Mοντέλα Γένεσης Κοιτασμάτων
|
|
- Τρύφων Μιχαηλίδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Mοντέλα Γένεσης Κοιτασμάτων Ενότητα 4: Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE Μαρία Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος
2 PGΕ σε προσχωματικά κοιτάσματα που συνδέονται με τύπου Αλάσκας και οφιολιθικά συμπλέγματα
3 Προσχωματικές αποθέσεις PGE-PGM Ο ρόλος της χημικής σύστασης και άλλων χαρακτηριστικών στην προέλευσή τους. Εφαρμογή θερμοδυναμικών δεδομένων. Ορυκτολογικά χαρακτηριστικά και η γενετική τους σημασία στην περίπτωση των μεγάλων κρυστάλλων PGM. 3
4 Κατανομή PGE σε προσχωματικές αποθέσεις Εικόνα 1 4
5 Συμπλέγματα βασικών-υπερβασικών τύπου Αλάσκας Χαρακτηρίζονται από συγκεντρική ανάπτυξη Εικόνα 2 Εικόνα 3 5
6 Συνήθη ορυκτά PGM σε προσχωματικές αποθέσεις τύπου Ural-Alaska Εικόνα 4 6
7 Ορυκτά PGM σε προσχωματικές αποθέσεις Εικόνα 5 Εικόνα 7 Εικόνα 6 Εικόνα 8 7
8 Μεγάλος κρύσταλλος ορυκτού PGM Εικόνα 9 8
9 Μεγάλος κρύσταλλος ορυκτού PGM Κράμα Pt-Fe (λευκό) μέσα σε μαγνητοπυρίτη Εικόνα 10 9
10 Μεγάλος κρύσταλλος ορυκτού οσμίου Εικόνα 11 10
11 Μεγάλος κρύσταλλος ορυκτού PGM Κράμα Pt3Fe Pt3Fe Pt4Fe Εγκλείσματα οσμίου λευκό Εικόνα 12 11
12 Πιθανές πηγές των PGM ανάλογα με την σύστασή τους Εικόνα 13 12
13 Αυτοφυές όσμιο μέσα σε κράμα Pt3Fe Inagli Sejnav Koura Pustaya Εικόνες
14 Διακύμανση της σύστασης PGM από διάφορες προσχωματικές αποθέσεις κράμα Pt-Fe. Pt 3 Fe Ir decomposition 100µm 100µm 100µm Pt 3 Fe Ir Ir Ir Pt 3 Fe 50µm RuS 2 Εικόνες
15 Διακύμανση της σύστασης PGM από διάφορες προσχωματικές αποθέσεις (1/2) Εικόνα 22 15
16 Διακύμανση της σύστασης PGM από διάφορες προσχωματικές αποθέσεις (2/2) Εικόνα 23 16
17 Συστάσεις PGM (1/8) Εικόνα 24 Εικόνα 25 17
18 Tetraferroplatinum and tulameenite have the difference of a composition in placers Εικόνα 26 18
19 Prizhimny Εικόνα 27 19
20 Συστάσεις PGM (2/8) Sejnav Kaurchak Pt-Fe Au-Ag PtAs 2 Os Εικόνες
21 Συστάσεις PGM (3/8) PtS PtS PtAs 2 CuIr 2 S 4 PtS Pt-Fe Pt-Fe PtS Pt-Fe CrSp PtS+PtAs 2 Koura Εικόνες
22 Συστάσεις PGM (4/8) PtAs 2 PtS Pt-Fe Os Εικόνες Pt-Fe PtAs 2 PtAs 2 +PtS Pt-Fe PtAs 2 PtS PtAs 2 PtS Pt-Fe PtAs 2 22
23 Συστάσεις PGM (5/8) PtFe Εικόνες Au-Ag PtFe PtFe PtAs 2 Au-Ag 23
24 Συστάσεις PGM (6/8) Pt-Fe PtAs 2 Au-Ag Pt-Fe Pt-Fe Au-Ag Pt-Fe PtS+PtAs 2 Au-Ag Εικόνες
25 Συστάσεις PGM (7/8) Εικόνες
26 Συστάσεις PGM (8/8) A B C D Ir-Pt decomposition structure E F Εικόνες
27 Σύγκριση παραγενέσεων PGM σε διαφορετικές προσχωματικές αποθέσεις Εικόνα 53 27
28 Σύγκριση μεταξύ PGM σε τύπου Αλάσκας και Οφιολιθικά
29 Συστάσεις κραμάτων Os-Ir-Ru Εικόνα 54 29
30 Διαφορές στην χημική σύσταση PGM σε τύπου Ουραλίων-Αλάσκας και οφιολιθικών συμπλεγμάτων Εικόνα 55 30
31 Προέλευση μεγάλων κρυστάλλων
32 Μεγάλος κρύσταλλος ορυκτού PGM (2) Εικόνα 56 32
33 Μεγάλος κρύσταλλος ορυκτού PGM Κράμα Pt-Fe (λευκό) μέσα σε μαγνητοπυρίτη (2) Εικόνα 57 33
34 Μεγάλος κρύσταλλος ορυκτού οσμίου (3) Εικόνα 58 34
