Supporting Information

Σχετικά έγγραφα
A facile and general route to 3-((trifluoromethyl)thio)benzofurans and 3-((trifluoromethyl)thio)benzothiophenes

Supporting Information. DFT Study of Pd(0)-Promoted Intermolecular C H Amination with. O-Benzoyl Hydroxylamines. List of Contents

Structural Expression of Exo-Anomeric Effect

Copper-catalyzed formal O-H insertion reaction of α-diazo-1,3-dicarb- onyl compounds to carboxylic acids with the assistance of isocyanide

Asymmetric H/D exchange reaction of fluorinated aromatic ketones

Electronic Supplementary Information

Bifunctional Water Activation for Catalytic Hydration of Organonitriles

Photostimulated Reduction of Nitriles by SmI 2. Supporting information

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Highly enantioselective cascade synthesis of spiropyrazolones. Supporting Information. NMR spectra and HPLC traces

Supporting Information. Experimental section

Supporting Information

Supporting Information. Experimental section

Supporting Information

Copper-Catalyzed Oxidative Dehydrogenative N-N Bond. Formation for the Synthesis of N,N -Diarylindazol-3-ones

Ethyl Nitroacetate in Aza-Henry Addition on Trifluoromethyl Aldimines: A Solvent-Free Procedure To Obtain Chiral Trifluoromethyl α,β-diamino Esters

Supporting Information. Asymmetric Binary-acid Catalysis with Chiral. Phosphoric Acid and MgF 2 : Catalytic

Electronic Supplementary Information

Supporting Information

Electronic Supplementary Material (ESI) for Chemical Communications This journal is The Royal Society of Chemistry 2013

Supporting Information

Direct Palladium-Catalyzed Arylations of Aryl Bromides. with 2/9-Substituted Pyrimido[5,4-b]indolizines

Direct Transformation of Ethylarenes into Primary Aromatic Amides with N-Bromosuccinimide and I 2 -aq NH 3

Striking Difference between Succinimidomethyl and Phthalimidomethyl Radicals in Conjugate Addition to Alkylidenemalonate Initiated by Dimethylzinc

Vilsmeier Haack reagent-promoted formyloxylation of α-chloro-narylacetamides

Electronic Supplementary Information (ESI) for

Supporting Information for

Supporting Information

Eco-friendly synthesis of diverse and valuable 2-pyridones by catalyst- and solvent-free thermal multicomponent domino reaction

Supporting Information. A single probe to sense Al(III) colorimetrically and. Cd(II) by turn-on fluorescence in physiological

Alkyl-functionalization of 3,5-bis(2-pyridyl)-1,2,4,6- thiatriazine

Supporting Information. Identification of Absolute Helical Structures of Aromatic Multi-layered Oligo(m-phenylurea)s in Solution.

Supporting Information for Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinylic carboxylic acids via a radical process

Aminofluorination of Fluorinated Alkenes

Diels-Alder reaction of acenes with singlet and triplet oxygen - theoretical study of two-state reactivity

Rhodium-Catalyzed Oxidative Decarbonylative Heck-type Coupling of Aromatic Aldehydes with Terminal Alkenes

Supporting information

Supporting Information

Kishore Natte, Jianbin Chen, Helfried Neumann, Matthias Beller, and Xiao-Feng Wu*

The Free Internet Journal for Organic Chemistry

Supporting information

Mild Aliphatic and Benzylic hydrocarbon C H Bond Chlorination Using Trichloroisocyanuric Acid (TCCA)

Lewis Acid Catalyzed Propargylation of Arenes with O-Propargyl Trichloroacetimidate: Synthesis of 1,3-Diarylpropynes

Nesting Complexation of C 60 with Large, Rigid D 2 Symmetrical Macrocycles

Supporting Information One-Pot Approach to Chiral Chromenes via Enantioselective Organocatalytic Domino Oxa-Michael-Aldol Reaction

Supporting Information

Rhodium-Catalyzed Direct Bis-cyanation of. Arylimidazo[1,2-α]pyridine via Double C-H Activation

Supporting Information for

SUPPORTING INFORMATION. Visible Light Excitation of a Molecular Motor with an Extended Aromatic Core

Push-Pull Type Porphyrin Based Sensitizers: The Effect of Donor Structure on the Light- Harvesting Ability and Photovoltaic Performance

Supporting Information

A Selective, Sensitive, Colorimetric and Fluorescence Probe. for Relay Recognition of Fluoride and Cu (II) ions with

Electronic Supplementary Information

First DMAP-mediated direct conversion of Morita Baylis. Hillman alcohols into γ-ketoallylphosphonates: Synthesis of

Efficient and Simple Zinc mediated Synthesis of 3 Amidoindoles

Free Radical Initiated Coupling Reaction of Alcohols and. Alkynes: not C-O but C-C Bond Formation. Context. General information 2. Typical procedure 2

Intermolecular Aminocarbonylation of Alkenes using Cycloadditions of Imino-Isocyanates. Supporting Information

Copper-mediated radical cross-coupling reaction of 2,2-dichloro-1,1,1-trifluoroethane (HCFC-123) with phenols or thiophenols. Support Information

Metal-free Oxidative Coupling of Amines with Sodium Sulfinates: A Mild Access to Sulfonamides

Supporting Information

Site-Selective Suzuki-Miyaura Cross-Coupling Reactions of 2,3,4,5-Tetrabromofuran

Facile construction of the functionalized 4H-chromene via tandem. benzylation and cyclization. Jinmin Fan and Zhiyong Wang*

Synthesis, characterization and luminescence studies of

Supporting Information For: Rhodium-Catalyzed Hydrofunctionalization: Enantioselective Coupling of Indolines and 1,3-Dienes

Tributylphosphine-Catalyzed Cycloaddition of Aziridines with Carbon Disulfide and Isothiocyanate

Hiyama Cross-Coupling of Chloro-, Fluoroand Methoxy- pyridyl trimethylsilanes : Room-temperature Novel Access to Functional Bi(het)aryl

Supporting Information

Divergent synthesis of various iminocyclitols from D-ribose

Syntheses and Characterizations of Molecular Hexagons and Rhomboids and Subsequent Encapsulation of Keggin-Type Polyoxometalates by Molecular Hexagons

multicomponent synthesis of 5-amino-4-

Regioselectivity in the Stille coupling reactions of 3,5- dibromo-2-pyrone.

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006

Enantioselective Organocatalytic Michael Addition of Isorhodanines. to α, β-unsaturated Aldehydes

Regioselective and Stereospecific Cu-Catalyzed Deoxygenation of Epoxides to Alkenes

Iodine-catalyzed synthesis of sulfur-bridged enaminones and chromones via double C(sp 2 )-H thiolation

Supplementary Figures

Reaction of Lithium Diethylamide with an Alkyl Bromide and Alkyl Benzenesulfonate: Origins of Alkylation, Elimination, and Sulfonation.

