Κλασική Ηλεκτροδυναμική
|
|
- φώλος Νικολαΐδης
- 8 χρόνια πριν
- Προβολές:
Transcript
1 Κλασική Ηλεκτροδυναμική Ενότητα 7: Εξίσωση Laplace σε σφαιρικές συντεταγμένες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
2 Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει και να επιλύσει την εξίσωση Laplace σε σφαιρικές συντεταγμένες. 2
3 Περιεχόμενα ενότητας Τεμνόμενες πλάκες δυναμικού V υπό γωνία β (πρόβλημα πολικών συντεταγμένων) Εξίσωση Laplace σε σφαιρικές συντεταγμένες 3
4 Πλάκες δυναμικού V υπό γωνία β Θεωρούμε δυο τεμνόμενες πλάκες. Η μία βρίσκεται στον άξονα x και η άλλη στον άξονα y. Σχηματίζουν γωνία β. Οι συνοριακές συνθήκες του προβλήματος είναι Φ r, φ = 0 = V, Φ r, φ = β = V. Ψάχνουμε το δυναμικό στον χώρο. Έχουμε πρόβλημα διδιάστατο και θα γίνει χρήση πολικών συντεταγμένων. Η γενική λύση της Laplace είναι: Φ r, φ = a 0 + b 0 lnr + ν=1 C ν sinνφ + D ν cosνφ A ν r ν + Β ν r ν. 4
5 Εφαρμογή συνοριακών συνθηκών Για να μην έχουμε απειρισμό του δυναμικού όταν r 0, θέτουμε b 0 = 0 και Β ν = 0. Από την συνοριακή συνθήκη Φ r, φ = 0 = V, έχουμε: V = a 0 + r ν Α ν D ν ν=1 Για να έχει νόημα η παραπάνω ισότητα θα πρέπει V = a 0, D ν = 0. Άρα η γενική λύση γίνεται Φ r, φ = V + C ν sinνφr ν Με την εφαρμογή της δεύτερης συνοριακής συνθήκης Φ r, φ = β = V έχουμε V = V + ν=1 C ν sinνβr ν sinνβ = 0 νβ = mπ ν = mπ. β ν=1 5
6 Υπολογισμός ηλεκτρικού πεδίου και επιφανειακής πυκνότητας Η λύση για το δυναμικό είναι λοιπόν της μορφής Φ r, φ = V + C m sin mπ φr mπ β m=1. β Αν ψάχνουμε το δυναμικό πολύ κοντά στην γωνία, τότε r 0, m = 1. Επομένως Φ r, φ = V + C 1 sin π π φr β. β Για το ηλεκτρικό πεδίο θα ισχύει Ε = Ε r e r + E φ e φ. Υπολογίζουμε την κάθε συνιστώσα ξεχωριστά: Ε r = Φ = C r 1 sin π φ π π r β 1, Ε β β φ = 1 π Φ = C π r φ 1 r β 1 cos π φ. β β Για την επιφανειακή πυκνότητα φορτίου έχουμε σ = 1 1 Φ 4π r φ = 1 4π C π π 1 β r β 1 cos π β φ. 6
7 Εξίσωση Laplace σε σφαιρικές συντεταγμένες Η εξίσωση Laplace σε σφαιρικές συντεταγμένες είναι 1 r 2 r 2 rφ + 1 r 2 sinθ θ sinθ Φ + 1 θ r 2 sin 2 θ Φ = Φ r, θ, φ. Εφαρμόζουμε την Μ.Χ.Μ και θέτουμε Φ r, θ, φ = R r P θ Q φ. 2 φ 2 Φ = 0,όπου Αντικαθιστώντας την λύση στην εξίσωση καταλήγουμε rsin 2 d2 1 θr dr 2 rr + d sinθp 1 dθ dp sin θ dθ + Q 1 φ d2 d 2 Q φ = 0 φ 7
8 Μορφή Q(φ) Θέτουμε Q 1 φ d2 Q φ = d 2 φ m2 (1) και rsin 2 1 d2 θr rr + dr 2 sinθp 1 d dp sin θ = dθ dθ m2. (2) Από την πρώτη εξίσωση έχουμε d2 Q(φ) + d 2 φ m2 Q φ = 0 Q φ = e imφ Θα πρέπει Q φ = Q φ + 2π e i2πm = 1 m Z. Σε περίπτωση αζιμουθιακής συμμετρίας έχουμε m = 0. Άρα Q φ = 0 Q φ = Α + Βφ, και επειδή πρέπει να ικανοποιείται η περιοδικότητα (δηλ. Q φ = Q φ + 2π ), ισχύει ότι Q φ = Α. (Τα Α και Β είναι σταθερές). 8