35 Μεγάλος κρύσταλλος ορυκτού PGM Κράμα Pt3Fe (4) Pt3Fe Pt4Fe Εγκλείσματα οσμίου λευκό Εικόνα 59 35
36 PGE σε οφιολιθικά συμπλέγματα
37 PGΜ Εικόνα 60 37
38 PGΜ Πίνδος Εικόνα 61 38
39 PGΜ Βέρροια Εικόνα 62 39
40 Χημική σύσταση PGΜ Βέροιας (1/2) Os Ir Ru Pd n.d n.d 1.6 n.d n.d n.d n.d n.d Pt n.d n.d n.d n.d Ni n.d Fe n.d Cr n.d / Sb n.d n.d n.d n.d n.d As n.d n.d n.d n.d S 34.8 n.d n.d n.d Total Πίνακας 1 40
41 Χημική σύσταση PGΜ, Βέροιας (2/2) Wt% laurite Ir-Os-Ru alloys Os n.d 6.19 n.d Ir Ru Pd n.d n.d n.d n.d n.d n.d 2.28 n.d Pt n.d n.d n.d n.d n.d n.d 6.15 n.d Ni n.d n.d n.d n.d n.d 6.54 n.d 1.71 Fe 0.29 n.d n.d n.d Cr 0.81 n.d n.d n.d n.d 1.31 As n.d n.d n.d n.d n.d 1.24 n.d n.d S n.d n.d n.d n.d Total Πίνακας 2 41
42 PGM Βέροιας λωρίτης Οξείδια PGΜ Εικόνα 63 42
43 Παράγοντες που ελέγχουν το μέγεθος των κρυστάλλων
44 Σχηματισμός μεγάλων κρυστάλλων? Υπολογισμός της Ενέργειας ενεργοποίησης χρησιμοποιώντας την εξίσωση Arrhenius (Petrou & Economou-Eliopoulos, 2009)
45 Διάγραμμα ενέργειας αντίδρασης (1/2) Εικόνα 64 45
46 Διάγραμμα ενέργειας αντίδρασης (2/2) Εικόνα 65 46
47 3 ομάδες δεδομένων
48 Μέγεθος PGΜ και θερμοκρασία σχηματισμού Location Rock-type Mineral Description Grain size (mmemperature ( o Othrys, Greece ophiolites laurite inclusion in chromite Vourinos, Greece ophiolites Ru-rich laurite inclusion in chromite Skyros, Greece ophiolites laurite inclusion in chromite Ray-Iz, Polar Urals, Russ ophiolites laurite inclusion in chromite Tropoja, Albania ophiolites laurite inclusion in chromite Kempirsai, Urals, Russia ophiolites laurite inclusion in chromite CED, Egypt ophiolites Os-rich laurite inclusion in chromite Borneo ophiolites laurite placer 900 (n = 13) Russia Alaskan-type Ru-rich laurite usion in isoferroplatinu Nevado, Colombia Alaskan-type laurite inclusion in Pt-Fe Othrys, Greece ophiolites erlichmanite inclusion in chromite Ray-Iz, Polar Urals, Russ ophiolites erlichmanite inclusion in chromite Freetown, Sierra Leone ayered intrusion erlichmanite placer Russia Alaskan-type erlichmanite placer Vourinos, Greece ophiolites irarsite inclusion in chromite Ethiopia ophiolites irarsite placer Vourinos, Greece ophiolites Os-Ir alloy inclusion in chromite Tropoja, Albania ophiolites Os-rich alloys inclusion in chromite Ray-Iz, Polar Urals, Russ ophiolites Os-Ir-Ru alloy inclusion in chromite SED, Egypt ophiolites Os-Ir-Ru alloy inclusion in chromite Bulqiza, Albania ophiolites isoferroplatinum inclusion in chromite Durance river, France Alaskan-type isoferroplatinum placer Fifield, Australia isoferroplatinum placer c.a Russia Alaskan-type isoferroplatinum placer Πίνακας 3 48
49 Πειραματικά δεδομένα 1250 ο C Εικόνα 66 49
50 1 ln n r Υπολογισμός της Ενέργειας Eνεργοποίησης (1/2) ln E RT n A r act '' ln E act n *ln r const. or n *ln r const. RT Προβάλλοντας ln(r) έναντι 1/T προκύπτει μία γραμμική σχέση, με κλίση = Eact/R*n const. Η οποία ισούται με την Ενέργεια Eνεργοποίησης E RT act E RT act 50