Naphthotetrathiophene Based Helicene-like Molecules: Synthesis and Photophysical Properties

Supporting Information

Synthesis and spectroscopic properties of chial binaphtyl-linked subphthalocyanines

Mandelamide-Zinc Catalyzed Alkyne Addition to Heteroaromatic Aldehydes

Room Temperature Highly Diastereoselective Zn-Mediated. Allylation of Chiral N-tert-Butanesulfinyl Imines: Remarkable Reaction Condition Controlled

Ferric(III) Chloride Catalyzed Halogenation Reaction of Alcohols and Carboxylic Acids using - Dichlorodiphenylmethane

Supporting Information

Electronic Supplementary Information (ESI)

Oxyhalogenation of thiols and disulfides into sulfonyl chlorides/ bromides in water using oxone-kx(x= Cl or Br)

Supporting Information. Fluorinated Thiophene-Based Synthons: Polymerization of 1,4-Dialkoxybenzene

and Selective Allylic Reduction of Allylic Alcohols and Their Derivatives with Benzyl Alcohol

Supporting Information

Supporting Information

Figure S12. Kinetic plots for the C(2)-H/D exchange reaction of 2 CB[7] as a function

Electronic Supplementary Information

Supporting Information. Synthesis and biological evaluation of 2,3-Bis(het)aryl-4-azaindoles Derivatives as protein kinases inhibitors

Supplementary Figure S1. Single X-ray structure 3a at probability ellipsoids of 20%.

Fluorinative Ring-opening of Cyclopropanes by Hypervalent Iodine Reagents. An Efficient Method for 1,3- Oxyfluorination and 1,3-Difluorination

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

ESI for. A simple and efficient protocol for the palladium-catalyzed. ligand-free Suzuki reaction at room temperature in aqueous DMF.

The N,S-Bidentate Ligand Assisted Pd-Catalyzed C(sp 2 )-H. Carbonylation using Langlois Reagent as CO Source. Supporting Information.

Disulfide-based metal free sulfanylation of ketones

First Total Synthesis of Antimitotic Compound, (+)-Phomopsidin

Transcript:

Supplementary Material (ESI) for Green Chemistry This journal is The Royal Society of Chemistry 10 Organic dye photocatalyzed α-oxyamination through irradiation with visible light Hongjun Liu, Wei Feng, Choon Wee Kee, Yujun Zhao, Dasheng Leow, Yuanhang Pan, Choon-Hong Tan* Department of Chemistry, 3 Science Drive 3, National University of Singapore, Singapore 117543 E-mail: chmtanch@nus.edu.sg Supporting Information 1. General Information S2 2. Representative procedure for organic dye photocatalyzed α-oxyamination through irradiation with visible light S4 3. Procedure for organic dye photocatalyzed α-oxyamination through irradiation with visible light under inert condition S9 4. Procedure for organic dye photocatalyzed α-oxyamination through irradiation with sunlight S9 5. NMR Spectra S11 6. Computational Study S30 S1

General Information General procedures and methods Experiments involving moisture and/or air sensitive components were performed under a positive pressure of nitrogen in oven-dried glassware equipped with a rubber septum inlet. Air sensitive reagents were weighed in a glovebox. Dried solvents and liquid reagents were transferred by oven-dried syringes or hypodermic syringe cooled to ambient temperature in a desiccator. Reactions mixtures were stirred in 50 ml round bottle flasks or clear and dry vials with Teflon-coated magnetic stirring bars under an 11W house hold fluorescent bulb unless otherwise stated. Moisture in non-volatile reagents/compounds was removed in high vacuo by means of an oil pump and subsequent purging with nitrogen. Solvents were removed in vacuo under ~30 mmhg and heated with a water bath at 33 C using Heidolph or Büchi rotary evaporator with Eyela A-3S aspirator. The condenser was cooled with running water at 0 C. All experiments were monitored by analytical thin layer chromatography (TLC). TLC was performed on precoated plates, Merck 60 F 254. After elution, plate was visualized under UV illumination at 254 nm for UV active material. Further visualization was achieved by staining KMnO 4, ceric molybdate, or anisaldehyde solution. For those using the aqueous stains, the TLC plates were heated on a hot plate. Columns for flash chromatography (FC) contained silica gel 60 (0.0 mm - 0.063 mm, Merck). Columns were packed as slurry of silica gel in hexane and equilibrated with the appropriate solvent/solvent mixture prior to use. The analyte was loaded neat or as a concentrated solution using the appropriate solvent system. The elution was assisted by applying pressure of about 2 atm with an air pump. Instrumentations Proton nuclear magnetic resonance ( 1 H NMR), carbon NMR ( 13 C NMR), phosphorous NMR ( 31 P NMR), and fluorine NMR ( 19 F NMR) spectra were recorded in CDCl 3 otherwise stated. 1 H (300 MHz), 13 C (75 MHz) with complete proton decoupling, and 1 H Nuclear Overhauser Effect (NOE) NMRs were performed on a 500 MHz Bruker AMX NMR spectrometer. 19 F NMR (282 MHz) was performed on a 300 MHz Bruker ACF spectrometer. Chemical shifts were reported as δ in units of parts per million downfield from tetramethylsilane (δ 0.00), using the residual solvent signal as an internal standard: CDCl 3 ( 1 H NMR: δ 7.26, singlet; 13 C NMR: δ 77.0, triplet). Multiplicities were given as: s (singlet), d (doublet), t (triplet), q (quartet), quintet, m (multiplets), dd (doublet of doublets), ddd (doublet of doublet of doublets), dt (doublet of triplets), dq (doublet of quartets), dm (doublet of multiplets), and br (broad). Coupling constants (J) were recorded in Hertz (Hz). The number of proton atoms (n) for a given resonance was indicated by nh. The number of fluorine atoms (n) for a given resonance was indicated by nf. The number of carbon atoms (n) for a given S2

resonance was indicated by nc. High resolution Fast Atom Bombardment (FAB) and Electron Impact (EI) mass spectra were performed by Chemical and Molecular Analysis Centre (CMAC) of the National University of Singapore. They were obtained on a Finnigan/MAT 95XL-T and Micromass VG7035 double focusing mass spectrometer of high resolution. High resolution Electrospray Ionization (ESI) mass spectra were obtained on a Shimadzu LCMS-IT-TOF spectrometer including an SPD-MA prominence PDA detector, CBM-A prominence communication bus module, CTO-A prominence column oven, SIL- AC prominence auto sampler, DGU-A3 prominence degasser and LC-AD prominence liquid chromatograph. Shimadzu Formula Predictor Software was used to process the data. MS and HRMS were reported in units of mass of charge ratio (m/z). Mass samples were dissolved in CH 3 CN (HPLC Grade) unless otherwise stated. Infrared spectra (IR) were recorded by dissolving samples in CHCl 3 and spread as a thin film on NaCl cells unless otherwise stated. BIO-RAD Excalibur FTS3000 FTIR spectrometer was used to record the IR spectra. Melting points were determined on a BÜCHI B-5 melting point apparatus. Materials All commercial reagents were purchased from Sigma-Aldrich, Fluka, Alfa Aesar, Merck, TCI, and Acros of the highest purity grade. They were used without further purification unless specified. All solvents used, mainly hexane (Hex) and ethyl acetate (EtOAc), were distilled. Anhydrous DCM was freshly distilled from CaH 2. Anhydrous THF was freshly distilled from Na/benzophenone. MeCN and CHCl 3 were distilled from CaH 2. All compounds synthesized were stored in a C freezer and light-sensitive compounds were protected with aluminium foil. S3