9 Εξίσωση Legendre Διαχωρίζουμε τις μεταβλητές στην εξίσωση (2) και καταλήγουμε στις εξισώσεις d2 rr 1 dr 2 rr = 1 d sinθ P 1 dθ sinθ dp dθ + m2 sin 2 θ Για το γωνιακό κομμάτι της παραπάνω εξίσωσης έχουμε 1 d dp m2 sinθ + l l + 1 sinθ dθ dθ sin 2 θ P θ = 0. = l l + 1. Πραγματοποιώντας μια αλλαγή μεταβλητής θέτοντας cosθ = x, οπότε sinθ = 1 x 2 και dx = sinθdθ, καταλήγουμε στην γενικευμένη εξίσωση Legendre: d dp(x) 1 x2 + l l + 1 m2 P x = 0. dx dx 1 x2 9
10 Πολυώνυμα Legendre Λύσεις της γενικευμένης εξίσωσης Legendre είναι τα γενικευμένα πολυώνυμα Legendre. Στην περίπτωσή μας για απλότητα θα θεωρήσουμε ότι υπάρχει αζιμουθιακή συμμετρία, (δηλ. m = 0) και η εξίσωση Legendre γίνεται: d 1 x 2 dp(x) + l l + 1 P x = 0. dx dx Θεωρούμε λύση απειροσειρά της μορφής P x = a n x n n=0. Αντικαθιστώντας στην εξίσωση καταλήγουμε στον αναδρομικό τύπο για τον προσδιορισμό των συντελεστών l l n(n + 1) α n+2 = a (n + 2)(n + 1) n Επιθυμούμε την σύγκλιση της απειροσειράς. Συγκλίνει για x < 1. Θέλουμε όμως να συγκλίνει και για x = 1, δηλ. στους πόλους. Για να συμβεί αυτό, πρέπει κάποια στιγμή να τερματίζεται, δηλ. l l + 1 = n n + 1. Ο μέγιστος δείκτης της απειροσειράς θα είναι λοιπόν για n = l. 10
11 Σχέση ορθογωνιότητας πολυωνύμων Legendre Τα πολυώνυμα Legendre βρίσκονται απ ευθείας από τον τύπο του Rodriguez, P l x = 1 d l 2 l l! dx l x 2 1 l. Τα πολυώνυμα Legendre είναι ορθογώνια στο διάστημα 1, +1. Η +1 σχέση ορθογωνιότητας είναι P l x P l x dx = 2 δ l l. 1 2l+1 Άρα τα κανονικοποιημένα πολυώνυμα Legendre είναι τα U l x = 2l P l x. Συναρτήσει της γωνίας η σχέση ορθογωνιότητας είναι π P l cosθ P l cosθ sinθdθ = 2 2l + 1 δ l l 0 11
12 Ακτινική εξίσωση και γενική λύση Η ακτινική εξίσωση όπως έχουμε αναφέρει είναι d 2 l l + 1 R rr = 0 dr2 r R r = A l r (l+1) + B l r l Η γενική λύση της εξίσωσης Laplace για σφαιρικές συντεταγμένες και στην περίπτωση της αζιμουθιακής συμμετρίας είναι Φ r, θ = A l r l+1 + B l r l P l cosθ. l=0 12
13 Πρόβλημα ημισφαιρίων με διαφορετικά δυναμικά Θα σκιαγραφήσουμε το πρόβλημα μιας σφαίρας ακτίνας α που στην επιφάνειά της έχει δυναμικό V θ. Η συνάρτηση του δυναμικού μπορεί να είναι V θ = V, 0 θ π 2 V, π 2 θ π Ψάχνουμε το δυναμικό στο εσωτερικό της σφαίρας. 13
14 Επίλυση Όπως είδαμε η γενική λύση είναι της μορφής Φ r, θ = l=0 A l r l+1 + B l r l P l cosθ. Για να μην έχουμε απειρισμό της λύσης καθώς r 0, θέτουμε A l = 0. Άρα η λύση γίνεται Φ r, θ = l=0 B l r l P l cosθ. Από την συνθήκη Φ r = α, θ = V θ, έχουμε ότι V θ = B l α l P l cosθ. l=0 14
15 Εύρεση συντελεστή Κάνουμε χρήση της σχέσης ορθογωνιότητας των πολυωνύμων Legendre προκειμένου να προσδιορίσουμε τον συντελεστή B l. Όταν προσδιορίσουμε τον συντελεστή έχουμε ουσιαστικά την ολοκληρωμένη λύση για το δυναμικό στον χώρο. Επομένως 0 π V θ P l cosθ sinθdθ = B l a l P l (cosθ)p l cosθ sinθdθ 0 π π l=0 π 0 V θ P l cosθ sinθdθ = B l a l 2 2l + 1 δ l l l=0 B l = 2l+1 1 V θ P 2 a l l cosθ sinθdθ 0 Ανάλογα με την μορφή που έχει κάθε φορά το δυναμικό V θ, υπολογίζουμε το ολοκλήρωμα. 15
