55 (dd, J = 12.9, 4.4 z, 2), 2.42 (s, 8), 2.26 (dd, J = 12.8, 3.8 z, 2), 0.74 (s, 18); 13 C MR (101 Mz, CDCl 3 ) δ 142.8, 141.5, 139.1, 129.5, 128.0, 127.9, 127.1, 127.0, 69.0, 61.8, 47.0, 34.8, 27.4, 21.6; RMS Calculated for C 44 47 4 O 4 S 2 [M+] + 719.3665, found 719.3669. 3a (R)-(2-itro-1-phenylethyl)-1-indole: known compound 4 ; Following the general procedure, the compond was obtained as yellow oil in 99% yield and 95% ee; [α] 22 D = 22.3 (c 0.91, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 24.9 (c O 1.06, C 2 Cl 2 ) for 96% ee;] R f = 0.3 (petroleum ether/etoac = 4/1); 1 2 MR (500 Mz, CDCl 3 ) δ 8.05 (s, 1), 7.44 (dd, J = 8.0, 0.7 z, 1), 7.37-7.22 (m, 6), 7.22-7.16 (m, 1), 7.07 (m, 1), 7.02 (dd, J = 2.4, 0.5 z, 1), 5.18 (t, J = 8.0 z, 1), 5.06 (dd, J = 12.5, 7.6 z, 1), 4.94 (dd, J = 12.5, 8.3 z, 1); 13 C MR (126 Mz, CDCl 3 ) δ 139.4, 136.7, 129.1, 127.9, 127.7, 126.3, 122.9, 121.7, 120.1, 119.1, 114.7, 111.5, 79.7, 41.7; PLC: Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 210 nm, t R = 25.2 min (major) and t R = 27.7 min. 4 Jia, Y. X.; Zhu, S. F.; Yang, Y.; Zhou, Q. L. J. Org. Chem. 2006, 71, 75. S5