Representative procedure for organic dye photocatalyzed α-oxyamination through irradiation with visible light To a clear vial, 2 TEMPO (7.8mg, 0.05mmol), Rose Bengal (2.5mg, 0.00025mmol), a stirring bar and distilled CH 3 CN (0.5mL) were added in this sequence. After stirring at room temperature for a while, ethyl benzoylacetate 1a (9.0μL, 0.05mmol) were added to the mixture in one portion. Subsequently, the vial was put under an 11W house hold fluorescent bulb. After the reaction was completed in 24 hours, the reaction mixture was concentrated and loaded onto a short silica gel column, followed by flash chromatography. Product 3a (16.8mg) was obtained as colorless oil in 97% yield. Ethyl 3-oxo-3-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (3a) Colorless oil; 97% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.16 8.13 (m, 2H), 7.60 7.55 (m, 1H), 7.49 7.44 (m, 2H), 5.41 (s, 1H), 4.17 (q, J = 7.2 Hz, 2H), 1.59 1. (m, 6H), 1.29 (s, 3H), 1.18 1.14 (m, 6H), 0.99 (s, 3H), 0.83 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 193.6, 168.1, 134.5, 133.5, 129.8, 128.4, 92.8, 61.6, 60.4, 59.9,.1,.0, 33.1, 32.4,.2, 16.9, 13.9 ppm; IR (film): 30, 2977, 1745, 1686, 1524, 1216, 1090, 928 cm -1 ; LRMS (ESI) m/z: 370.0; HRMS (ESI) m/z: C H 29 O 4 N 23 1 Na + 1 ([M+Na] + ), Calc. 370.1989, Found 370.1982. Ethyl 3-(4-methoxyphenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (3b) Colorless oil; 95% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.16 8.13 (m, 2H), 7.60 7.55 (m, 1H), 6.95 6.92 (m, 2H), 5.35 (s, 1H), 4.21 4.11 (m, 2H), 3.87 (s, 3H), 1.48 1.36 (m, 6H), 1.28 (s, 3H), 1.19 1.14 (m, 6H), 1.00 (s, 3H), 0.84 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 192.1, 168.5, 163.9, 132.3, 127.5, 113.7, 93.1, 61.6, 60.4, 55.4,.1,.0, 39.1, 33.1, 32.5,.2, 17.0, 14.0 ppm; IR (film): 30, 2977, 1746, 1601, 1514, 1423, 1213, 1046, 929 cm -1 ; LRMS (ESI) m/z: 0.0; HRMS (ESI) m/z: C 21 H 31 O 5 N 23 1 Na + 1 ([M+Na] + ), Calc. 0.94, Found 0.93. S4

O CO 2 Et O N Ethyl 3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)-3-m-tolylpropanoate (3c) White solid; mp: 64.5 65.9 C; 84% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 7.97 7.93 (m, 2H), 7.37 7.32 (m, 2H), 5.42 (s, 1H), 4.16 (q, J = 7.0 Hz, 2H), 2.41 (s, 1H), 1.61 1. (m, 6H), 1.29 (s, 3H), 1.19 1.14 (m, 6H), 1.01 (s, 3H), 0.83 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 193.8, 168.2, 138.3, 134.4, 130.0, 128.3, 127.2, 92.7, 61.6, 60.4, 60.0,.2,.0, 33.1, 32.5, 21.3,.2, 17.0, 14.0 ppm; IR (film): 30, 2977, 1746, 1603, 1523, 1424, 1212, 1046, 929 cm -1 ; LRMS (ESI) m/z: 384.0; HRMS (ESI) m/z: C 21 H 31 O 4 N 23 1 Na + 1 ([M+Na] + ), Calc. 384.2145, Found 384.2146. O CO 2 Et O N NO 2 Ethyl 3-(3-nitrophenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (3d) White solid; mp: 99.9 101.5 C; 64% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 9.07 (s, 1H), 8.52 (d, J = 7.6 Hz, 1H), 8.44 (d, J = 7.3 Hz, 1H), 8.70 (t, J = 7.9 Hz, 1H), 5. (s, 1H), 4.27 4.16 (m, 2H), 1.50 1. (m, 6H), 1. (s, 3H), 1.26 1.23 (m, 6H), 0.93 (s, 3H), 0.81 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 191.7, 167.5, 148.2, 135.4, 129.6, 127.6, 124.8, 93.2, 62.0, 60.4, 60.0,.0, 39.8, 33.1, 32.3,.1, 16.8, 13.8 ppm; IR (film): 30, 2977, 1744, 1603, 1524, 1424, 1214, 1046, 929 cm -1 + ; LRMS (FAB) m/z: 393.1; HRMS (FAB) m/z: C H 29 O 6 N 2 ([M+1] + ), Calc. 393., Found 393.36. Ethyl 3-(4-chlorophenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (3e) White solid; mp: 67.5 68.8 C; 64% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.11 (d, J = 8.7 Hz, 2H), 7.44 (d, J = 8.6 Hz, 2H), 5.34 (s, 1H), 4.22 4.13 (m, 2H), 1.59 1. (m, 6H), 1.28 (s, 3H), 1. 1.15 (m, 6H), 0.97 (s, 3H), 0.81 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 192.6, 168.1, 1.2, 132.7, 131.3, 128.9, 93.2, 61.8, 60.5, 60.0,.1,.0, 33.2, 32.4,.2, 16.9, 14.0 ppm; IR (film): 30, 2977, 1746, 1602, 1523, 1424, 1214, 1046, 929 S5