16 Τέλος Ενότητας
17 Χρηματοδότηση Το παρόν εκπαιδευτικό υλικό έχει αναπτυχθεί στo πλαίσιo του εκπαιδευτικού έργου του διδάσκοντα. Το έργο «Ανοικτά Ακαδημαϊκά Μαθήματα στο Πανεπιστήμιο Αθηνών» έχει χρηματοδοτήσει μόνο την αναδιαμόρφωση του εκπαιδευτικού υλικού. Το έργο υλοποιείται στο πλαίσιο του Επιχειρησιακού Προγράμματος «Εκπαίδευση και Δια Βίου Μάθηση» και συγχρηματοδοτείται από την Ευρωπαϊκή Ένωση (Ευρωπαϊκό Κοινωνικό Ταμείο) και από εθνικούς πόρους. 17
18 Σημείωμα Αναφοράς Copyright Πανεπιστήμιο Πατρών, Ανδρέας Τερζής. Ανδρέας Τερζής «Κλασική Ηλεκτροδυναμική. Εξίσωση Laplace σε σφαιρικές συντεταγμένες». Έκδοση: 1.0. Πάτρα Διαθέσιμο από τη δικτυακή διεύθυνση: 18
19 Σημείωμα Αδειοδότησης Το παρόν υλικό διατίθεται με τους όρους της άδειας χρήσης Creative Commons Αναφορά, Μη Εμπορική Χρήση Παρόμοια Διανομή 4.0 [1] ή μεταγενέστερη, Διεθνής Έκδοση. Εξαιρούνται τα αυτοτελή έργα τρίτων π.χ. φωτογραφίες, διαγράμματα κ.λ.π., τα οποία εμπεριέχονται σε αυτό και τα οποία αναφέρονται μαζί με τους όρους χρήσης τους στο «Σημείωμα Χρήσης Έργων Τρίτων». [1] Ως Μη Εμπορική ορίζεται η χρήση: που δεν περιλαμβάνει άμεσο ή έμμεσο οικονομικό όφελος από την χρήση του έργου, για το διανομέα του έργου και αδειοδόχο που δεν περιλαμβάνει οικονομική συναλλαγή ως προϋπόθεση για τη χρήση ή πρόσβαση στο έργο που δεν προσπορίζει στο διανομέα του έργου και αδειοδόχο έμμεσο οικονομικό όφελος (π.χ. διαφημίσεις) από την προβολή του έργου σε διαδικτυακό τόπο Ο δικαιούχος μπορεί να παρέχει στον αδειοδόχο ξεχωριστή άδεια να χρησιμοποιεί το έργο για εμπορική χρήση, εφόσον αυτό του ζητηθεί. 19
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 3: Πολυπολική ανάπτυξη Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει την πολυπολική ανάπτυξη του δυναμικού
Κβαντική Φυσική Ι. Ενότητα 29: Το άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 29: Το άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να δώσει μια πλήρη μαθηματική- κβαντομηχανική μελέτη
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 12: Συνάρτηση Green από ιδιοσυναρτήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει την συνάρτηση Green από
Κλασική Hλεκτροδυναμική
Κλασική Hλεκτροδυναμική Ενότητα 3: Η συνάρτηση Green σε επίπεδη γεωμετρία και η μέθοδος των ειδώλων σε σφαιρική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας
Κλασική Hλεκτροδυναμική
Κλασική Hλεκτροδυναμική Ενότητα 1: Εισαγωγή Ανδρέας Τερζής Σχολή Θετικών επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια σύντομη επανάληψη στις βασικές έννοιες της ηλεκτροστατικής.