Cl 3b (R)-3-[1-(4-Chlorophenyl)-2-nitroethyl]-1-indole: known compound 4 ; yellow oil; 96% yield; 92% ee; [α] 23 D = 8.34 (c 2.11, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 9.7 (c 0.79, C 2 Cl 2 ) for 91% ee;] R f = 0.28 O (petroleum ether/etoac = 4/1); 1 2 MR (400 Mz, Acetone) δ 10.28 (s, 1), 7.52 (d, J = 8.0 z, 1), 7.50-7.45 (m, 2), 7.42 (m, 2), 7.36-7.31 (m, 2), 7.17 7.09 (m, 1), 7.05-6.97 (m, 1), 5.35 5.16 (m, 3); 13 C MR (101 Mz, Acetone) δ 140.4, 137.7, 133.2, 130.6, 129.4, 127.1, 123.0, 122.8, 120.0, 119.4, 114.4, 112.4, 79.9, 41.6; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 25.6 min and t R = 34.1 min (major). Cl 3c (R)-3-[1-(3-Chlorophenyl)-2-nitroethyl]-1-indole: known compound 5 ; yellow oil; 94% yield; 94% ee; [α] 23 D = 18.04 (c 1.62, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 18.1 (c 1.06, C 2 Cl 2 ) for 92% ee;] R f = 0.3 O (petroleum ether/etoac = 4/1); 1 2 MR (500 Mz, CDCl 3 ) δ 8.09 (s, 1), 7.42 (dd, J = 8.0, 0.8 z, 1), 7.37 7.33 (m, 1), 7.30 (d, J = 2.2 z, 1), 7.25 7.18 (m, 4), 7.08 (ddd, J = 8.0, 7.1, 0.9 z, 1), 7.01 (dd, J = 2.5, 0.6 z, 1), 5.15 (t, J = 8.0 z, 1), 5.03 (dd, J = 12.7, 7.5 z, 1), 4.90 (dd, J = 12.7, 8.4 z, 1); 13 C MR (126 Mz, CDCl 3 ) δ 141.5, 136.7, 135.0, 130.3, 128.1, 128.0, 126.1, 126.1, 123.0, 121.7, 120.3, 118.9, 113.9, 111.6, 79.3, 41.3; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 24.9 min and t R = 38.4 min (major). 3d (R)-3-[1-(2-Chlorophenyl)-2-nitroethyl]-1-indole: known Cl compound 4, yellow oil; 99% yield; 97% ee; [α] 21 D = 80.9 (c 1.51, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 82.7 (c 1.12, C 2 Cl 2 ) for 91% ee;] R f = 0.28 O (petroleum ether/etoac = 4/1); 1 2 MR (400 Mz, Acetone) δ 10.31 (s, 1), 7.55 (d, J = 7.9 z, 1), 7.53 7.49 (m, 1), 7.49 7.44 (m, 1), 7.42 (m, 2), 7.31 7.20 (m, 2), 7.16 7.09 (m, 1), 7.06 6.97 (m, 1), 5.77 (t, J = 8.0 z, 1), 5.30 (dd, J = 13.2, 8.3 z, 1), 5.22 (dd, J = 13.2, 7.8 z, 1); 13 C MR (101 Mz, Acetone) δ 138.5, 137.7, 134.3, 130.6, 130.1, 129.6, 128.3, 127.3, 123.7, 122.8, 120.1, 119.2, 113.6, 112.5, 78.7, 38.5; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 16.6 min (major) and t R = 28.5 min. 3e (R)-3-[1-(4-Methylphenyl)-2-nitroethyl]-1-indole: known compound 5, yellow oil; 99% yield; 93% ee; [α] 23 D = 15.3 (c 2.10, C 2 Cl 2 ); [lit. 5 : [α] 20 D = -15.9 (c 0.83, C 2 Cl 2 ) for 96% ee;] R f = 0.25 O (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 10.23 (s, 2 1), 7.52 (d, J = 7.9 z, 1), 7.40 (d, J = 8.2 z, 1), 7.36 (m, 3), 7.10 (m, 3), 7.02 6.94 (m, 1), 5.27 (dd, J = 15.6, 10.8 z, 1), 5.21 5.12 (m, 2), 2.26 (s, 3); 13 C MR (101 Mz, Acetone) δ 138.4, 137.8, 137.4, 130.0, 128.7, 127.3, 122.8, 122.6, 119.9, 119.5, 115.0, 112.3, 80.3, 42.0, 21.0. PLC: 5 Guo, F. F. Lai, G. Y.; Xiong, S. S.; Wang, S. J.; Wang, Z. Y. Chem. Eur. J. 2010, 16, 6438. S6

Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 17.9 min and t R = 22.2 min (major). MeO 3f (R)-3-[1-(4-Methoxyphenyl)-2-nitroethyl]-1-indole: known compound 4, white solid; m.p. 148 150 o C; 99% yield; 88% ee; [α] 23 D = 21.55 (c 2.22, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 28.2 (c 1.04, C 2 Cl 2 ) for 95% ee;] R f = 0.15 (petroleum ether/etoac = 4/1); 1 MR (500 Mz, O 2 CDCl 3 ) δ 8.05 (s, 1), 7.43 (dd, J = 8.0, 0.7 z, 1), 7.34 (d, J = 8.2 z, 1), 7.26 7.21 (m, 2), 7.19 (ddd, J = 8.2, 7.2, 1.0 z, 1), 7.07 (ddd, J = 8.0, 7.1, 1.0 z, 1), 7.00 (dd, J = 2.5, 0.7 z, 1), 6.88 6.80 (m, 2), 5.13 (t, J = 8.0 z, 1), 5.03 (dd, J = 12.3, 7.5 z, 1), 4.89 (dd, J = 12.3, 8.4 z, 1), 3.76 (s, 3); 13 C MR (126 Mz, CDCl 3 ) δ 159.1, 136.7, 131.4, 129.0, 126.3, 122.8, 121.6, 120.1, 119.2, 115.0, 114.5, 111.5, 79.9, 55.4, 41.0; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 24.8 min and t R = 30.3 min (major). OMe 3g (R)-3-[1-(2-Methoxyphenyl)-2-nitroethyl]-1-indole: known compound 4 ; yellow oil; 96% yield; 93% ee; [α] 21 D = 48.3 (c 1.87, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 47.8 (c 1.15, C 2 Cl 2 ) for 95% ee;] R f = 0.3 O 2 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 10.21 (s, 1), 7.52 (d, J = 7.9 z, 1), 7.44 7.37 (m, 2), 7.28 7.18 (m, 2), 7.15 7.07 (m, 1), 7.06 6.95 (m, 2), 6.85 m, 1), 5.64 (t, J = 8.0 z, 1), 5.18 (dd, J = 8.0, 1.2 z, 2), 3.93 (s, 3); 13 C MR (101 Mz, Acetone) δ 157.9, 137.7, 129.6, 129.2, 129.0, 127.7, 123.4, 122.7, 121.4, 119.8, 119.5, 114.4, 112.3, 111.9, 79.0, 56.0, 35.8; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 13.7 min (major) and t R = 15.7 min. Br 3h (R)-3-[1-(2-Bromophenyl)-2-nitroethyl]-1-indole: known compound 6 ; yellow oil; 97% yield; 96% ee; [α] 22 D = 99.9 (c 1.3, C 2 Cl 2 ); R f = 0.25 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, CDCl 3 ) δ O 2 8.10 (s, 1), 7.64 (d, J = 7.8 z, 1), 7.44 (d, J = 7.9 z, 1), 7.35 (d, J = 8.2 z, 1), 7.24 7.17 (m, 3), 7.16 7.06 (m, 3), 5.79 5.71 (m, 1), 5.03 4.90 (m, 2); 13 C MR (126 Mz, CDCl 3 ) δ 138.2, 136.6, 133.6, 129.2, 128.0, 126.3, 124.6, 122.8, 122.1, 120.1, 119.1, 113.4, 111.5, 77.9, 40.7; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 30.8 min and t R = 17.5 min (major). Br O 2 3i (R)-3-[1-(3-Bromophenyl)-2-nitroethyl]-1-indole: known compound 4 ; yellow oil; 99% yield; 93% ee; [α] 22 D = 12.8 (c 2.0, C 2 Cl 2 ); [lit. 4 : [α] 20 D = +14.7 (c 1.3, C 2 Cl 2 ) for 86% ee;] R f = 0.23 (petroleum ether/etoac = 4/1); 1 MR (500 Mz, CDCl 3 ) δ 8.09 (s, 1), 7.46 (t, J = 1.8 z, 1), 7.42 (dd, J = 8.0, 0.7 z, 1), 7.38 (m, 1), 7.34 (d, J = 6 Lin, S. Z.; You, T. P. Tetrahedron 2009, 65, 1010. S7