cm -1 ; LRMS (ESI) m/z: 3.9; HRMS (ESI) m/z: C H 28 O 4 N 35 1 Cl 23 1 Na + 1 ([M+Na] + ), Calc. 4.1599, Found 4.1602; LRMS (ESI) m/z: 5.9; HRMS (ESI) m/z: C H 28 O 4 N 37 1 Cl 23 1 Na + 1 ([M+Na] + ), Calc. 6.1566, Found 6.1562. Ethyl 3-(4-fluorophenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (3f) Slight yellow solid; mp: 65.8 66.9 C; 67% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.23 8.18 (m, 2H), 7.14 (d, J = 8.6 Hz, 2H), 5.35 (s, 1H), 4.25 4.10 (m, 2H), 1.58 1. (m, 6H), 1.28 (s, 3H), 1. 1.11 (m, 6H), 0.97 (s, 3H), 0.81 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 192.2, 168.2, 166.0 (d, J = 254.3 Hz, 1C), 132.7 (d, J = 9.7 Hz, 2C), 130.8, 115.7 (d, J = 21.5 Hz, 2C), 93.2, 61.8, 60.5, 60.0,.1,.0, 33.1, 32.4,.2, 16.9, 14.0 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 27.79-27.89 (m, 1F) ppm; IR (film): 30, 2977, 1600, 1530, 1426, 1216, 1046, 929 cm -1 ; LRMS (ESI) m/z: 387.9; HRMS (ESI) m/z: C H 28 O 4 N 1 F 23 1 Na + 1 ([M+Na] + ), Calc. 388.1895, Found 388.1910. Ethyl 2-fluoro-3-oxo-3-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (5a) Colorless oil; 88% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.00 (d, J = 8.2 Hz, 2H), 7.57 (t, J = 7.4 Hz, 1H), 7.44 (t, J = 7.6 Hz, 2H), 4.41 4.13 (m, 2H), 1.62 1.30 (m, 9H), 1.25 1.17 (m, 9H), 1.11 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 187.7 (d, J = 37.1 Hz, 1C), 163.2 (d, J = 34.4 Hz, 1C), 133.5, 129.7, 129.6, 128.4, 110.7 (d, J = 235.5 Hz, 1C), 62.4, 62.1, 61.3,.8,.4, 33.2, 33.0, 21.3, 21.2, 16.9, 13.7 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 13.98 (s, 1F) ppm; IR (film): 30, 2977, 1765, 1601, 1523, 1424, 1219, 1046, 929 cm -1 ; LRMS (ESI) m/z: 388.0; HRMS (ESI) m/z: C H 28 O 4 N 1 F 23 1 Na + 1 ([M+Na] + ), Calc. 388.1895, Found 388.1912. S6

Ethyl 2-fluoro-3-(4-methoxyphenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (5b) Slight yellow oil; 88% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.05 (d, J = 8.4 Hz, 2H), 7.44 (d, J = 8.7 Hz, 2H), 4.44 4.18 (m, 2H), 3.91 (s, 3H), 1.68 1.43 (m, 6H), 1. (s, 3H), 1.29 1.23 (m, 9H), 1.17 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 185.3 (d, J = 37.1 Hz, 1C), 163.1, 162.6 (d, J = 34.4 Hz, 1C), 131.5, 131.4, 125.3, 113.0, 110.1 (d, J = 235.5 Hz, 1C), 61.6, 61.3, 60.5, 54.8,.1, 39.7, 32.4, 32.3,.6,.5, 16.2, 13.0 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 13.78 (s, 1F) ppm; IR (film): 30, 2977, 1765, 1602, 1514, 1425, 1216, 1046, 929 cm -1 ; LRMS (ESI) m/z: 417.9; HRMS (ESI) m/z: C 21 H 30 O 5 N 1 F 23 1 Na + 1 ([M+Na] + ), Calc. 418.00, Found 418.21. Ethyl 2-fluoro-3-(3-nitrophenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (5c) Colorless oil; 95% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.91 (s, 1H), 8.45 8.42 (m, 1H), 8.32 (d, J = 7.9 Hz, 1H), 4.45 4.21 (m, 2H), 1.60 1.39 (m, 6H), 1.35 (s, 3H), 1.31 1.27 (m, 6H), 1.19 (s, 3H), 1.08 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 186.1 (d, J = 39.2 Hz, 1C), 162.7 (d, J = 33.3 Hz, 1C), 148.1, 135.1 (d, J = 3.2 Hz, 1C), 134.6, 129.7, 127.6, 124.7 (d, J = 3.8 Hz, 1C), 110.6 (d, J = 236.6 Hz, 1C), 62.4, 61.5,.7,.3, 33.1, 32.9, 21.3, 21.2, 16.8, 13.8 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 14.30 (s, 1F) ppm; IR (film): 30, 2978, 1724, 1536, 1424, 1352, 1215, 1046, 929 cm -1 ; LRMS (ESI) m/z: 432.9; HRMS (ESI) m/z: C H 27 O 6 N 2 F 23 1 Na + 1 ([M+Na] + ), Calc. 433.1745, Found 433.1758. Ethyl 3-(4-chlorophenyl)-2-fluoro-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (5d) Colorless oil; 91% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 7.96 (d, J = 7.6 Hz, 2H), 7.42 (d, J = 8.7 Hz, 2H), 4.41 4.14 (m, 2H), 1.63 1. (m, 6H), 1.35 (s, 3H), 1.25 1. (m, 9H), 1.10 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 186.3, 163.0 (d, J = 34.4 Hz, 1C), 1.1, 131.6, 131.1, 128.8, 110.7 (d, J = 235.5 Hz, 1C), 62.5, 62.2, 61.4,.8,.4, 33.1, 33.0, 21.4, 21.3, 16.9, 13.7 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 14.07 (s, 1F) ppm; IR (film): 3019, 2977, 1766, 1590, 1524, 1423, 1212, 1045, 929 cm -1 ; LRMS (ESI) m/z: 421.9; HRMS (ESI) m/z: C H 27 O 4 N 35 1 Cl 1 F 23 1 Na + 1 ([M+Na] + ), Calc. 422.1505, Found 422.1491; LRMS (ESI) m/z: S7

423.9; HRMS (ESI) m/z: C H 27 O 4 N 1 37 Cl 1 F 1 23 Na 1 + ([M+Na] + ), Calc. 424.1475, Found 424.1483. F O F O N CO 2 Et Ethyl 2-fluoro-3-(4-fluorophenyl)-3-oxo-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propanoate (5e) Colorless oil; 90% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.05 (dd, J = 5.5, 7.9 Hz, 2H), 7.12 (t, J = 8.8 Hz, 2H), 4.41 4.14 (m, 2H), 1.62 1. (m, 6H), 1.35 (s, 3H), 1.24 1.19 (m, 9H), 1.10 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 184.7 (d, J = 38.2 Hz, 1C), 165.9 (d, J = 254.9 Hz, 1C), 163.1 (d, J = 34.4 Hz, 1C), 132.5 (dd, J = 3.8, 9.1 Hz, 2C), 129.7, 115.7 (d, J = 21.5 Hz, 2C), 110.7 (d, J = 235.5 Hz, 1C), 62.5, 62.2, 61.4,.8,.4, 33.1, 33.0, 21.4, 21.3, 16.9, 13.7 ppm; 19 F NMR (282 MHz, CDCl 3 ): δ 13.92 (s, 1F), 27.79-27.89 (m, 1F) ppm; IR (film): 30, 2977, 1765, 1601, 1523, 1424, 1214, 1046, 929 cm -1 ; LRMS (ESI) m/z: 5.9; HRMS (ESI) m/z: C H 27 O 4 N 1 F 23 2 Na + 1 ([M+Na] + ), Calc. 6.1800, Found 6.1809. 1,3-Bis(4-methoxyphenyl)-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)propane-1,3-dione (7) Colorless oil; 67% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.19 (d, J = 8.8 Hz, 4H), 6.91 (d, J = 8.8 Hz, 4H), 6.18 (s, 1H), 3.85 (s, 6H), 1.60 1.26 (m, 6H), 1.14 (s, 6H), 0.95 (s, 6H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 193.6, 163.9, 132.7, 127.9, 113.6, 99.0, 60.1, 55.4,.1, 32.9,.3, 17.0 ppm; IR (film): 30, 2977, 1661, 1600, 1513, 1424, 1219, 1046, 929 cm -1 ; LRMS (ESI) m/z: 462.0; HRMS (ESI) m/z: C 26 H 33 O 5 N 23 1 Na + 1 ([M+Na] + ), Calc. 462.2251, Found 462.2270. O NO 2 O N 2-Nitro-1-phenyl-2-(2,2,6,6-tetramethylpiperidin-1-yloxy)ethanone (9) Slight yellow oil; 72% yield; 1 H NMR (300 MHz, CDCl 3 ): δ 8.16 (d, J = 7.9 Hz, 2H), 7.65 (t, J = 7.3 Hz, 1H), 7.51 (t, J = 7.6 Hz, 2H), 6.52 S8