1 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
1 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων 1 Περιεχόμενα 1 η Άσκηση... 3 2 η Άσκηση... 3 3 η Άσκηση... 3 4 η Άσκηση... 3 5 η Άσκηση... 4 6 η Άσκηση... 4 7 η Άσκηση... 4 8 η Άσκηση... 5 9 η Άσκηση... 5 10
Κβαντική Φυσική Ι. Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 31: Εφαρμογές και η ακτινική εξίσωση του ατόμου του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει κάποιες
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας
Ενδεικτικές λύσεις ασκήσεων διαχείρισης έργου υπό συνθήκες αβεβαιότητας 1 Περιεχόμενα 1 η Άσκηση... 4 2 η Άσκηση... 7 3 η Άσκηση... 10 Χρηματοδότηση... 12 Σημείωμα Αναφοράς... 13 Σημείωμα Αδειοδότησης...
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 19: Η συνάρτηση Green για την κυματική εξίσωση και θεώρημα Poynting Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων &
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.4: Ολοκλήρωση με Αντικατάσταση Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 14: Ολοκλήρωση πολυπολικής ανάπτυξης και διηλεκτρικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την πολυπολική
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 7: Παράγωγος, ελαστικότητα, παραγώγιση συναρτήσεων (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 17: Μαγνητοστατική σε υλικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τα στοιχεία θεωρίας που αφορούν
Κλασική Ηλεκτροδυναμική Ι
ΠΑΝΕΠΙΣΤΗΜΙΟ ΙΩΑΝΝΙΝΩΝ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Κλασική Ηλεκτροδυναμική Ι ΤΕΧΝΙΚΕΣ ΥΠΟΛΟΓΙΣΜΟΥ ΗΛΕΚΤΡΙΚΟΥ ΔΥΝΑΜΙΚΟΥ Διδάσκων: Καθηγητής Ι. Ρίζος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 7: Βέλτιστος έλεγχος συστημάτων διακριτού χρόνου Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα
Κβαντική Φυσική Ι. Ενότητα 26: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή
Κβαντική Φυσική Ι Ενότητα 6: Ολοκλήρωση της αλγεβρικής μεθόδου για την μελέτη του αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει
Κβαντική Φυσική Ι. Ενότητα 16: Αναπαράσταση τελεστών με μήτρες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 16: Αναπαράσταση τελεστών με μήτρες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να αναπτύξει την μεθοδολογία εύρεσης ιδιοτιμών
Κβαντική Φυσική Ι. Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 19: Εισαγωγή στα τετραγωνικά δυναμικά Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι μια πρώτη επαφή με την έννοια των τετραγωνικών
Κβαντική Φυσική Ι. Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 22: Η έννοια της σκέδασης και η εξίσωση συνέχειας στην Κβαντομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει
Κβαντική Φυσική Ι. Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 25: Μαθηματική μελέτη του κβαντικού αρμονικού ταλαντωτή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την μελέτη
Κβαντική Φυσική Ι. Ενότητα 12: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 12.1 Να υπολογιστεί η μέση ενέργεια σωματιδίου που περιγράφεται από την κυματοσυνάρτηση ψ x = 1 3 ψ 1
Κβαντική Φυσική Ι. Ενότητα 9: Χρονοεξαρτώμενη εξίσωση Schro dinger. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 9: Χρονοεξαρτώμενη εξίσωση Schro dinger Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να δοθεί η γενική λύση της χρονοεξαρτώμενης
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού σε κατάσταση Κορεσμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού σε κατάσταση Κορεσμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 8: Εφαρμογές παραγώγων Μελέτη και βελτιστοποίηση συναρτήσεων μιας μεταβλητής (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση Συγχώνευση & απαρίθμηση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης
Διοικητική Λογιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Ιονίων Νήσων Διοικητική Λογιστική Ενότητα 10: Προσφορά και κόστος Το περιεχόμενο του μαθήματος διατίθεται με άδεια Creative Commons εκτός και αν αναφέρεται διαφορετικά
Κβαντική Φυσική Ι. Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 18: Εφαρμογή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παραθέσει μια εφαρμογή για να γίνει πιο κατανοητός
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 3: Έλεγχοι στατιστικών υποθέσεων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 1: Καταχώρηση δεδομένων Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος διατίθεται
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 10 Μοριακή Δομή Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 (α) Να υπολογιστεί το ολικό πλάτος του κανονικοποιημένου δεσμικού
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 6: Όριο και συνέχεια συναρτήσεων (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Κβαντική Φυσική Ι. Ενότητα 21: Δέλτα πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 21: Δέλτα πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετήσει το δέλτα πηγάδι δυναμικού, το οποίο αποτελεί
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 9: Ολοκληρώματα (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Κβαντική Φυσική Ι. Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 2: Σύστημα δύο σωματιδίων-αρχή της αντιστοιχίας Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η σύντομη παρουσίαση μελέτης της
Γενικά Μαθηματικά Ι. Ενότητα 12: Κριτήρια Σύγκλισης Σειρών. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 2: Κριτήρια Σύγκλισης Σειρών Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons.