51 ln(r) r (μm) Υπολογισμός της Ενέργειας Eνεργοποίησης (2/2) T ( o C) ln(r) = 21705/T - 14,34 R 2 = 0, /T (K 1 ) Εικόνα 67 51
52 Συμπέρασμα: Οι μεγάλοι κρύσταλλοι PGM σε προσχωματικές αποθέσεις είναι μάλλον κλαστικοί παρά αποτέλεσμα σχηματισμού σε συνθήκες περιβάλλοντος 52
53 Τέλος Ενότητας Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE
54 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 54
55 Σημειώματα
56 Σημείωμα Ιστορικού Εκδόσεων Έργου Το παρόν έργο αποτελεί την έκδοση
57 Σημείωμα Αναφοράς Copyright Εθνικόν και Καποδιστριακόν Πανεπιστήμιον Αθηνών, Μαρία Οικονόμου, Καθηγήτρια. «Μοντέλα γένεσης κοιτασμάτων. Κοιτάσματα Στοιχείων της Ομάδας του Λευκοχρύσου ή PGE». Έκδοση: 1.0. Αθήνα Διαθέσιμο από τη δικτυακή διεύθυνση: 57
58 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 58
59 Διατήρηση Σημειωμάτων Οποιαδήποτε αναπαραγωγή ή διασκευή του υλικού θα πρέπει να συμπεριλαμβάνει: το Σημείωμα Αναφοράς το Σημείωμα Αδειοδότησης τη δήλωση Διατήρησης Σημειωμάτων το Σημείωμα Χρήσης Έργων Τρίτων (εφόσον υπάρχει) μαζί με τους συνοδευόμενους υπερσυνδέσμους. 59
60 Σημείωμα Χρήσης Έργων Τρίτων (1/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 1: Κατανομή PGE σε προσχωματικές αποθέσεις. Ελεύθερη διανομή Εικόνα 2,3: Συμπλέγματα βασικών-υπερβασικών τύπου Αλάσκας. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinumgroup element deposits, Short Course, 2005 vol 35, Εικόνα 4: Συνήθη ορυκτά PGM σε προσχωματικές αποθέσεις τύπου Ural-Alaska.Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35,
61 Σημείωμα Χρήσης Έργων Τρίτων (2/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 5-8: Ορυκτά PGM σε προσχωματικές αποθέσεις. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35, Εικόνα 9,56: Μεγάλος κρύσταλλος ορυκτού PGM. Copyright Canadian Institute of Mining, Metallugy and Petroleum, Πηγή: The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can. Inst. Mining Metall Petroleum, spec 2002 vol 54,
62 Σημείωμα Χρήσης Έργων Τρίτων (3/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 10,57: Κράμα Pt-Fe (λευκό) μέσα σε μαγνητοπυρίτη. Copyright Canadian Institute of Mining, Metallugy and Petroleum, Πηγή: The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can. Inst. Mining Metall Petroleum, spec 2002 vol 54, Εικόνα 11,58: Μεγάλος κρύσταλλος ορυκτού οσμίου. Copyright Canadian Institute of Mining, Metallugy and Petroleum, Πηγή: The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can. Inst. Mining Metall Petroleum, spec 2002 vol 54,
63 Σημείωμα Χρήσης Έργων Τρίτων (4/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 12: Κράμα Pt3Fe. Copyright Canadian Institute of Mining, Metallugy and Petroleum, Πηγή: The platinum-group minerals. In: Cabri LJ (ed) The geology, geochemistry, mineralogy and mineral beneficiation of platinum-group elements. Can. Inst. Mining Metall Petroleum, spec 2002 vol 54, Εικόνα 13: Πιθανές πηγές των PGM ανάλογα με την σύστασή τους. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinumgroup element deposits, Short Course, 2005 vol 35,