(s, 1H), 1.67 1.48 (m, 6H), 1.33 (s, 3H), 1.09 (s, 6H), 0.90 (s, 3H) ppm; 13 C NMR (75 MHz, CDCl 3 ): δ 187.1, 134.7, 132.4, 130.1, 128.9, 115.1,.2, 39.8, 33.0, 32.2, 27.5,.4, 16.8 ppm; IR (film): 30, 2977, 1661, 1600, 1513, 1424, 1219, 1046, 929 cm -1 + ; LRMS (FAB) m/z: 321.1; HRMS (FAB) m/z: C 17 H 25 O 4 N 2 ([M+1] + ), Calc. 321.1809, Found 321.1817. Procedure for organic dye photocatalyzed α-oxyamination through irradiation with visible light under inert condition To a clear and dry vial, 2 TEMPO (7.8mg, 0.05mmol), Rose Bengal (2.5mg, 0.00025mmol), a stirring bar and anhydrous and degassed CH 3 CN (0.5mL) were added in this sequence in an Innovative Technology glove box (O 2 <0.5ppm and H 2 O<0.2ppm). After stirring at room temperature for a while, ethyl benzoylacetate 1a (9.0μL, 0.05mmol) were added to the mixture in one portion. Subsequently, the vial was put under an 11W house hold fluorescent bulb. After the reaction was completed in 24 hours, the sample was wrapped in aluminium foil and removed from the glovebox and TLC showed full conversion. Procedure for organic dye photocatalyzed α-oxyamination through irradiation with sunlight O CO 2 Et Rose Bengal (5 mol%) + N Solvent (0.1M), rt O Sunlight, 11h 1a 2 TEMPO 3a O O N CO 2 Et To a clear r.b.f., 2 TEMPO (78mg, 0.5mmol), Rose Bengal (25mg, 0.0025mmol), a stirring bar and distilled CH 3 CN (0.5mL) were added in this sequence. After stirring at room temperature for a while, ethyl benzoylacetate 1a (90μL, 0.5mmol) were added to the mixture in one portion. Subsequently, the r.b.f. was put under ambient sunlight on the roof of our laboratory building. After the reaction was completed in 11 hours (12am 5pm March 5 th, 10 and 10am 5pm March 5 th, 10), the reaction mixture was concentrated and loaded onto a short silica gel column, followed by flash chromatography. Product 3a (148mg) was obtained as colorless oil in 85% yield. S9

S10

S11 NMR Spectra O CO 2 Et O N 1.9744 1.0356 2.0224 1.0000 2.0467 6.3766 3.3043 6.1048 3.1123 3.0009 Integral 8.1574 8.1333 8.1289 7.5980 7.5723 7.5487 7.4885 7.4616 7.4370 7.2600 5.4105 4.41 4.1805 4.1570 4.1334 1.5651 1.4829 1.02 1.2884 1.2534 1.1805 1.1586 1.1350 0.9904 0.8277 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 aglhj2 2.4 lhj6121-1 HNMR 2.0467 4.41 4.1805 4.1570 4.1334 4. 1.9744 8.1574 8.1333 8.1289 1.0356 7.5980 7.5723 7.5487 7.55 7.60 2.0224 7.4885 7.4616 7.4370 7.44 7.48 193.6226 168.1307 134.46 133.5185 129.7511 128.3983 92.86 77.4218 77.0000 76.5782 61.5812 60.30 59.9448.1331 39.9950 33.1001 32.4383.1615 16.9177 13.8921 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 210 13C Standard AC300 aglhj2 2.3 lhj6121-2

S12 1.9660 2.0650 1.0000 2.0505 3.1483 6.3092 2.9733 6.2917 3.0246 2.9567 Integral 8.1601 8.1530 8.1366 8.1300 7.2600 6.9521 6.9455 6.9286 6.92 5.3507 4.63 4.1948 4.1827 4.1712 4.1586 4.1471 4.1351 4.1236 4.1115 3.8721 1.5936 1.4774 1.4106 1.07 1.3870 1.3629 1.2829 1.1915 1.1679 1.1443 1.0003 0.8381 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 aglhj2 2.1 lhj6121a 192.1477 168.5016 163.8770 132.3010 127.4757 113.6881 93.1178 77.4230 77.0000 76.5770 61.5633 60.3875 59.9358 55.4259.1470 39.9893 39.0643 33.1062 32.4537.22 16.97 13.9986 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 dpx300 1H aglhj 1.2 lhj6121a CNMR

O CO 2 Et O N dpx300 1H aglhj 1.3 lhj6121b HNMR Integral 1.97 2.0722 0.9563 2.0000 2.8572 6.3651 3.3257 6.0424 3.19 2.9760 2.0000 4.1998 4.1764 4.1521 4.1287 7.9739 7.9505 7.9311 7.3681 7.3438 7.3184 7.2600 5.4241 4.1998 4.1764 4.1521 4.1287 2.68 1.61 1.4815 1.07 1.2857 1.1854 1.16 1.1377 1.0101 0.8338 4. 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 dpx300 1H aglhj 1.4 lhj6121b CNMR 60.4161 60.0218.1613.0179 193.8183 168.1718 138.2663 134.4376 130.0282 128.3074 127.1818 92.6805 77.4230 77.0000 76.5770 61.5992 60.4161 60.0218.1613.0179 33.1421 32.4968 21.35.1861 16.97 13.9555 60.0 0 190 180 170 160 150 1 130 1 110 100 90 80 70 60 50 30 10 0-10 - S13

O CO 2 Et O N NO 2 DPX300 ag31lhj 1.1 lhj6127a HNMR Integral 0.9843 1.0154 1.0198 1.0280 1.0000 2.0150 6.4182 3.2583 6.1361 3.2374 2.9831 9.0706 8.5369 8.5115 8.4512 8.4268 7.7217 7.6954 7.6691 7.2600 5.3968 4.2699 4.2583 4.2329 4.86 4.1842 4.1599 1.5000 1.4153 1.3958 1.2974 1.2624 1.2380 1.2146 1.1913 1.1552 1.1289 0.9341 0.8056 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 DPX300 ag31lhj 1.2 lhj6127a CNMR 191.6673 167.5480 148.2396 135.3984 129.5621 127.6263 124.8157 93.1823 77.4230 77.0000 76.5770 61.9648 60.4377 59.9931 39.9606 39.7527 38.9281 33.0919 32.3104.0786 16.7518 13.8337 0 190 180 170 160 150 1 130 1 110 100 90 80 70 60 50 30 10 0-10 - S14