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας. Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική
Ανοικτά Ακαδημαϊκά Μαθήματα στο ΤΕΙ Αθήνας Βιοστατιστική (Ε) Ενότητα 2: Περιγραφική στατιστική Δρ.Ευσταθία Παπαγεωργίου, Αναπληρώτρια Καθηγήτρια Τμήμα Ιατρικών Εργαστηρίων Το περιεχόμενο του μαθήματος
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 4: Το γενικευμένο πρόβλημα βέλτιστου ελέγχου για συστήματα συνεχούς Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Κβαντική Φυσική Ι. Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 33: Εφαρμογές στο άτομο του υδρογόνου Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει κάποιες εφαρμογές που αφορούν
Κβαντική Φυσική Ι. Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 13: Σύστημα δύο ενεργειακών επιπέδων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να μελετηθεί μια εφαρμογή σχετικά με τις βασικές
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 5 η Άσκηση - Συγχώνευση Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία
Προσχολική Παιδαγωγική Ενότητα 2: Οργάνωση χρόνου και χώρου στα νηπιαγωγεία Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Περιγραφή των
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 2: Γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Κβαντική Φυσική Ι. Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική. Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 15: Η έννοια του κυματοπακέτου στην Kβαντομηχανική Τερζής Ανδρέας Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει την εφαρμογή της
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 4: Κλασσική και Κβαντική Πιθανότητα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Σκοπός της ενότητας
Κλασική Ηλεκτροδυναμική
Κλασική Ηλεκτροδυναμική Ενότητα 18: Νόμοι Maxwell Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσίασει τις εξισώσεις Maxwell. 2 Περιεχόμενα ενότητας
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις
ΦΥΣΙΚΟΧΗΜΕΙΑ I Ασκήσεις Ενότητα 8 Ατομικά Τροχιακά Δημήτρης Κονταρίδης Αναπληρωτής Καθηγητής Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Άσκηση 1 Να υπολογιστεί η πιθανότερη ακτίνα, *, στην οποία θα βρίσκεται
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2)
Λογιστική Κόστους Ενότητα 12: Λογισμός Κόστους (2) Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative Commons. Για
Κβαντική Φυσική Ι. Ενότητα 11: Μεταθέτες και ιδιότητες. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 11: Μεταθέτες και ιδιότητες Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να δοθούν ορισμένες από τις βασικές ιδιότητες του μεταθέτη
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 3: Μη γραμμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Κβαντική Φυσική Ι. Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 8: Ολοκλήρωση μελέτης απειρόβαθου πηγαδιού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρωθεί η μελέτη που αφορά το
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 12: Ιδιοτιμές και Ιδιοδιανύσματα Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Ιδιοτιμές και Ιδιοδιανύσματα
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος)
Ενδεικτικές λύσεις ασκήσεων διαγραμμάτων περίπτωσης χρήσης (1ο Μέρος) 1 Περιεχόμενα 1 η Άσκηση Λειτουργίες του βιβλίου διευθύνσεων σε ένα πρόγραμμα ηλεκτρονικού ταχυδρομείου... 4 2 η Άσκηση Λειτουργίες
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι. Ενότητα 2: Θερμοδυναμικές συναρτήσεις. Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών
ΘΕΡΜΟΔΥΝΑΜΙΚΗ Ι Ενότητα 2: Θερμοδυναμικές συναρτήσεις Σογομών Μπογοσιάν Πολυτεχνική Σχολή Τμήμα Χημικών Μηχανικών Σκοποί ενότητας Σκοπός της ενότητας αυτής είναι η εισαγωγή νέων θερμοδυναμικών συναρτήσεων
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΙΚΑ ΜΑΘΗΜΑΤΑ ΣΥΣΤΗΜΑΤΑ ΗΛΕΚΤΡΙΚΗΣ ΕΝΕΡΓΕΙΑΣ ΙIΙ ΜΕΤΑΒΑΤΙΚΑ ΦΑΙΝΟΜΕΝΑ ΣΤΑ ΣΗΕ Λαμπρίδης Δημήτρης Κατσανού Βάνα Τμήμα Ηλεκτρολόγων Μηχανικών και Μηχανικών