8.2 z, 1), 7.29 7.15 (m, 3), 7.08 (m 1), 7.00 (dd, J = 2.5, 0.6 z, 1), 5.13 (d, J = 8.0 z, 1), 5.02 (dd, J = 12.7, 7.5 z, 1), 4.89 (dd, J = 12.7, 8.4 z, 1); 13 C MR (126 Mz, CDCl 3 ) δ 141.8, 136.6, 131.0, 130.9, 130.6, 126.6, 126.1, 123.2, 123.0, 121.7, 120.3, 118.9, 113.9, 111.6, 79.3, 41.3; Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 25.5 min and t R = 39.2 min (major). 3j (R)-3-[1-(4-Bromophenyl)-2-nitroethyl]-1-indole: known Br compound 4 : yellow oil; 96% yield; 92% ee; [α] 25 D = +9.8 (c 1.85, C 2 Cl 2 ); [lit. 4 : [α] 20 D = 1.7 (c 1.0, C 2 Cl 2 ) for 90% ee;] R f = 0.28 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 10.29 O 2 (s, 1), 7.54 7.45 (m, 3), 7.41 (m, 4), 7.13 (t, J = 7.6 z, 1), 7.01 (t, J = 7.5 z, 1), 5.34 5.16 (m, 3); 13 C MR (101 Mz, Acetone) δ 140.9, 137.7, 132.4, 130.9, 127.1, 123.0 122.8, 121.3, 120.0, 119.4, 114.3, 112.4, 79.8, 41.7; Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 27.4 min and t R = 37.4 min (major). F 3k (R)-3-[1-(2-Fluorophenyl)-2-nitroethyl]-1-indole: yellow oil, 98% yield; 96% ee; [α] 22 D = +4.4 (c 2.3, C 2 Cl 2 ); R f = 0.3 (petroleum ether/etoac = 8/1); 1 MR (400 Mz, Acetone) δ 10.30 (s, 1), 7.60 (d, O 2 J = 8.0 z, 1), 7.54 7.39 (m, 3), 7.28 (m, 1), 7.19 7.09 (m, 3), 7.08 7.01 (m, 1), 5.56 (t, J = 8.1 z, 1), 5.31 (m, 2); 13 C MR (101 Mz, Acetone) δ 161.4 (d, J C-F = 244.9 z), 137.6, 130.4 (d, J C-F = 3.9 z), 129.9 (d, J C-F = 8.5 z), 128.2 (d, J C-F = 13.9 z), 127.2, 125.4 (d, J C-F = 3.5 z), 123.4 (d, J C-F = 1.3 z), 122.8, 120.1, 119.1, 116.4 (d, J C-F = 22.5 z), 113.5, 112.5, 78.7 (d, J C-F = 1.8 z), 35.3 (d, J C-F = 3.3 z); PLC: Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 210 nm, t R = 20.4 min (major) and t R = 28.0 min; RMS Calculated for C 16 12 2 O 2 F [M-] + 283.0883, found 283.0882. CF 3 3l 3-[1-(3-trifluoromethylphenyl)-2-nitroethyl]-1-indole: yellow oil; 99% yield; 94% ee; [α] 21 D = 5.7 (c 0.76, C 2 Cl 2 ); R f = 0.23 (petroleum ether/etoac = 4/1); 1 MR (500 Mz, CDCl 3 ) δ 8.13 (s, 1), 7.62 (s, 1), 7.55 (d, J = 8.2 z, 2), 7.38 (d, J = 8.2 z, 1), 7.25 7.21 (m, 1), O 2 7.14 7.09 (m, 1), 7.03 (d, J = 2.1 z, 1), 5.27 (t, J = 8.0 z, 1), 5.09 (dd, J = 12.8, 7.4 z, 1), 4.96 (dd, J = 12.8, 8.5 z, 1); 13 C MR (126 Mz, CDCl 3 ) δ 140.36, 136.54, 131.19 (d, J C-F = 32.8 z), 129.46, 125.86, 124.56 (d, J C-F = 3.8 z), 123.93 (d, J C-F = 273.4 z), 122.97, 121.66, 120.22, 118.63, 113.59, 111.54, 79.08, 41.32; Daicel Chiralpak AD-, hexane/i-pro = 80/20, Flow rate = 1.0 ml/min, UV = 220 nm, t R = 6.3 min (major) and t R = 7.2 min; RMS Calculated for C 17 12 2 O 2 F 3 [M-] + 333.0851, found 283.0856. O O 2 3m (R)-3-(1-Furan-2-yl-2-nitroethyl)-1-indole: known compound 4 ; yellow oil; 98% yield; 88% ee; [α] 22 D = +40.6 (c 1.64, C 2 Cl 2 ); [lit. 5 : [α] 20 D = + 38.2 (c 1.05, C 2 Cl 2 ) for 95% ee;]. R f = 0.33 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 10.28 (s, 1), 7.63 (d, S8