64 Σημείωμα Χρήσης Έργων Τρίτων (5/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 14-17: Αυτοφυές όσμιο μέσα σε κράμα Pt3Fe. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35, Εικόνες 18-21: κράμα Pt-Fe. Copyright Mineralogical Association of Canada. Πηγή: Platinumgroup element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35,
65 Σημείωμα Χρήσης Έργων Τρίτων (6/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνες 22,23: Τριγωνικά διαγράμματα σύστασης PGM από προσχωματικές αποθέσεις. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35, Εικόνα 24,25: Εικόνες από PGM. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35,
66 Σημείωμα Χρήσης Έργων Τρίτων (7/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 26: Διάγραμμα σύστασης PGM. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35, Εικόνα 53: Διάγραμμα σύγκρισης παραγενέσεων PGM σε διαφορετικές προσχωματικές αποθέσεις. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35,
67 Σημείωμα Χρήσης Έργων Τρίτων (8/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 54: Διαγράμματα συστάσεων κραμάτων Os-Ir-Ru. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural- Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35, Εικόνα 55: Διαφορές στην χημική σύσταση PGM σε τύπου Ουραλίων-Αλάσκας και οφιολιθικών συμπλεγμάτων. Copyright Mineralogical Association of Canada. Πηγή: Platinum-group element placers associated with Ural-Alaska type complexes, by Tolstykh, N. D., Sidorov, E.G., Krivenko, A.P.. In Exploration for Platinum-group element deposits, Short Course, 2005 vol 35,
68 Σημείωμα Χρήσης Έργων Τρίτων (9/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 64,65: Διάγραμμα ενέργειας αντίδρασης. Copyright Elsevier B.V. Πηγή: Platinum group mineral formation: Evidence of an interchange process from the entropy of activation values, by Petrou,A.l. & M. Economou-Eliopoulos, (2009). In Geochimica et Cosmochimica Acta, 73, Εικόνα 66: PGM στους 1250οC. Copyright Mineralogical Association of Canada. Πηγή: High temperature stability of laurite and Ru Os Ir alloy and their role in PGE fractionation in mafic magmas. By Brenan, J.M., Andrews, D.In The Canadian Mineralogist 39 (2001):
69 Σημείωμα Χρήσης Έργων Τρίτων (10/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Εικόνες/Σχήματα/Διαγράμματα/Φωτογραφίες Εικόνα 67: Διάγραμμα υπολογισμού ενέργειας ενεργοποίησης. Copyright Elsevier B.V. Πηγή: Platinum group mineral formation: Evidence of an interchange process from the entropy of activation values, by Petrou,A.l. & M. Economou-Eliopoulos, (2009). In Geochimica et Cosmochimica Acta, 73,