Κβαντική Φυσική Ι. Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac
Κβαντική Φυσική Ι Ενότητα 17: Εφαρμογή στην αναπαράσταση τελεστών με μήτρα και εισαγωγή στον συμβολισμό Dirac Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι
Εισαγωγή στους Υπολογιστές
Εισαγωγή στους Υπολογιστές Εργαστήριο 2 Καθηγητές: Αβούρης Νικόλαος, Παλιουράς Βασίλης, Κουκιάς Μιχαήλ, Σγάρμπας Κυριάκος Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Άσκηση 2 ου εργαστηρίου
Κβαντική Φυσική Ι. Ενότητα 5: Κυματομηχανική. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 5: Κυματομηχανική Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι η ερμηνεία της κυματοσυνάρτησης, δηλαδή της λύσης της εξίσωσης
Κβαντική Φυσική Ι. Ενότητα 23: Ασκήσεις. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 23: Ασκήσεις Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Άσκηση 23.1 Ηλεκτρόνιο βρίσκεται περιορισμένο σε πηγάδι δυναμικού της μορφής 0, 0 x a V x = V 0, a x b +, x
Γενική Φυσική Ενότητα: Ταλαντώσεις
Γενική Φυσική Ενότητα: Ταλαντώσεις Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ερωτήσεις Ταλαντώσεων... 4 1.1 Ερώτηση 1... 4 2. Ασκήσεις Ταλαντώσεων... 4 2.1 Άσκηση 1... 4 2.2 Άσκηση
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Β. Διαφορικός Λογισμός Κεφάλαιο Β.9: Το Διαφορικό Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Γεώργιος Νικ. Μπροδήμας Κεφάλαιο Β.9: Το Διαφορικό 1 Άδειες
Μάρκετινγκ Αγροτικών Προϊόντων
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΧΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Μάρκετινγκ Αγροτικών Προϊόντων Ενότητα 4 η : Οι Παραγωγοί Αγροτικών Προϊόντων Χρίστος Καμενίδης Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας
Γενική Φυσική Ενότητα: Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας Όνομα Καθηγητή: Γεώργιος Βούλγαρης Τμήμα: Μαθηματικό Σελίδα 2 1. Ασκήσεις στην Εισαγωγή στην Ειδική Θεωρία της Σχετικότητας... 4 1.1
Γενικά Μαθηματικά Ι. Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις. Λουκάς Βλάχος Τμήμα Φυσικής ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 1: Συναρτήσεις και Γραφικές Παραστάσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης Creative
Επιχειρησιακή Έρευνα
Επιχειρησιακή Έρευνα Ενότητα 10: Ειδικές περιπτώσεις επίλυσης με τη μέθοδο simplex (2o μέρος) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 7: Universal motor Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Κβαντική Φυσική Ι. Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 27: Γενική μελέτη κβαντικών συστημάτων δύο και τριών διαστάσεων Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να παρουσιάσει την
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 5: Ακολουθίες, όρια, σειρές (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι
Τίτλος Μαθήματος: Εργαστήριο Φυσικής Ι Ενότητα: Επαναληπτικές Ασκήσεις Ενοτήτων 5, 6 & 7 Όνομα Καθηγητή: Γεωργά Σταυρούλα Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης
Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Ενότητα #1: Ερωτήσεις κατανόησης και αυτόαξιολόγησης για τη Δωρεά Κυττάρων Αίματος και Μυελού των Οστών Αλέξανδρος Σπυριδωνίδης Σχολή Επιστημών Υγείας Τμήμα
Κβαντική Φυσική Ι. Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 12: Θεωρήματα Ehrenfest-Parity- -Μέση τιμή τελεστή Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοπός ενότητας Σκοπός της ενότητας είναι να ολοκληρώσει τις ιδιότητες
Εισαγωγή στους Η/Υ. Ενότητα 2β: Αντίστροφο Πρόβλημα. Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών
Εισαγωγή στους Η/Υ Ενότητα 2β: Δημήτρης Σαραβάνος, Καθηγητής Πολυτεχνική Σχολή Τμήμα Μηχανολόγων & Αεροναυπηγών Μηχανικών Σκοποί ενότητας Εύρεση συνάρτησης Boole όταν είναι γνωστός μόνο ο πίνακας αληθείας.