J = 8.0 z, 1), 7.48 (dd, J = 1.8, 0.7 z, 1), 7.44 (d, J = 8.1 z, 1), 7.36 (d, J = 2.5 z, 1), 7.19 7.11 (m, 1), 7.10 7.01 (m, 1), 6.36 (dd, J = 3.2, 1.9 z, 1), 6.29 (d, J = 3.2 z, 1), 5.33 5.19 (m, 2), 5.15 (dd, J = 12.3, 7.3 z, 1); 13 C MR (101 Mz, Acetone) δ 154.2, 143.0, 137.7, 126.96, 124.1, 122.7, 120.1, 119.4, 112.5, 112.0, 111.2, 107.5, 78.6, 36.4; Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 15.4 min (major) and t R = 21.8 min. 3n (R)-3-(1-(aphthalen-1-yl)-2-nitroethyl)-1-indole: known compound 4 : yellow oil; 95% yield; 95% ee; [α] 22 D = 22.5 (c 1.46, C 2 Cl 2 ); [lit. 5 : [α] 20 D = 25.8 (c 1.14, C 2 Cl 2 ) for 94% ee;] R f = 0.3 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, CDCl 3 ) δ 8.29 (d, J = 8.3 z, 1), O 2 8.04 (s, 1), 7.95 7.87 (m, 1), 7.80 (m, 1), 7.61 7.49 (m, 2), 7.46 (d, J = 8.0 z, 1), 7.42 7.30 (m, 3), 7.23 7.16 (m, 1), 7.13 7.03 (m, 1), 7.00 (m, 1), 6.09 (t, J = 7.8 z, 1), 5.22 5.02 (m, 2); 13 C MR (126 Mz, CDCl 3 ) δ 136.7, 134.8, 134.3, 131.3, 129.3, 128.5, 127.0, 126.3, 126.1, 125.5, 124.8, 122.8, 122.8, 120.1, 119.0, 114.5, 111.6, 78.7, 37.2; Daicel Chiralcel OD- column, hexane/i-pro = 70/30, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 26.1 min (major) and t R = 31.5 min. 3o (R)-3-(2-aphthalen-1-yl-2-nitroethyl)-1-indole: known compond 7 ; white solid; m.p. 139 140 o C; 90% yield; 93% ee; [α] 26 D = +20.6 (c 1.00, C 2 Cl 2 ); [lit. 7 : [α] 20 D = 18.9 (c 1.0, C 2 Cl 2 ) for 97% ee;] R f = 0.2 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 10.30 (s, O 1), 8.03 (s, 1), 7.93 7.75 (m, 3), 7.70 7.54 (m, 2), 7.53 7.38 (m, 2 4), 7.13 (t, J = 7.6 z, 1), 7.00 (t, J = 7.5 z, 1), 5.49 5.24 (m, 3); 13 C MR (101 Mz, Acetone) δ138.9, 137.8, 134.4, 133.6, 129.2, 128.6, 128.4, 127.3, 127.02, 126.97, 126.69, 123.1, 122.7, 112.0 119.5, 114.7, 112.4, 80.1, 42.5; Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 210 nm, t R = 37.7 min and t R = 40.7 min (major). 3p (R)-3-(1-nitrohexan-2-yl)-1-indole: known compond 7 ; yellow oil; 65% yield; 70% ee; [α] 21 D = +9.7 (c 0.23, C 2 Cl 2 ); [lit. 7 : [α] D 20 = 30.6 O 2 (c 1.0, C 2 Cl 2 ) for 91% ee;] R f = 0.33 (petroleum ether/etoac = 8/1); 1 MR (400 Mz, Acetone) δ 10.17 (s, 1), 7.67 (d, J = 7.9 z, 1), 7.41 (d, J = 8.1 z, 1), 7.28 (s, 1), 7.12 (t, J = 7.5 z, 1), 7.04 (t, J = 7.5 z, 1), 4.83 (d, J = 7.6 z, 2), 3.80 (m, 1), 1.97 1.74 (m, 2), 1.39 1.20 (m, 4), 0.83 (t, J = 6.5 z, 3);. 13 C MR (101 Mz, Acetone) δ 137.8, 127.5, 123.5, 122.4, 119.8, 119.4, 114.5, 112.5, 81.3, 37.0, 33.2, 30.1, 23.2, 14.2; PLC: Daicel Chiralcel OD- column, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 35.7 min (major) and t R = 39.3 min. O 2 3q (R)-5-Methyl-3-(2-nitro-1-phenylethyl)-1-indole: known compond 8 ; white solid; m.p. 140 141 o C; 99% yield; 94% ee; [α] 26 D = +27.4 (c 1.38, C 2 Cl 2 ); [lit. 8 : [α] 20 D = +9.7 (c 0.92, C 2 Cl 2 ) for 97% ee;] R f = 0.27 (petroleum ether/etoac = 4/1); 1 MR (400 Mz, Acetone) δ 7 Ganesh, M.; Seidel, D. J. Am. Chem. Soc. 2008, 130, 16464. 8 Liu,.; Du, D.-M. Adv. Synth. Catal. 2010, 352, 1113. S9