70 Σημείωμα Χρήσης Έργων Τρίτων (11/11) Το Έργο αυτό κάνει χρήση των ακόλουθων έργων: Πίνακες Πίνακας 3: Μέγεθος PGΜ και θερμοκρασία σχηματισμού. Copyright Elsevier B.V. Πηγή: Platinum group mineral formation: Evidence of an interchange process from the entropy of activation values, by Petrou,A.l. & M. Economou-Eliopoulos, (2009). In Geochimica et Cosmochimica Acta, 73,
Τίτλος Μαθήματος. Ενότητα 4: Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE
Τίτλος Μαθήματος Ενότητα 4: Κοιτάσματα των Στοιχείων της ομάδας του λευκοχρύσου ή PGE Μαρία Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος PGE σε οφιολιθικά συμπλέγματα PGE σε οφιολιθικά
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Μοντέλα Γένεσης Κοιτασμάτων
Μοντέλα Γένεσης Κοιτασμάτων Ενότητα 2: Μαρία Οικονόμου Σχολή Θετικών Επιστημών Τμήμα Γεωλογίας και Γεωπεριβάλλοντος Μοντέλα Γένεσης Κοιτασμάτων Κοιτάσματα Μαγματικών θειούχων Κοιτάσματα των Στοιχείων της
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Φιλοσοφία της Ιστορίας και του Πολιτισμού
Φιλοσοφία της Ιστορίας και του Πολιτισμού Ενότητα 1: Εισαγωγή στις έννοιες Ιστορίας και Πολιτισμού Λάζου Άννα Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Aθηνών Τμήμα Φιλοσοφίας Παιδαγωγικής και Ψυχολογίας Φιλοσοφία
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Βάσεις Περιβαλλοντικών Δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Βάσεις Περιβαλλοντικών Δεδομένων Ενότητα 3: Μοντέλα βάσεων δεδομένων Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Διδακτική των εικαστικών τεχνών Ενότητα 3
Διδακτική των εικαστικών τεχνών Ενότητα 3 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 3. Ο ρόλος του εκπαιδευτικού: σχεδιασμός
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 6: Μέθοδοι ς Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά Το έργο
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΗΛΕΚΤΡΟΝΙΚΗ ΙIΙ Ενότητα 6: 1η εργαστηριακή άσκηση και προσομοίωση με το SPICE Χατζόπουλος Αλκιβιάδης Τμήμα Ηλεκτρολόγων Μηχανικών και
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 11 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Παθολογία Σκληρών Οδοντικών Ιστών
Παθολογία Σκληρών Οδοντικών Ιστών Ενότητα 1: Χημικές αλληλεπιδράσεις μεταξύ δοντιών και στοματικού περιβάλλοντος. Απομεταλλικοποίηση-επαναμεταλλικοποίηση Χρήστος Ραχιώτης Σχολή Επιστημών Υγείας Τμήμα Οδοντιατρικής
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Τεχνικό Σχέδιο - CAD
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Τεχνικό Σχέδιο - CAD Ενότητα 7: SketchUp Αντικείμενα Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση
Μεθοδολογία Έρευνας Κοινωνικών Επιστημών Ενότητα 2: ΣΥΓΚΕΝΤΡΩΣΗ ΠΛΗΡΟΦΟΡΙΩΝ ΜΑΡΚΕΤΙΝΓΚ Λοίζου Ευστράτιος Τμήμα Τεχνολόγων Γεωπόνων-Kατεύθυνση Αγροτικής Οικονομίας Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers)
Εισαγωγή στη Μουσική Τεχνολογία Ενότητα: Ελεγκτές MIDI μηνυμάτων (Midi Controllers) Αναστασία Γεωργάκη Τμήμα Μουσικών Σπουδών Περιεχόμενα 5. Ελεγκτές MIDI μηνυμάτων (Midi Controllers)... 3 Σελίδα 2 5.