S15 2.0000 2.0124 0.9951 1.9935 6.0361 3.0034 6.0355 3.0957 3.0388 Integral 8.1234 8.0944 7.4550 7.4265 7.2600 5.3414 4.2156 4.35 4.1915 4.1800 4.1679 4.1559 4.1438 4.1323 1.5859 1.4785 1.3985 1.2764 1.1958 1.1723 1.1487 0.9685 0.8052 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 AC300 oc17lhj2 2.1 lhj6146a HNMR 192.5564 168.0929 1.22 132.7025 131.3331 128.8667 93.1752 77.4230 77.0000 76.5770 61.8071 60.5094 59.9860.1470 39.9606 33.1779 32.4251.2148 16.9382 13.9842-15 -5 5 15 25 35 45 55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 DPX300 oc17lhj1 1.2 lhj6146a CNMR

S16 1.9693 1.9870 2.0000 6.0965 3.3669 5.9729 2.9815 3.0029 Integral 8.2271 8.86 8.1979 8.1794 7.2600 7.1646 7.1363 7.1071 5.3452 4.2534 4.2300 4.2174 4.57 4.19 4.1823 4.1706 4.1589 4.1463 4.1355 4.1229 4.0995 1.5838 1.4805 1.3977 1.2789 1.1961 1.1728 1.1494 1.1104 0.9692 0.8114 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 DPX300 oc28lhj2 2.3 lhj6149a HNMR 1.9693 8.2271 8.86 8.1979 8.1794 8.25 1.9870 7.1646 7.1363 7.1071 7.10

S17 192.1692 168.04 167.71 164.3287 132.7814 132.6523 130.7882 115.8175 115.5308 93.2397 61.7569 60.4735 59.9788.1470 39.9749 33.1421 32.4322.2148 16.9382 13.9771 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 DPX300 oc30lhj 1.2 lhj6149a CNMR -27.7938-27.81-27.8230-27.8339-27.8449-27.8631-27.8741-27.8924-130 -1-110 -100-90 -80-70 -60-50 - -30 - -10 0 10 30 50 60 70 80 90 F19(no decoupled) oc28lhj 1.2 lhj6149a FNMR -27.7938-27.81-27.8230-27.8339-27.8449-27.8631-27.8741-27.8924-28.0-27.8-27.6

S18 1.97 1.0000 1.9980 2.0192 9.0589 9.0827 3.0059 Integral 8.0168 7.9895 7.5911 7.5658 7.5415 7.4655 7.4392 7.4149 7.2600 4.53 4.38 4.3703 4.3586 4.3459 4.3342 4.3225 4.2982 4.2359 4.2115 4.1998 4.1881 4.1764 4.1648 4.1521 4.1287 1.6344 1.6227 1.5916 1.5731 1.5623 1.5536 1.5419 1.5322 1.4893 1.4416 1.85 1.3968 1.3637 1.3374 1.3257 1.2955 1.2877 1.2468 1.2341 1.2224 1.1991 1.1747 1.1065 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 dpx300 se23lhj 1.1 lhj6133a HNMR 9.0589 9.0827 3.0059 Integral 1.6227 1.5916 1.5731 1.5623 1.5536 1.5419 1.5322 1.4893 1.4416 1.85 1.3968 1.3637 1.3374 1.3257 1.2955 1.2877 1.2468 1.2341 1.2224 1.1991 1.1747 1.1065 1. 1.30 1. 1.50 1.60

S19 187.9103 187.4156 163.4110 162.9521 133.48 129.6697 129.6267 128.4150 112.2470 109.1066 77.4230 77.0000 76.5770 62.4380 62.0724 61.3267.8281.4481 33.1636 33.0488 21.35 21.2186 16.8952 13.6903 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 dpx300 se23lhj 1.2 lhj6133a CNMR 21.35 21.2186 21 22 33.1636 33.0488 33.0 34.0 163.4110 162.9521 164 187.9103 187.4156 187.5.8281.4481 41-13.9818-130 -1-110 -100-90 -80-70 -60-50 - -30 - -10 0 10 30 50 60 70 80 90 F19(no decoupled) se23lhj2 2.3 lhj6133a FNMR

S 1.9788 2.0000 2.0823 2.9729 5.9749 3.3354 9.1921 3.1313 Integral 8.0686 8.07 7.2600 6.9685 6.9395 4.42 4.4161 4.3925 4.3805 4.3569 4.3334 4.2819 4.2583 4.2342 4.2222 4.2112 4.1986 4.1750 3.9072 1.6779 1.6358 1.5908 1.5815 1.5344 1.5273 1.4895 1.4435 1.4292 1.3963 1.2928 1.2890 1.2566 1.2331 1.1712 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 1H normal range AC300 se23lhj2 2.1 lhj6133b HNMR 2.0823 4.42 4.4161 4.3925 4.3805 4.3569 4.3334 4.2819 4.2583 4.2342 4.2222 4.2112 4.1986 4.1750 4. 4.30 4. 5.9749 3.3354 9.1921 3.1313 1.6779 1.6358 1.5908 1.5815 1.5344 1.5273 1.4895 1.4435 1.4292 1.3963 1.2928 1.2890 1.2566 1.2331 1.1712 1.2 1.3 1.4 1.5 1.6 1.7

S21 185.5514 185.0567 163.0524 162.8517 162.3928 131.4478 131.47 125.2674 112.9567 111.6303 108.4899 61.6422 61.2550 60.4663 54.7807.0897 39.7025 32.4323 32.2889.5877.5160 16.1567 13.0092 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 dpx300 se23lhj 1.3 lhj6133b CNMR 185.5514 185.0567 163.0524 162.8517 162.3928 131.4478 131.47 61.6422 61.2550 60.4663.0897 39.7025 32.4323 32.2889 32.5877.5160 21-13.7810-130 -1-110 -100-90 -80-70 -60-50 - -30 - -10 0 10 30 50 60 70 80 90 F19(no decoupled) se23lhj2 2.2 lhj6133b FNMR

S22 0.9064 0.9669 0.9487 1.0000 2.0503 6.2792 3.2168 6.2886 3.2482 2.9614 Integral 8.9079 8.4527 8.4488 8.4456 8.4253 8.4214 8.4182 8.3365 8.3102 7.7010 7.6747 7.6479 7.2600 4.4462 4.4227 4.4101 4.3986 4.3865 4.3750 4.3624 4.3389 4.3180 4.2945 4.2824 4.2709 4.2583 4.2468 4.2348 4.2112 1.6358 1.6248 1.6149 1.6045 1.5930 1.5810 1.5711 1.5552 1.5339 1.4993 1.4895 1.4517 1.4100 1.3887 1.3531 1.3114 1.2879 1.2692 1.1860 1.0802 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 1H normal range AC300 se22lhj 3.1 lhj6133c HNMR 6.2792 3.2168 6.2886 3.2482 2.9614 1.6045 1.5930 1.5810 1.5711 1.5552 1.5339 1.4993 1.4895 1.4517 1.4100 1.3887 1.3531 1.3114 1.2879 1.2692 1.1860 1.0802 1.10 1. 1.30 1. 1.50 1.60