10.11 (s, 1), 7.52 7.44 (m, 2), 7.39 7.27 (m, 5), 7.26 7.19 (m, 1), 6.97 (dd, J = 8.3, 1.4 z, 1), 5.35 5.10 (m, 3), 2.37 (s, 3); 13 C MR (101 Mz, Acetone) δ 141.5, 136.1, 129.4, 128.8, 127.9, 127.6, 124.3, 123.0, 119.0, 114.3, 112.1, 80.2, 42.3, 21.6; PLC: Daicel Chiralpak AD-, hexane/i-pro = 80/20, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 25.9 min (major) and t R = 30.9 min. MeO O 2 3r (R)-5-Methoxy-3-(2-nitro-1-phenylethyl)-1-indole: known compound 5 ; white solid; m.p. 139 140 o C; 99% yield; 95% ee; [α] 20 D = +27.0 (c 1.96, C 2 Cl 2 ); [lit. 5 : [α] 20 D = +30.2 (c 1.02, C 2 Cl 2 ) for 96% ee;] R f = 0.21 (petroleum ether/etoac = 4/1); 1 MR (500 Mz, CDCl 3 ) δ 7.99 (s, 1), 7.36 7.29 (m, 4), 7.28 7.22 (m, 2), 7.00 (d, J = 2.3 z, 1), 6.84 (dt, J = 5.8, 2.4 z, 2), 5.14 (t, J = 8.0 z, 1), 5.04 (dd, J = 12.5, 7.6 z, 1), 4.93 (dd, J = 12.5, 8.4 z, 1), 3.77 (s, 3); 13 C MR (126 Mz, CDCl 3 ) δ 154.3, 139.3, 131.7, 129.1, 127.9, 127.7, 126.7, 122.4, 114.2, 112.9, 112.2, 100.9, 79.6, 56.0, 41.7. Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 210 nm, t R = 28.0 min (major) and t R = 42.5 min. F O 2 3s (R)-5-Fluoro-3-(2-nitro-1-phenylethyl)-1-indole: known compond 9 ; yellow oil; 88% yield; 94% ee; [α] 20 D = 21.14 (c 1.79, C 2 Cl 2 ); R f = 0.25 (petroleum ether/etoac = 8/1); 1 MR (400 Mz, Acetone) δ 10.37 (s, 1), 7.54 7.45 (m, 3), 7.41 (dd, J = 8.8, 4.5 z, 1), 7.33 (m, 2), 7.23 (ddd, m, 2), 6.92 (td, J = 9.1, 2.5 z, 1), 5.37 5.13 (m, 3); 13 C MR (101 Mz, Acetone) δ 158.4 (d, J C-F = 232.5 z), 141.2, 134.3, 129.5, 128.8, 128.0, 127.6 (d, J C-F = 9.8 z), 125.0, 115.1 (d, J C-F = 4.8 z), 113.4 (d, J C-F = 9.8 z), 110.8 (d, J C-F = 26.4 z), 104.2 (d, J C-F = 23.8 z), 80.0, 42.1; Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 210 nm, t R = 19.1 min (major) and t R = 22.7 min. Br O 2 3t (R)-5-Bromo-3-(2-nitro-1-phenylethyl)-1-indole: known compound 5 ; yellow oil; 99% yield; 94% ee; [α] 26 D = +43.3 (c 1.58, C 2 Cl 2 ); [lit. 5 : [α] 20 D = +41.0 (c 1.11, C 2 Cl 2 ) for 93% ee;] R f = 0.17 (petroleum ether/etoac = 8/1); 1 MR (400 Mz, CDCl 3 ) δ 8.12 (s, 1), 7.54 (d, J = 1.6 z, 1), 7.36 7.17 (m, 7), 7.04 (d, J = 2.4 z, 1), 5.11 (t, J = 8.0 z, 1), 5.01 (dd, J = 12.5, 8.0 z, 1), 4.90 (dd, J = 12.5, 8.0 z, 1); 13 C MR (101 Mz, CDCl 3 ) δ 138.8, 135.2, 129.2, 128.0, 127.9, 127.8, 125.8, 122.9, 121.6, 114.2, 113.4, 113.0, 79.5, 41.4; Daicel Chiralpak AD-, hexane/i-pro = 90/10, Flow rate = 1.0 ml/min, UV = 254 nm, t R = 18.0 min (major) and t R = 19.6 min. 9 Singh, P. K.; Bisai, A.; Singh, V. K. Tetrahedron Lett. 2007, 48, 1127. S10