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Έλεγχος Ποιότητας Φαρμάκων
Έλεγχος Ποιότητας Φαρμάκων Ενότητα 6: Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας Συσκευές Αποσάθρωση Δισκίων (ενός καλαθιού (δεξιά) και δύο καλαθιών (αριστερά) 2 Συσκευή Αποσάθρωσης 4
ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων ΣΥΜΠΕΡΙΦΟΡΑ ΚΑΤΑΝΑΛΩΤΗ Ενότητα 8: ΘΕΩΡΙΑ ΚΑΙ ΜΕΘΟΔΟΙ ΚΑΤΑΤΜΗΣΗΣ ΚΑΤΑΝΑΛΩΤΙΚΗΣ ΣΥΜΠΕΡΙΦΟΡΑΣ Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Τεχνικό Σχέδιο - CAD
Τεχνικό Σχέδιο - CAD Προσθήκη Διαστάσεων & Κειμένου ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Εντολές προσθήκης διαστάσεων & κειμένου Στο βασική (Home)
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Διδακτική των εικαστικών τεχνών Ενότητα 2
Διδακτική των εικαστικών τεχνών Ενότητα 2 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 2. Το παιδικό σχέδιο ως γνωστική διεργασία:
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 1 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5 2.
Μηχανολογικό Σχέδιο Ι
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ Ενότητα # 8: Άτρακτοι και σφήνες Μ. Γρηγοριάδου Μηχανολόγων Μηχανικών Α.Π.Θ. Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Βασιλική Λεβέντη.
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας
Διοίκηση Εξωτερικής Εμπορικής Δραστηριότητας Ενότητα 8: Αξιολόγηση και επιλογή αγορών στόχων από ελληνική εταιρία στον κλάδο παραγωγής και εμπορίας έτοιμου γυναικείου Καθ. Αλεξανδρίδης Αναστάσιος Δρ. Αντωνιάδης
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1)
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους (1) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 4: Στρατηγικοί προσανατολισμοί Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Ψηφιακή Επεξεργασία Εικόνων
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Ψηφιακή Επεξεργασία Εικόνων Ενότητα # 14: Τμηματοποίηση με χρήση τυχαίων πεδίων Markov Καθηγητής Γιώργος Τζιρίτας Τμήμα Επιστήμης Υπολογιστών Τμηματοποίηση εικόνων
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι
Θεατρικές Εφαρμογές και Διδακτική της Φυσικής Ι Ενότητα 2: Παράλληλες θεωρητικές και εργαστηριακές προσεγγίσεις των τεχνικών και της δομής του κουκλοθέατρου, της κινούμενης εικόνας και ενός θέματος από
Εισαγωγή στους Αλγορίθμους Ενότητα 10η Άσκηση Αλγόριθμος Dijkstra
Εισαγωγή στους Αλγορίθμους Ενότητα 1η Άσκηση Αλγόριθμος Dijkra Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upara.gr Άδειες Χρήσης Το παρόν
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
Παιδαγωγική ή Εκπαίδευση ΙΙ
Παιδαγωγική ή Εκπαίδευση ΙΙ Ενότητα 2 Ζαχαρούλα Σμυρναίου Σχολή: Φιλοσοφική Τμήμα: Φιλοσοφίας Παιδαγωγικής Ψυχολογίας Μορφές διδασκαλίας Οι Μορφές διδασκαλίας Αναφέρονται στον τρόπο παρουσίασης του μαθήματος,
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης
Λειτουργία και εφαρμογές της πολιτιστικής διαχείρισης Ενότητα 5: Δρ. Θεοκλής-Πέτρος Ζούνης Σχολή : ΟΠΕ Τμήμα : Ε.Μ.Μ.Ε. Περιεχόμενα ενότητας Τι ορίζουμε ως Μάρκετινγκ ενός Πολιτιστικού Οργανισμού; Τα 4
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ
ΕΛΛΗΝΙΚΗ ΔΗΜΟΚΡΑΤΙΑ ΠΑΝΕΠΙΣΤΗΜΙΟ ΚΡΗΤΗΣ Δομές δεδομένων Άσκηση αυτοαξιολόγησης Παναγιώτα Φατούρου Τμήμα Επιστήμης Υπολογιστών ΗΥ2, Ενότητα : Ασκήσεις και Λύσεις Άσκηση 1 Ενότητα : Υλοποίηση Λεξικών µε