2 η Διάλεξη. Ενδεικτικές λύσεις ασκήσεων
2 η Διάλεξη Ενδεικτικές λύσεις ασκήσεων Περιεχόμενα η Άσκηση... 3 2 η Άσκηση... 4 3 η Άσκηση... 5 4 η Άσκηση... 7 Χρηματοδότηση... 9 Σημείωμα Αναφοράς... 0 Σημείωμα Αδειοδότησης... 2 Ενδεικτικές λύσεις
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή
Εκπαιδευτική Διαδικασία και Μάθηση στο Νηπιαγωγείο Ενότητα 1: Εισαγωγή Διδάσκουσα: Μαρία Καμπεζά Τμήμα Επιστημών της Εκπαίδευσης και της Αγωγής στην Προσχολική Ηλικία Σκοποί ενότητας Να ενημερωθούν οι
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση
Χωρικές σχέσεις και Γεωμετρικές Έννοιες στην Προσχολική Εκπαίδευση Ενότητα 7: Κανονικότητες, συμμετρίες και μετασχηματισμοί στο χώρο Δημήτρης Χασάπης Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους.
Λογιστική Κόστους Ενότητα 8: Κοστολογική διάρθρωση Κύρια / Βοηθητικά Κέντρα Κόστους. Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 11: Διανύσματα (Θεωρία) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων Αγροτικών Προϊόντων & Τροφίμων
Εισαγωγή στους Αλγορίθμους
Εισαγωγή στους Αλγορίθμους Ενότητα 6 η Άσκηση - DFS δένδρα Διδάσκων Χρήστος Ζαρολιάγκης Καθηγητής Τμήμα Μηχανικών Η/Υ & Πληροφορικής Πανεπιστήμιο Πατρών Email: zaro@ceid.upatras.gr Άδειες Χρήσης Το παρόν
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 1: E-L Συστήματα Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης
Βέλτιστος Έλεγχος Συστημάτων
Βέλτιστος Έλεγχος Συστημάτων Ενότητα 12: Αρχή ελαχίστου του Pontryagin Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σημείωμα Αδειοδότησης Το
Κβαντική Φυσική Ι. Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού. Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Κβαντική Φυσική Ι Ενότητα 7: Διερεύνηση εξίσωσης Schro dinger και απειρόβαθο πηγάδι δυναμικού Ανδρέας Τερζής Σχολή Θετικών Επιστημών Τμήμα Φυσικής Σκοποί ενότητας Σκοπός της ενότητας είναι να σκιαγραφηθεί
Φυσική ΙΙΙ. Ενότητα 4: Ηλεκτρικά Κυκλώματα. Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής
Φυσική ΙΙΙ Ενότητα 4: Ηλεκτρικά Κυκλώματα Γεώργιος Βούλγαρης Σχολή Θετικών Επιστημών Τμήμα Φυσικής Ασκήσεις ΦΙΙΙ Γ. Βούλγαρης 2 Ταχύτητα ολίσθησης σε σύρμα από χαλκό. Διάμετρος δ=1,6 mm Ρεύμα 10 Α Πυκνότητα
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων
Δυναμική και Έλεγχος E-L Ηλεκτρομηχανικών Συστημάτων Ενότητα 6: Δυναμική μηχανής συνεχούς ρεύματος Καθηγητής Αντώνιος Αλεξανδρίδης Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός
Τίτλος Μαθήματος: Μαθηματική Ανάλυση Ενότητα Γ. Ολοκληρωτικός Λογισμός Κεφάλαιο Γ.03: Μέθοδοι Ολοκλήρωσης Όνομα Καθηγητή: Γεώργιος Ν. Μπροδήμας Τμήμα Φυσικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται
Θερμοδυναμική. Ανοικτά Ακαδημαϊκά Μαθήματα. Πίνακες Νερού Υπέρθερμου Ατμού. Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής
Ανοικτά Ακαδημαϊκά Μαθήματα Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας Πίνακες Νερού Υπέρθερμου Ατμού Γεώργιος Κ. Χατζηκωνσταντής Επίκουρος Καθηγητής Διπλ. Ναυπηγός Μηχανολόγος Μηχανικός M.Sc. Διασφάλιση Ποιότητας,
Γενικά Μαθηματικά Ι. Ενότητα 15: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Τμήμα Φυσικής