Copy of MR Ts L1 Ts Ts Ts L1 S11

Ts L2 Ts Ts L2 Ts S12

Ts L3 Ts Ts L3 Ts S13

Ts L4 Ts Ts L4 Ts S14

Bn Ts Ts L5 Bn Bn Ts Ts L5 Bn S15

Ts Ts L6 Ts Ts L6 S16

Ts L7 Ts Ts L7 Ts S17

O 2 3a O 2 3a S18

Cl O 2 3b Cl O 2 3b S19

Cl O 2 3c Cl O 2 3c S20

Cl O 2 3d Cl O 2 3d S21

O 2 3e O 2 3e S22

MeO O 2 3f MeO O 2 3f S23

OMe O 2 3g OMe O 2 3g S24

Br O 2 3h Br O 2 3h S25

Br O 2 3i Br O 2 3i S26

Br O 2 3j Br O 2 3j S27

F O 2 3k F O 2 3k S28

CF 3 O 2 3l CF 3 O 2 3l S29

O O 2 3m O O 2 3m S30

O 2 3n O 2 3n S31

O 2 3o O 2 3o S32

O 2 3p O 2 3p S33

O 2 3q O 2 3q S34

MeO O 2 3r MeO O 2 3r S35

F O 2 3s F O 2 3s S36

Br O 2 3t Br O 2 3t S37

Copy of PLC for racemic and chiral compounds O 2 (+/-) 3aa O 2 3aa 95% ee S38

Cl Cl O 2 O 2 (+/-) 3ab 3ab 92% ee S39

Cl Cl O 2 O 2 (+/-) 3ac 3ac 94% ee S40

Cl Cl O 2 O 2 (+/-) 3ad 3ad 97% ee S41

O 2 O 2 (+/-) 3ae 3ae 93% ee S42

MeO MeO O 2 (+/-) 3af O 2 3af 88% ee S43

OMe OMe (+/-) 3ag O 2 3ag 93% ee O 2 S44

Br Br O 2 O 2 (+/-) 3ah 3ah 96% ee S45

Br Br O 2 O 2 (+/-) 3ai 3ai 93% ee S46

Br Br O 2 O 2 (+/-) 3aj 3aj 92% ee S47

F F O 2 O 2 (+/-) 3ak 3ak 96% ee S48

CF 3 CF 3 O 2 O 2 (+/-) 3al 3al 94% ee S49

O O 2 O O 2 (+/-) 3am 3am 88% ee S50

O 2 O 2 (+/-) 3an 3an 95% ee S51

O 2 O 2 (+/-) 3ao 3ao 93% ee S52

O 2 O 2 (+/-) 3ap 3ap 70% ee S53

O 2 O 2 (+/-) 3ba 3ba 94% ee S54

MeO O 2 MeO (+/-) 3ca O 2 3ca 95% ee S55

F O 2 F O 2 (+/-) 3da 3da 94% ee S56

Br O 2 Br O 2 (+/-) 3ea 3ea 94% ee S57

Ts Ts S58

Ts Ts S59

Ts Ts S60

Bn Ts Ts Bn S61

Ts Ts S62

Ts Ts S63

F O 2 S64

CF 3 O 2 S65