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης
Πρακτική Άσκηση σε σχολεία της δευτεροβάθμιας εκπαίδευσης Ενότητα 1: Κρίσιμα συμβάντα Δέσποινα Πόταρη, Γιώργος Ψυχάρης Σχολή Θετικών επιστημών Τμήμα Μαθηματικό Απομαγνητοφώνηση αποσπάσματος από Β Λυκείου
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Παιδαγωγικά. Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι. Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας
Παιδαγωγικά Ενότητα Β: Γενικοί σκοποί της διδασκαλίας και διδακτικοί στόχοι Ζαχαρούλα Σμυρναίου Σχολή Φιλοσοφίας Τμήμα Παιδαγωγικής και Ψυχολογίας Σκοποί ενότητας Σύγχρονες προσεγγίσεις των γενικών σκοπών
Αερισμός. Ενότητα 1: Αερισμός και αιμάτωση. Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής
Αερισμός Ενότητα 1: Αερισμός και αιμάτωση Κωνσταντίνος Σπυρόπουλος, Καθηγητής Σχολή Επιστημών Υγείας Τμήμα Ιατρικής Ολικός και κυψελιδικός αερισμός Η κύρια λειτουργία του αναπνευστικού συστήματος είναι
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Κατερίνα Πετρουτσοπούλου.
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 4: Διδακτικός μετασχηματισμός βασικών εννοιών πληροφορικής Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Ενότητα Α-Κεφάλαιο 3: Οξείδωση του πυριτίου. Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Σχεδίαση Ολοκληρωμένων Κυκλωμάτων Αγγελική Αραπογιάννη Τμήμα Πληροφορικής και Τηλεπικοινωνιών Η θεωρία ανάπτυξης του οξειδίου (1από4) 2 3 Η θεωρία ανάπτυξης του οξειδίου (2από4) D x k h k 1 C C ox s s
Εκκλησιαστικό Δίκαιο. Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Τμήμα Νομικής Α.Π.Θ.
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 10η: Ιερά Σύνοδος της Ιεραρχίας και Διαρκής Ιερά Σύνοδος Κυριάκος Κυριαζόπουλος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος
Γενική Φυσική Ενότητα: Δυναμική Άκαμπτου Σώματος Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Δυναμικής Άκαμπτου Σώματος... 4 1.1 Ερώτηση 1... 4 1.2 Ερώτηση 2... 4 1.3 Ερώτηση
Εισαγωγή στις Επιστήμες της Αγωγής
Εισαγωγή στις Επιστήμες της Αγωγής Αλεξάνδρα Ανδρούσου - Βασίλης Τσάφος Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Επίπεδα Κοινωνιολογίας της Εκπαίδευσης Αναλύει τη θέση και τη λειτουργία
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Ασκήσεις κυκλωμάτων συνεχούς ρεύματος. Κανόνες Kirchhoff. Γ. Βούλγαρης 2 Ο Νόμος των Ρευμάτων
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 3.2: Υλικότητα Βιβλίου Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική:
Διδακτική Πληροφορικής
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διδακτική Πληροφορικής Ενότητα 6: Διαδικασίες Μάθησης Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 2.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Σοφία Μιχαλοπούλου.
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους
Λογιστική Κόστους Ενότητα 11: Λογισμός Κόστους Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για εκπαιδευτικό
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση
Το Εικονογραφημένο Βιβλίο στην Προσχολική Εκπαίδευση Ενότητα 1.1: Αγγελική Γιαννικοπούλου Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία (ΤΕΑΠΗ) Διδακτική Πρακτική Διδακτική πρακτική: Μαρία Φράγκου.