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Ενότητα 5: Ολοκληρώματα Με Ρητές Και Τριγωνομετρικές Συναρτήσεις Λουκάς Βλάχος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε
Κβαντική Επεξεργασία Πληροφορίας
Κβαντική Επεξεργασία Πληροφορίας Ενότητα 11: Είδη και μετασχηματισμοί πινάκων Σγάρμπας Κυριάκος Πολυτεχνική Σχολή Τμήμα Ηλεκτρολόγων Μηχανικών και Τεχνολογίας Υπολογιστών Σκοποί ενότητας Είδη και μετασχηματισμοί
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 9: ΑΣΚΗΣΕΙΣ ΕΠΙΛΟΓΗΣ ΤΟΠΟΥ ΕΓΚΑΤΑΣΤΑΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών
Μαθηματικά Διοικητικών & Οικονομικών Επιστημών Ενότητα 4: Εκθετικές και λογαριθμικές συναρτήσεις (Φροντιστήριο) Μπεληγιάννης Γρηγόριος Σχολή Οργάνωσης και Διοίκησης Επιχειρήσεων Τμήμα Διοίκησης Επιχειρήσεων
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ. Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης. Παρούσης Μιχαήλ. Τμήμα Φιλοσοφίας
ΕΦΑΡΜΟΣΜΕΝΗ ΗΘΙΚΗ Ενότητα 9: Σχέση Ηθικής και Δικαιοσύνης Παρούσης Μιχαήλ Τμήμα Φιλοσοφίας 1 Σκοποί ενότητας Το σημερινό μάθημα αφορά την έννοια της δικαιοσύνης ως ηθικής αρχής. Κατά πόσο αυτή η αρχή μπορεί
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής
Μικροοικονομική Ανάλυση της Κατανάλωσης και της Παραγωγής Διάλεξη 11: Μεγιστοποίηση κέρδους Ανδρέας Παπανδρέου Σχολή Οικονομικών και Πολιτικών Επιστημών Τμήμα Οικονομικών Επιστημών Οικονομικό κέρδος Μια
Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ Διεθνείς Οικονομικές Σχέσεις και Ανάπτυξη Ενότητα 8: Η Οικονομική πολιτική της Ευρωπαϊκής Ένωσης Γρηγόριος Ζαρωτιάδης Άδειες Χρήσης Το
Εισαγωγή στην Διοίκηση Επιχειρήσεων
Εισαγωγή στην Διοίκηση Επιχειρήσεων Ενότητα 7: ΑΣΚΗΣΕΙΣ ΜΕΓΕΘΟΥΣ ΕΠΙΧΕΙΡΗΣΗΣ Μαυρίδης Δημήτριος Τμήμα Λογιστικής και Χρηματοοικονομικής Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται σε άδειες χρήσης
Διδακτική των εικαστικών τεχνών Ενότητα 1
Διδακτική των εικαστικών τεχνών Ενότητα 1 Ουρανία Κούβου Εθνικὸ καi Καποδιστριακὸ Πανεπιστήμιο Αθηνών Τμήμα Εκπαίδευσης και Αγωγής στην Προσχολική Ηλικία Ενότητα 1. Ιστορική αναδρομή της διδακτικής της
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη ISO Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας
Έλεγχος και Διασφάλιση Ποιότητας Ενότητα 4: Μελέτη Κουππάρης Μιχαήλ Τμήμα Χημείας Εργαστήριο Αναλυτικής Χημείας ISO 17025 5.9. ΔΙΑΣΦΑΛΙΣΗ ΤΗΣ ΠΟΙΟΤΗΤΑΣ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΔΟΚΙΜΩΝ (1) 5.9.1 Το Εργαστήριο
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση
Εφαρμογές των Τεχνολογιών της Πληροφορίας και των Επικοινωνιών στη διδασκαλία και τη μάθηση Ενότητα: Εργασίες Διδάσκων: Βασίλης Κόμης, Καθηγητής komis@upatras.gr www.ecedu.upatras.gr/komis/ Τμήμα Επιστημών
Ενότητα. Εισαγωγή στις βάσεις δεδομένων
Ενότητα 1 Εισαγωγή στις βάσεις δεδομένων 2 1.1 Βάσεις Δεδομένων Ένα βασικό στοιχείο των υπολογιστών είναι ότι έχουν τη δυνατότητα να επεξεργάζονται εύκολα και γρήγορα μεγάλο πλήθος δεδομένων και πληροφοριών.
ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ
ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΑΝΟΙΚΤΑ ΑΚΑΔΗΜΑΪΚΑ ΜΑΘΗΜΑΤΑ ΔΙΔΑΚΤΙΚΗ ΤΗΣ ΚΑΛΑΘΟΣΦΑΙΡΙΣΗΣ ΙΙ Ενότητα 23. Επίθεση εναντίον ζώνης Γαλαζούλας Χρήστος Άδειες Χρήσης Το παρόν εκπαιδευτικό υλικό υπόκειται