S23 186.31 185.8168 162.7657 162.3212 148.1249 135.0829 135.0399 134.6169 129.6554 127.6478 124.7655 124.7153 112.1466 108.9919 77.4230 77.0000 76.5770 62.4380 61.4988.7134.2976 33.0775 32.9413 21.3118 21.2258 16.7661 13.76 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 DPX se22lhj 2.2 lhj6133c CNMR 186.31 185.8168 186 162.7657 162.3212 135.0829 135.0399 134.6169 135.0 124.7655 124.7153 124 33.0775 32.9413 33 34 21.3118 21.2258-14.2958-130 -1-110 -100-90 -80-70 -60-50 - -30 - -10 0 10 30 50 60 70 80 90 F19(no decoupled) se22lhj 1.2 lhj6133c F

S24 2.0000 2.0017 1.0157 1.0256 6.0005 3.0606 9.0559 3.0379 Integral 7.9689 7.9437 7.4370 7.79 7.2600 4.51 4.3816 4.3690 4.3575 4.3454 4.3339 4.3213 4.2978 4.2490 4.2249 4.2129 4.13 4.1893 4.1778 4.1652 4.1416 1.6314 1.6188 1.5974 1.5886 1.5689 1.5536 1.5377 1.5262 1.4922 1.4824 1.4396 1.4232 1.3969 1.3470 1.3175 1.2983 1.2884 1.2457 1.2386 1.2227 1.1986 1.0961 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 5.6 6.0 6.4 6.8 7.2 7.6 8.0 8.4 8.8 9.2 9.6 AC300 oc17lhj2 2.2 lhj6146b HNMR 1.0157 1.0256 4.51 4.3816 4.3690 4.3575 4.3454 4.3339 4.3213 4.2978 4.2490 4.2249 4.2129 4.13 4.1893 4.1778 4.1652 4.1416 4.15 4. 4.25 4.30 4.35 6.0005 3.0606 9.0559 3.0379 1.3470 1.3175 1.2983 1.2884 1.2457 1.2386 1.2227 1.1986 1.0961 1.10 1. 1.30

DPX300 oc17lhj1 1.4 lhj6146b CNMR 186.3258 163.31 162.7442 1.1233 131.6486 131.0750 128.8236 112.2326 109.0922 77.4230 77.0000 76.5770 62.4596 62.2158 61.3769.8066.4266 33.1349 33.0273 21.3548 21.2544 16.8665 13.7476 195 185 175 165 155 145 135 125 115 105 95 85 75 65 55 45 35 25 15 5-5 -15 F19(no decoupled) AC300 oc17lhj 3.1 lhj6146b FNMR -14.0658 90 80 70 60 50 30 10 0-10 - -30 - -50-60 -70-80 -90-100 -110-1 -130-1 S25

S26 O CO 2 Et O N F F 1.9759 2.0041 1.0000 0.9984 5.9593 3.1057 9.01 2.9956 Integral 8.0762 8.0577 8.0499 8.0314 7.2600 7.1480 7.1188 7.0905 4.92 4.3858 4.3732 4.3615 4.3498 4.3381 4.3255 4.3021 4.2466 4.2232 4.2105 4.1988 4.1872 4.1755 4.1638 4.1394 1.6743 1.6627 1.6325 1.6198 1.5896 1.5701 1.5536 1.5390 1.5273 1.4932 1.4835 1.46 1.3987 1.3490 1.29 1.2273 1.2185 1.1942 1.1026 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 DPX300 oc28lhj2 2.1 lhj6149b HNMR 1.0000 0.9984 4.92 4.3858 4.3732 4.3615 4.3498 4.3381 4.3255 4.3021 4.2466 4.2232 4.2105 4.1988 4.1872 4.1755 4.1638 4.1394 4. 4.30 4. 5.9593 3.1057 9.01 2.9956 1.6198 1.5896 1.5701 1.5536 1.5390 1.5273 1.4932 1.4835 1.46 1.3987 1.3490 1.29 1.2273 1.2185 1.1942 1.1026 1.1 1.2 1.3 1.4 1.5 1.6

S27 186.4262 185.9171 167.6053 164.68 163.2891 162.8302 132.5878 132.5376 132.4659 132.4157 129.6769 115.8319 115.5451 112.2828 109.1424 77.4230 77.0000 76.5770 62.4739 62.1656 61.3626.8210.4338 33.1492 33.0273 21.36 21.2544 16.8808 13.74 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 DPX300 oc28lhj2 2.2 lhj6149b CNMR 186.4262 185.9171 186.0 163.2891 162.8302 132.5878 132.5376 132.4659 132.4157 132.0 133.0 115.8319 115.5451 115 116-13.9197-27.7901-27.81-27.8193-27.8412-27.8595-27.8704-27.8887-130 -1-110 -100-90 -80-70 -60-50 - -30 - -10 0 10 30 50 60 70 80 90 F19(no decoupled) oc28lhj 1.4 lhj6149b FNMR -27.7901-27.81-27.8193-27.8412-27.8595-27.8704-27.8887-28.0-27.6

S28 4.0149 4.0892 1.0000 6.0607 6.2655 5.9961 6.0688 Integral 8.38 8.1745 7.2600 6.9259 6.8967 6.1818 3.8473 1.5964 1.5438 1.5049 1.4338 1.3568 1.3062 1.2624 1.1367 0.9478 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 DPX300 ag28lhj 3.1 lhj6126b HNMR 193.6247 163.9057 132.6595 127.8701 113.6164 99.0258 77.4302 77.0000 76.5841 60.0792 55.4259.0753 32.9126.2937 17.0099 - -10 0 10 30 50 60 70 80 90 100 110 1 130 1 150 160 170 180 190 0 DPX300 ag28lhj 4.1 lhj6126b CNMR

O NO 2 O N DPX300 ag31lhj 1.3 lhj6127b HNMR Integral 1.9994 1.0000 2.0181 0.9689 6.84 3.0716 6.0733 3.0797 8.1755 8.1492 7.6710 7.6467 7.6223 7.5347 7.5093 7.48 7.2600 6.58 1.6734 1.4757 1.3344 1.1913 1.0890 0.9010 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 DPX300 ag31lhj 1.4 lhj6127b CNMR 187.1145 134.7316 132.3942 130.06 128.8667 115.1292 77.4230 77.0000 76.5698.2115 39.8172 32.9628 32.1813 27.5352.4156 16.7805 0 190 180 170 160 150 1 130 1 110 100 90 80 70 60 50 30 10 0-10 - S29