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική. Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών
Ηλεκτρομαγνητισμός - Οπτική - Σύγχρονη Φυσική Ενότητα: Οπτική Βαρουτάς Δημήτρης Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών ΟΠΤΙΚΗ (Ηλεκτροµαγνητισµός-Οπτική) Γεωµετρική Οπτική (Μάθηµα
Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας
Εννοιες και Παράγοντες της Ψηφιακής Επεξεργασίας Εικόνας Δειγματοληψία Βάθος χρώματος Ψηφιακή φωτογραφική μηχανή CCD Δυναμικό Εύρος Αναπαραγωγή εικόνας Χρωματικά μοντέλα και Χρωματικοί Χώροι Το ορατό φως,
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα
Γραμμική Άλγεβρα και Μαθηματικός Λογισμός για Οικονομικά και Επιχειρησιακά Προβλήματα Ενότητα: Ασκήσεις 10 Ανδριανός Ε. Τσεκρέκος Τμήμα Λογιστικής & Χρηματοοικονομικής Σελίδα 2 1. Σκοποί ενότητας... 5
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Τίτλος Μαθήματος. Ενότητα 1: Γενικά περί λογικού προγραμματισμού
Τίτλος Μαθήματος Ενότητα 1: Παναγιώτης Σταματόπουλος Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Περιγραφή ενότητας Εισαγωγική ενότητα για τον λογικό προγραμματισμό. 2 Γενικά περί λογικού
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 6: ΜΕΓΕΘΟΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
P (B) P (B A) = P (AB) = P (B). P (A)
Πιθανότητες και Στατιστική Ενότητα 2: Δεσμευμένη πιθανότητα και στοχαστική ανεξαρτησία Σχολή Θετικών Επιστημών Τμήμα Πληροφορικής και Τηλεπικοινωνιών Αθήνα 2015 Διαισθητική έννοια ανεξαρτησίας Διαισθητική
Έννοιες Φυσικών Επιστημών Ι
Έννοιες Φυσικών Επιστημών Ι Ενότητα 3: Εναλλακτικές όψεις της επιστήμης που προβάλλονται στην εκπαίδευση Βασίλης Τσελφές Εθνικὸ και Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 23: Υπολογισμοί σε Κβαντικά Κυκλώματα ΙΙ Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Υπολογισμοί
Ιστορία της μετάφρασης
ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 6: Μεταφραστές και πρωτότυπα. Ελένη Κασάπη ΤΜΗΜΑ ΑΓΓΛΙΚΗΣ ΓΛΩΣΣΑΣ ΚΑΙ ΦΙΛΟΛΟΓΙΑΣ Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Προγραμματισμός Η/Υ. Βασικές Προγραμματιστικές Δομές. ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος
Προγραμματισμός Η/Υ Βασικές Προγραμματιστικές Δομές ΤΕΙ Ιονίων Νήσων Τμήμα Τεχνολόγων Περιβάλλοντος Κατεύθυνση Τεχνολογιών Φυσικού Περιβάλλοντος Δομή Ελέγχου Ροής (IF) Η εντολή IF χρησιμοποιείται όταν
Εορτολογία. Ενότητα 4: Οι Εορτές της Αναλήψεως και της Πεντηκοστής. Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα Κοινωνικής Θεολογίας
Εορτολογία Ενότητα 4: Οι Εορτές της Αναλήψεως και της Πεντηκοστής Γεώργιος Φίλιας Θεολογική Σχολή Τμήμα Κοινωνικής Θεολογίας 1. Α) Οι Εορτές της Αναλήψεως και της Πεντηκοστής (1 από 2) Μέχρι τον 4 ο αι.
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων.
Λογιστική Κόστους Ενότητα 10: Ασκήσεις Προτύπου Κόστους Αποκλίσεων. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 6: Διαπεριφερειακές διαφορές Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το παρόν εκπαιδευτικό