Computational Study Computational Detail: DFT calculations were performed at M06-2X level of theory using Gaussian 09 program (Revision A.02). 1,2 The double-zeta basis set 6-31+G(d,p) was used for all atoms using the keyword: 6-31+g(d,p) in the route section. 3 Geometry optimization was performed in the gas phase using tight convergence criteria without any constraint using the keyword opt=tight in the route section. The integration grid used was specified using int=ultrafine in the route section. The conformations were confirmed to be true minima using vibrational frequency analysis: no imaginary frequency. Electron affinities (Ea) were calculated using the following formula: E a = [E (neutral) + ZPE (neutral) ] [(E (anionic radical) + ZPE (anionic radical) ] Where ZPE = Zero-point Correction Table 1: Electron Affinity and LUMO energy Electron Affinity (ev) LUMO (ev) Compound 1a 0.59 0.23 Compound 2a -0.38-0.93 Compound 1a Calculation Method = RM062X Basis Set = 6-31+G(d,p) Charge = 0 Spin = Singlet E(RM062X) = -460.16695536 a.u. RMS Gradient Norm = 0.00000024 a.u. Imaginary Freq = 0 Dipole Moment = 3.9267 Debye Point Group = C1 Zero-point correction= 0.157457 (Hartree/Particle) S30

X Y Z C 2.25979500-0.33081700 0.017700 O 2.89448100-1.02703600-0.74261500 C 0.87066300-0.77057900 0.46800700 H 0.685480-1.78763900 0.11521500 H 0.807800-0.77596900 1.562940 C -0.227600 0.137210-0.04586300 O -0.06124300 1.18876800-0.617300 O -1.4332-0.380110 0.21825000 C -2.561280 0.39647100-0.22818500 C -3.81005600-0.36489900 0.15685100 H -2.47839800 0.53776300-1.30942500 H -2.51383600 1.38159100 0.244750 H -4.69472300 0.190730-0.164330 H -3.82545100-1.34773900-0.31997100 H -3.860870-0.50239700 1.23956300 C 2.792880 0.96577100 0.571370 H 3.81665800 1.11522900 0.22928600 H 2.155220 1.787010 0.23192900 H 2.761600 0.94948900 1.665850 Compound 1b Calculation Method = UM062X Basis Set = 6-31+G(d,p) Charge = -1 Spin = Doublet E(UM062X) = -460.14899375 a.u. RMS Gradient Norm = 0.00000116 a.u. Imaginary Freq = 0 Dipole Moment = 2.7547 Debye Point Group = C1 S31

Zero-point correction= 0.153372 (Hartree/Particle) X Y Z C 1.57014600 0.30262100-0.30570800 O 1.35448900 1.35318100-0.986260 C 1.08690800-1.06124500-0.78076900 H 1.00393500-1.065460-1.87154800 H 1.70566000-1.887960-0.815000 C -0.248300-1.097580-0.1161 O -0.47788100-1.46459100 1.04380600 O -1.21441500-0.467820-0.87656500 C -2.350500 0.22834700-0.13350900 C -1.60199800 1.43457300 0.57647800 H -2.67723300-0.45159600 0.58499800 H -2.94646800 0.53844100-0.87600000 H -2.39454700 2.07618600 0.98117900 H -0.96577300 1.09985700 1.1020 H -0.97497900 1.99904500-0.176300 C 2.00017600 0.37995500 1.14197600 H 2.55826900 1.309280 1.292190 H 1.140300 0.370630 1.845150 H 2.62904500-0.47457500 1.430030 Compound 2a Calculation Method = RM062X Basis Set = 6-31+G(d,p) Charge = 0 Spin = Singlet E(RM062X) = -651.83824794 a.u. RMS Gradient Norm = 0.00000064 a.u. Imaginary Freq = 0 Dipole Moment = 4.3809 Debye Point Group = C1 S32

Zero-point correction= 0.211879 (Hartree/Particle) X Y Z C 3.581970-0.807950 0.45877700 C 2.85306900 0.36448600 0.298530 C 1.54757000 0.31749300-0.153500 C 0.98048800-0.91436600-0.5435 C 1.714180-2.08830900-0.38667100 C 3.01291500-2.03575300 0.115560 H 4.59291000-0.76845700 0.85142700 H 3.272700 1.33125100 0.5571 H -0.030300-0.97054500-0.939020 H 1.27215900-3.046100-0.65605800 H 3.58250700-2.95150500 0.60 C 0.80664800 1.608750-0.36153600 O 1.353120 2.67663300-0.18802500 C -0.65991700 1.55703300-0.77743800 H -1.01615700 2.589110-0.82369700 H -0.7726 1.109900-1.76519300 C -1.49747800 0.80855600 0.23694900 O -1.348700 0.88777600 1.43128700 O -2.43716800 0.05035600-0.349270 C -3.29426900-0.67954500 0.548590 C -4.27763800-1.45549100-0.29908900 H -3.79113600 0.0380 1.21185600 H -2.67074900-1.333080 1.166030 H -4.95009100-2.02717700 0.34547900 H -4.87719100-0.77891600-0.91267600 H -3.75512600-2.15234900-0.95900000 Compound 2b Calculation Method = UM062X Basis Set = 6-31+G(d,p) S33

Charge = -1 Spin = Doublet E(UM062X) = -651.85649174 a.u. RMS Gradient Norm = 0.000000 a.u. Imaginary Freq = 0 Dipole Moment = 7.3821 Debye Point Group = C1 Zero-point correction= 0.8410 (Hartree/Particle) X Y Z C 3.404100 0.19975700-0.73063900 C 2.446000-0.75765000-0.68085800 C 1.267830-0.57746300 0.115930 C 1.17851100 0.65434900 0.899100 C 2.18926300 1.60002300 0.78135000 C 3.3230 1.0960-0.00074300 H 4.318900 0.019510-1.34825500 H 2.52761800-1.68327300-1.24195300 H 0.29466000 0.87221600 1.43178900 H 2.079260 2.522340 1.350230 H 4.12337500 2.151890-0.04559100 C 0.29636600-1.63128300 0.14579500 O 0.1080-2.700590-0.51848000 C -0.95658300-1.48670500 1.041320 H -1.296600-2.496080 1.27794100 H -0.744590-0.924460 1.95717300 C -2.042800-0.79615700 0.273130 O -2.93444800-1.32191100-0.36050700 O -1.90152500 0.553310 0.31676700 C -2.72602900 1.30155300-0.57016700 C -2.26362500 2.742640-0.48750900 H -3.776790 1.18757000-0.27863000 H -2.61800800 0.89735500-1.58184100 H -2.84509900 3.36903100-1.17118000 H -2.38647000 3.12716100 0.529010 H -1.530600 2.810080-0.75257900 1. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Revision A.2, Gaussian, Inc., Wallingford CT, 09. 2. Y. Zhao, and D. G. Truhlar, Theor. Chem. Acc. 08, 1, 215-41. S34

3. R. Ditchfie, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 1971, 54, 724-728 (b) W. J. Hehre, R. Ditchfie, and J. A. Pople, J. Chem. Phys. 1972, 56, 2257-2261 (c) P. Harihara, and J. A. Pople, Theor. Chim. Acta. 1973, 28, 213-222. S35